Review Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Nephrol. Jun 25, 2025; 14(2): 99380
Published online Jun 25, 2025. doi: 10.5527/wjn.v14.i2.99380
Paediatric renal tumors: An insight into molecular characteristics, histomorphology and syndromic association
Mousmi Agrawal, Amit K Chowhan, Department of Pathology and Lab Medicine, All India Institute of Medical Sciences (AIIMS), Raipur 492099, Chhattisgarh, India
ORCID number: Mousmi Agrawal (0000-0001-5105-8921); Amit K Chowhan (0000-0002-5440-6941).
Author contributions: Agrawal M contributed to material preparation, first draft of manuscript and literature search; Chowhan AK contributed to literature search and editing of manuscript.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Amit K Chowhan, MD, Professor, Department of Pathology and Lab Medicine, All India Institute of Medical Sciences (AIIMS), Raipur 492099, Chhattisgarh, India. chowhanpath@aiimsraipur.edu.in
Received: July 21, 2024
Revised: December 19, 2024
Accepted: January 14, 2025
Published online: June 25, 2025
Processing time: 262 Days and 3.7 Hours

Abstract

Paediatric renal tumors are rare and accounts for about 7% of all paediatric malignant tumors. The spectrum of paediatric renal tumors ranges from benign to malignant. Benign tumors include cystic nephroma, metanephric tumors and ossifying renal tumor of infancy. Tumor with low grade malignancy includes mesoblastic nephroma. Malignant tumors are nephroblastoma, clear cell sarcoma, malignant rhabdoid tumor, anaplastic sarcoma and Ewing sarcoma. Additionally, there are molecularly defined renal tumors, which includes renal cell carcinoma (RCC) with MiT translocations, ALK-rearranged RCC, eosinophilic solid and cystic RCC and SMARCB1- deficient renal medullary carcinoma. These tumors apart from having characteristic clinical presentation and histomorphology, also carry typical molecular mutations and translocations. Certain renal tumors have association with various genetic syndromes such as Beckwith-Weidmann syndrome, Wilm’s tumor, aniridia, genitourinary anomalies and mental retardation syndrome, Denys-Drash syndrome, rhabdoid tumor predisposition syndrome and DICER syndrome. This review article focusses on molecular characteristics, histomorphology and syndromic association of pediatric renal tumors, their immunohistochemical approach to diagnosis with recent updates in molecularly defined renal tumors.

Key Words: Genetic syndrome; Immunohistochemistry; Paediatric; Renal tumor; Benign; Malignant; Molecular characteristics

Core Tip: This article outlines about paediatric renal tumors. They can have asymptomatic to symptomatic presentation. Every tumor has its own unique histomorphology, immunohistochemistry and molecular pathology. Certain tumors have association with genetic syndromes, which makes it prognostically more challenging for children. Knowledge and awareness of these tumors are essential for their accurate diagnosis and early treatment.



INTRODUCTION

Renal tumors are rare in children and comprise approximately 7% of all paediatric malignant tumors. Renal tumors have variable presentation. At times they are detected incidentally and sometimes present with abdominal mass, pain or haematuria[1,2]. Renal tumors are heterogenous group of tumors, with each having their own treatment, prognosis, and relationship to genetic predispositions[2]. The spectrum of paediatric renal tumors ranges from benign to malignant[3]. Benign tumors include cystic nephroma, metanephric tumors and ossifying renal tumor of infancy (ORTI). Tumor with low grade malignancy includes mesoblastic nephroma (MN). Malignant tumors are nephroblastoma, clear cell sarcoma, malignant rhabdoid tumor, anaplastic sarcoma and Ewing sarcoma[4-6].

Molecularly defined renal tumors includes renal cell carcinoma (RCC) with MiT translocations, ALK driven RCC, Eosinophilic, solid and cystic (ESC) RCC (TSC related) and SMARCB1-deficient renal medullary carcinoma[6]. Various syndromes associated with increased risk of childhood renal tumors are DICER syndrome, rhabdoid tumor predisposition syndrome (RTPS) Denys–Drash syndrome, Wilm’s tumor, aniridia, genitourinary anomalies and mental retardation (WAGR) syndrome and Beckwith-Weidmann syndrome[7-11].

The tumors can be unilateral or bilateral. Majority of the childhood renal tumors are unilateral; except paediatric cystic nephroma which can be bilateral in 25% cases and nephroblastoma which can occur bilateral in 5%-8% of cases[12-13].

BENIGN TUMORS OR TUMORS OF LOW MALIGNANT POTENTIAL
Paediatric cystic nephroma

It is a benign uncommon renal cystic neoplasm[7,14]. It is generally observed in children younger than 4 years old[14]. It accounts for 2%-3% of primary renal tumors[15]. The tumors can present as a palpable abdominal lump or can be found during screening in a child who has a germline DICER1 mutation. The tumors are large, well-defined, comprised of cysts that vary in size and shape and lack solid nodules. The cysts contain clear fluid[7]. On histopathology, the lesion consists of cysts separated by fibrous septa; the cystic spaces are lined by flattened cuboidal epithelium, often showing hob nailing at places. Matured renal tubules are sometimes present surrounding the septae. These lesions lack blastemal component, if present, then they categorized as-cystic partially differentiated nephroblastoma[7]. The subepithelial stromal cells are Estrogen Receptor positive[16]. Molecularly paediatric cystic nephroma exhibits DICER1 mutation[12]. Paediatric cystic nephroma are associated with DICER syndrome, which is autosomal dominant characterized by mutation in DICER gene[7,17].

The endoribonuclease Dicer protein of the ribonuclease III family is encoded by the DICER1 gene, which is situated on chromosome 14. DICER 1 syndrome is a rare autosomal dominant genetic disorder that predisposes the patients to both benign and malignant tumors. It has been identified that DICER1 germline mutations are nonsense mutations, which results in truncated proteins or nonsense-mediated RNA degradation as well as forming stop codons within the coding sequence. The spectrum of lesions observed in DICER 1 syndrome includes multinodular goiter, pleuropulmonary blastoma, cystic nephroma, Sertoli-Leydig cell tumors, Hodgkin lymphoma, pinealoblastoma, global developmental delay, lung cysts, Wilms tumors and macrocephaly[18].

On imaging study [computed tomography (CT)/magnetic resonance imaging (MRI)], the tumors appear as multilocular, cystic lesion frequently having pseudocapsule. Its differential diagnosis includes cystic Wilm’s tumors[7]. These tumors are treated by complete nephrectomy and have an excellent prognosis[19]. Table 1 outlines molecular characteristics of paediatric renal tumors.

Table 1 Molecular characteristics of paediatric renal tumors.
Renal tumor
Molecular feature
Paediatric cystic nephromaDICER1 mutation[12]
Metanephric adenomaBRAFV600E mutation[25]; KANK1::NTRK3 gene fusion in BRAF negative cases[26]
Metanephric stromal tumorBRAFV600E mutation[32]
Metanephric adenofibromaBRAFV600E mutation[35]
Ossifying renal tumor of infancyClonal trisomy 4[39]
MN(1) Cellular MN: t(12;15)(p13;q25) resulting in fusion of ETV6 and NTRK3 genes[45]; (2) Classic MN: EGFR ITD[47] (3) Mixed MN: Either EGFR ITD or ETV6::NTRK3 gene fusion[47]
Nephroblastoma (Wilms tumor)Genetic changes in WT1, CTNNB1, IGF2, TP53, MYCN genes and 1q gain[56]
Malignant rhabdoid tumor of the kidneyBiallelic inactivation of SMARCB1/INI1[65]
Clear cell sarcoma of the kidney(1) BCOR-ITD exon 15[74]; (2) YWHAE: NUTM2 gene fusion[76]; (3) BCOR::CCNB3 gene fusion[75]
Anaplastic sarcoma of the kidneyDICER 1 and RNAase IIIb mutation[82]
Renal Ewing sarcoma(1) t(11;22)(q24;q12) resulting EWSR1-FLI1 fusion[89]; (2) t(21;22)(q22;q12) resulting in EWSR1-ERG fusion[90]
Renal cell carcinoma with MiT translocationsTFE3 rearranged RCCs-fusion of TFE3 with other genes like ASPL, PRCC, PSF, CLTC[93]; TFEB rearranged RCCs-MALAT1 (Alpha)::TFEB fusion[94]
ALK-rearranged renal cell carcinomasVCL-ALK fusion[98]; TPM3-ALK fusion [97]; Rarely STRN-ALK, EML4-ALK, HOOK1-ALK fusions[96,99]
Eosinophilic solid and cystic renal cell carcinomaBiallelic somatic mutations of TSC1 or TSC2 genes[106]
SMARCB1-deficient renal medullary carcinomaInactivation of SMARCB1 gene[112]
Metanephric adenoma

Metanephric adenomas are asymptomatic benign tumors, mostly diagnosed incidentally. They can be found in the age range of 5 to 84 years. It is very rare, comprising less than 0.5% of all kidney tumors. Fever, haematuria, abdominal pain and mass are presenting symptoms, if patients are symptomatic. Characteristically, at times, these patients present with polycythaemia, due to increased erythropoietin production by the neoplasm[20]. Grossly, the tumors are unifocal, well circumscribed, unencapsulated, grey white and soft to firm. Numerous calcified areas can be seen[21].

Microscopically, MA is made up of uniformly arranged, closely spaced, small epithelial cells, having round regular nuclei and high nucleus: Cytoplasmic ratio. The tumor is mitotically inactive[22]. Psammomatous calcifications can be seen[23]. Immunohistochemically, the tumor shows dual expression for WT1 and CD57[24]. The immunohistochemical approach for definitive diagnosis is summarized in Table 2.

Table 2 Immunohistochemistry of paediatric renal tumors.
Renal tumor
Immunohistochemistry expression
Paediatric cystic nephromaER positive[16]
Metanephric adenomaWT1 and CD57 positive[24]
Metanephric stromal tumorCD34 positive[29,31]
Metanephric adenofibromaCD34 positive[33]
Ossifying renal tumor of infancyEMA and Vimentin positive [38]
Nephroblastoma (Wilms tumor)The blastemal component is WT1 and PAX8 positive; the epithelial component is cytokeratin and Epithelial Membrane Antigen and positive; stromal component is vimentin positive[2]
Malignant rhabdoid tumor of the kidneySMARCB1/INI1 loss[64]
Clear cell sarcoma of the kidneyCyclin D1 and BCOR positive[73]
Renal Ewing sarcomaCD99 and NKX2-2 positive[87-88]
Renal cell carcinoma with MiT translocationsTFE3 positive[92]
ALK-rearranged renal cell carcinomasALK positive, INI1/SMARCB1 retained[97]
Eosinophilic solid and cystic renal cell carcinomaCK20 and PAX8 positive whereas CK7 and C-kit negative[105]
SMARCB1-deficient renal medullary carcinomaPAX8, Epithelial Membrane Antigen and vimentin positive [110]; SMARCB1/INI1 loss[111]

The most common molecular pathology observed is BRAFV600E mutation[25]. However, two cases have been reported having KANK1::NTRK3 gene fusion due to t(9;15)(p24;q24) translocation; seen in BRAF negative cases[26].

Its differential diagnosis includes solid subtype of low-grade papillary RCC and epithelial-predominant Wilm’s tumors. Metanephric adenomas are diagnosed on routine histopathological examination of the excised mass[24]. The treatment of choice is surgical resection and prognosis is better with disappearance of associated polycythaemia. However, passive seeding into perinephric lymph nodes has also been reported[27].

Metanephric stromal tumor

It is a rare benign mesenchymal renal tumor, diagnosed at 2 years of age[28]. Till date, less than 50 cases are reported in the literature. Most patients present with an abdominal mass; however, a small number of cases show signs of extrarenal vasculopathy, such as bleeding and hypertension[29]. McDonald et al[30] reported a case describing occurrence of metanephric stromal tumor in NF-1 patient; the patient had hypertension and the metanephric stromal tumor revealed Juxtaglomerular (JG) cell hyperplasia and florid angiodysplasia.

On histopathology, the tumor has a nodular appearance, scallop-like border, and onion skin cuffing around entrapped tubules. Vascular changes include angiodysplasia and JG cell hyperplasia. In 20% cases, heterologous elements such as glial and chondroid tissue are observed[31]. The tumor is CD34 positive[31,29]. Molecularly, the tumor has BRAFV600E mutation[32].

Its close differential is metanephric adenofibroma. These tumors are diagnosed on routine histopathology. Surgery is the main treatment and patients have a favorable outcome[29].

Metanephric adenofibroma

Metanephric adenofibroma is a rare biphasic renal tumor composed of epithelial and stromal components. It was previously termed as “nephrogenic adenofibroma”[33]. Patients present with haematuria and polycythaemia. Their age of presentation ranges from 13 months to 36 years. Less than 30 cases have been documented[34]. Microscopically, the tumor has dual epithelial and stromal components. The epithelial component has uniform small cuboidal cells with hyperchromatic nuclei and scant cytoplasm, forming tubules at places. The stromal component display spindle shaped cells having tapered hyperchromatic nuclei; strongly positive for CD34[33]. The molecular pathology of metanephric adenofibroma involves BRAFV600E mutation[35].

Its differential includes metanephric adenoma and metanephric stromal tumor. Metanephric adenofibroma is diagnosed on histopathological examination. The treatment of choice is excision and patients have benign course with good prognosis. Interestingly, one case of metanephric adenofibroma in combination with Wilms tumors and RCC has been reported[36].

ORTI

ORTI is an intracalyceal neoplasm with male preponderance. ORTI is very rare, with approximately 25 cases reported in literature. It is diagnosed in children 6 days to 2.5 years of age. Patients present with haematuria[37]. On microscopic examination, the tumor is composed of osteoblast-like cells (ossifying component); small undifferentiated blastemal like cells and sometimes spindle cells. Mitotic activity can also be observed in few cases. The osteoblast-like cells show strong immuno-expression for Epithelial Membrane Antigen (EMA) and Vimentin[38]. Clonal trisomy 4 is seen in ORTI[39]. Diagnosis is made on histopathology. On imaging, it is seen as a calcified pelvic mass[40]. Very rarely, its differential can be Wilm’s tumors with predominant heterologous osteoid differentiation. Conservative surgical care is adequate. Prognosis is favourable. Evidence of recurrence or metastasis has not been reported yet[41].

MN

Earlier it was known as congenital MN. MN accounts for 3%-4% of childhood renal tumors[42]. Most of the cases have been reported in first 9 months of life[43]. MN virtually never arises after the age of 3 years. Clinically, children present with abdominal mass[44]. It includes three subtypes: Cellular, classic and mixed[45]. Majority of the cases are diagnosed within first 9 months of life[43]. On histopathology, each subtype of MN has specific microscopic morphology.

Cellular MN: This is the most common subtype, comprising 65% cases. On gross examination, the tumor and renal parenchyma can be distinguished easily. Microscopically, the tumor is highly cellular, comprised of plump cells arranged in sheets, have vesicular nuclear chromatin, moderate cytoplasm and increased mitotic activity[46].

Classic MN: It comprises 25% of MN. In classic MN, a clear demarcation between tumor and renal parenchyma cannot be appreciated as the tumor cells are seen protruding into the renal parenchyma as finger like fashion. Islands of hyaline cartilage can be seen at tumor-parenchymal junction. The tumor displays spindle cells with collagen deposition, dilated thin-walled blood vessels and low mitotic activity[46].

Mixed MN: It comprises 10% of MN and includes features of both subtypes in varying amounts[46]. Similar to histopathology, each subtype of MN exhibits specific molecular abnormality.

Cellular MN: Chromosomal translocation t(12;15)(p13;q25) resulting in fusion of ETV6 and NTRK3 fusion genes[45].

Classic MN: EGFR internal tandem duplication (ITD)[47].

Mixed MN: Either EGFR ITD or ETV6::NTRK3 gene fusion[47].

MN can be diagnosed prenatally on ultrasound and has been shown to be associated with polyhydramnios[44]. Its differential diagnosis includes Wilms tumor and neuroblastoma[48].

Treatment for MN is nephrectomy with surgical margin clearance. Chemotherapy is routinely not administered. Overall, children have an excellent prognosis. Very rarely, patients can have local relapse and metastasis to lung, liver and brain[44,49].

MALIGNANT TUMORS
Nephroblastoma (Wilms tumor)

It is a malignant embryonal tumor, usually diagnosed at the age of 3-4 years with slight female preponderance[50]. It is the most common pediatric renal cancer affecting 1 in 10000 children[50,13]. Its precursor lesion is nephrogenic rests, which is present in more than 90% of bilateral tumors and approximately 40% of unilateral tumors[51,52]. Classically, it is a triphasic tumor which includes three components - blastemal, stromal and epithelial[53]. Teratoid Wilm’s tumor is termed when there is predominance of heterologous elements in the tumor tissue, such as glial, adipose, muscle, cartilage or bone. Children generally present with an abdominal mass[54].

The most important histological parameter in Wilm’s tumor is anaplasia, its presence indicates high-risk tumor with worse prognosis. Anaplasia includes three characteristic features- hyperchromatic nuclei, marked nuclear enlargement with nuclear diameter at least three times those of neighboring cells and presence of enlarged atypical tripolar or multipolar mitotic figures. Anaplasia is further subdivided into focal or diffuse[55].

On immunohistochemistry, the blastemal component is positive for WT1 and PAX8; the epithelial component shows strong immunoexpression with cytokeratin and EMA whereas stromal component immunostains with vimentin[2].

Molecularly, Wilms tumor has several genetic changes, such as in WT1 on chromosome 11p13, CTNNB1 on chromosome 3p22, IGF2 on chromosome 11p15, TP53 on chromosome 17p13, MYCN on chromosome 2p24and 1q gain[56]. According to our literature search, we found that Wilms tumor has been associated with multiple syndromes such as WAGR syndrome, Denys–Drash syndrome, Beckwith–Wiedemann syndrome and Simpson-Golabi-Behmel Syndrome Type I[9-11,57].

The genetic syndromes associated with various paediatric renal tumors are described in Table 3 highlighting their specific renal and extra-renal manifestations.

Table 3 Genetic syndromes associated with paediatric renal tumors.
Genetic syndromes
Renal tumors
Extra renal manifestations
Ref.
DICER 1 syndromeWilms tumor, cystic nephroma, anaplastic sarcoma of kidneyPinealoblastoma, pleuropulmonary blastomaCaroleo et al[83]
WAGR syndromeWilms tumorAniridia, genitourinary anomaly, developmental delayHol et al[10]
Denys–Drash syndromeWilms tumor, rapid progressive nephropathyMale pseudo-hermaphroditismKucinskas et al[9]
Beckwith–Wiedemann syndromeWilms tumorHepatoblastoma, neuroblastoma, hemihypertrophy, macroglossia, macrosomia, organomegaly, omphaloceleMacFarland et al[11]
Simpson-Golabi-Behmel Syndrome Type IWilms tumorHepatoblastoma, adrenal neuroblastoma, macrocephaly, cardiovascular and skeletal abnormalities, visceromegalyTenorio et al[57]
Rhabdoid tumor predisposition syndromeMalignant rhabdoid tumor of the kidneyMalignant rhabdoid tumors at various sites like central nervous system, liver, bladder, mediastinumNemes et al[66]

Various studies have been conducted for understanding the management of Wilms Tumor. Amongst these, the two most revolutionizing studies were NWTS and SIOP. The National Wilms Tumor Study (NWTS), a cancer research co-operative group was formed in 1969 which emphasized on upfront surgery principle. NWTS conducted five trials, of which NWTS 1 to NWTS 4 were randomized trial whereas NWTS 5 was purely clinical trial. Each NWTS trial had a specific purpose to study, such as NWTS 1 was to ascertain how surgical technique affects the course of treatment; NWTS 2 studied the prognosis; NWTS 3 focused on reducing the course of treatment for low-risk individuals while developing more effective chemotherapy for patients who are at high-risk for relapse; NWTS 4 studied the efficacy, toxicity and cost of administration of various regimens and NWTS 5 was for identifying prognostic factors. Another group was Societe Internationale D'oncologie Pediatrique (SIOP) which started study on Wilms Tumor in 1971. SIOP gave the concept of providing preoperative chemotherapy in all stages to the patients. Preoperative chemotherapy will shrink the tumor size and would reduce the chances of intra-operative rupture of tumor. However, some researchers believe that pre-nephrectomy chemotherapy might alter the tumor's histology and would downstage the tumor[58].

For Wilms tumors, at present, Children's Oncology Group (COG) and SIOP protocols are being followed which uses a wide range of prognostic factors for guiding treatment. Stage, tumor histology, patient age, tumor weight, completeness of lung nodule response, and loss of heterozygosity at chromosomes 1p and 16q are prognostic criteria employed in the current COG research. Whereas, the current SIOP studies use tumor stage, histology, tumor volume, and therapeutic responsiveness as prognostic parameters[59].

Diagnosis of Wilms tumors can be made by combination of imaging techniques (such as ultrasound/CT scan/MRI abdomen)[60]. Triphasic Wilms tumors can easily be diagnosed on histopathology. However, monophasic component makes challenging; in such cases application of immunohistochemistry markers along with molecular study helps to arrive at a conclusive diagnosis. It should also be noted that before concluding a tumor as monophasic nephroblastoma, extensive grossing of excised mass from all representative areas should be undertaken to avoid any error. Differentials for pure blastemal Wilms tumor includes neuroblastoma, Ewing sarcoma; for pure epithelial component is metanephric adenoma, hyperplastic perilobar nephrogenic rests; and for pure stromal type includes MN and metanephric stromal tumors[2]. Treatment for nephroblastoma includes multimodal approach of chemotherapy, surgical excision and radiotherapy (if necessary)[59]. Overall survival is 90%; relapse can be seen in 15% children[61].

Malignant rhabdoid tumor of the kidney

This is the most aggressive renal parenchymal tumor, diagnosed at around 1 year of age[62]. Malignant rhabdoid tumor of the kidney (MRTK) are extremely rare tumors accounting for 2% of all paediatric renal tumors. Generally, children present with an abdominal mass. Histopathologically, various patterns are observed in MRTK, which includes classical, sclerosing, epithelioid, spindled or mixed. The individual tumor cells have large eccentrically placed vesicular nuclei with prominent nucleoli and abundant eosinophilic cytoplasm. Mitotic activity is high[63]. On immunohistochemistry, the tumor cells display loss of nuclear staining with SMARCB1/INI1[64].

Molecularly, MRTK are characterized by biallelic inactivation of SMARCB1/INI1 gene located on chromosome 22q11.23 occurring due to mutation, chromosomal deletion or loss of heterozygosity[65]. MRTK is classically associated with RTPS[66]. It is further subdivided into RTPS type 1 and RTPS type 2. RTPS type 1 involves mutation in SMARCB1 gene whereas RTPS type 2 occurs when mutation occurs in SMARCA4 gene[8].

Very rarely, its differential diagnosis can be renal medullary carcinoma[65]. Histopathological examination with loss of INI1 marker is diagnostic for MRTK. Imaging studies are not useful[67]. Since, there is no standard treatment established yet, majority of patients are currently treated using intense multimodal regimens that combine early surgical excision of the primary tumor, chemotherapy and local radiotherapy, or high dose chemotherapy followed by autologous stem-cell rescue[68]. These tumors carry a poor prognosis[69].

Clear cell sarcoma of the kidney

It is a rare malignant tumor, generally arising in the renal medulla. Previously, it was also termed as “bone metastasizing renal tumor of childhood” because of its predilection for bony metastasis; but this terminology is no more recommended. Children present with palpable abdominal mass[70]. These tumors are generally diagnosed at 3 years of age. It accounts of 3%-5% of pediatric malignant renal tumors[71]. On microscopy, clear cell sarcoma of the kidney (CCSK) exhibits various patterns. The most common pattern includes classic - characterized by plump ovoid tumor cells with dispersed nuclear chromatin and clear cytoplasm. The tumor cells are arranged in nests or trabeculae and are separated by arborizing fibrovascular septae[72]. Other patterns include myxoid, cellular, epithelioid, spindled, storiform, anaplastic and palisading verocay body[71]. On immunohistochemistry, the tumor cells show dual nuclear positivity for Cyclin D1 and BCOR[73].

The molecular pathology of CCSK includes three mutations[74-76]: BCOR ITD exon 15; BCOR::CCNB3 gene fusion; YWHAE::NUTM2 gene fusion.

Its differential includes stromal predominant Wilms tumors[2]. Diagnosis is made on histopathology. Imaging study helps to locate origin of tumors. Nephrectomy followed by post operative chemotherapy (doxorubicin) and flank radiation therapy is the treatment administered in CCSK patients[71,77]. Prognosis is variable. Approximately 15% of patients experience relapse[78].

Anaplastic sarcoma of the kidney

Anaplastic sarcoma of the kidney is a rare tumor, usually presenting with a large renal mass[79]. The age range of the patients is 10 months to 41 years. Less than 30 cases are reported in the literature. On microscopy, the tumor has cystic and solid sarcomatous areas. Predominantly, the tumor is comprised of sarcomatous component having tumor cells with large hyperchromatic pleomorphic nuclei; surrounded by cystic component at periphery. Malignant cartilaginous and embryonal rhabdomyosarcoma foci can also be present[80-81]. Two mutation patterns are observed in these tumors, DICER 1 and RNAaseIIIb mutation[82]. DICER1 syndromic association has been reported[83].

Histopathology is main diagnostic modality. Its closest differential includes anaplastic Wilms tumors, mesenchymal chondrosarcoma and sarcomatoid RCC[81]. Due to very less number of reported cases and lack of follow up of patients; standardized treatment care and prognosis still needs to be determined. However, surgical removal of mass followed by chemotherapy / radiotherapy are being tried. In reported cases, survival rate is around 75%[84,80]. Table 4 outlines the common modes of presentation of paediatric renal tumors.

Table 4 Modes of presentation of paediatric renal tumors.
Renal tumor
Presentation
Paediatric cystic nephromaPalpable abdominal lump[7]
Metanephric adenomaAsymptomatic to symptomatic (fever, haematuria, abdominal pain and mass), polycythaemia[20]
Metanephric stromal tumorAbdominal mass, extrarenal vasculopathy, such as bleeding and hypertension[29]
Metanephric adenofibromaHaematuria and polycythaemia[34]
Ossifying renal tumor of infancyHaematuria[37]
Mesoblastic nephromaAbdominal mass[44]
Nephroblastoma (Wilms tumor)Abdominal mass[54]
Malignant rhabdoid tumor of the kidney Abdominal mass[63]
Clear cell sarcoma of the kidneyAbdominal mass[70]
Anaplastic sarcoma of the kidneyLarge renal mass[79]
Renal Ewing sarcomaAbdominal pain, mass, hematuria[85]
Renal cell carcinoma with MiT translocationsAsymptomatic to symptomatic abdominal pain and haematuria[92]
ALK-rearranged renal cell carcinomasHaematuria, abdominal pain or periumbilical pain[96]
Eosinophilic solid and cystic renal cell carcinoma Asymptomatic[103]
SMARCB1-deficient renal medullary carcinomaHaematuria, flank or abdominal pain, dysuria, weight loss[107]
Renal Ewing sarcoma

It is an extremely rare tumor seen in children and adolescents with median age of diagnosis being 27 years. Patients present with nonspecific symptoms like abdominal pain, mass and haematuria. According to one study, primary renal Ewing sarcoma accounts for 1.5% of all Ewing sarcoma cases[85]. The tumor is characterized by small round blue tumor cells, having round monomorphic nuclei, with fine stippled chromatin, inconspicuous nucleoli and scant clear to eosinophilic cytoplasm. Homer-Wright pseudo rosettes can be seen[86]. On immunohistochemistry, the tumor cells show membranous CD99 and nuclear NKX2.2 expression[87,88].

Molecularly, two types of translocations are observed in these tumors[89,90]: t(11;22)(q24;q12) resulting in fusion of EWSR1-FLI1; seen in 85%-90% cases. t(21;22)(q22;q12) resulting in fusion of EWSR1-ERG; seen in 5%-10% cases.

Differential diagnosis can be other small round cell tumors such as blastemal predominant Wilms tumor and neuroblastoma[2]. Histopathological examination with immunohistochemistry and molecular confirmation is diagnostic. Treatment includes chemotherapy, radiotherapy and surgery[91]. Prognosis is poor in patients who present with metastasis at the time of diagnosis[85].

MOLECULARLY DEFINED TUMORS
RCC with MiT translocations

The tumor affects children and young adults. The two types of RCCs that belong to the MiT family includes Xp11 translocation RCC with TFE3 gene fusions and t(6;11) RCC with TFEB gene fusions. TFE3 rearranged RCCs comprises about 40% of paediatric RCCs whereas TFEB rearranged RCCs are comparatively less, having only about 100 cases reported in the literature. Prior exposure to cytotoxic therapy is an important risk factor implicated in these tumors. The presentation ranges from asymptomatic to symptomatic abdominal pain and haematuria. TFE3 rearranged RCCs exhibit papillary and alveolar growth pattern, having pseudostratified tumor cells with pleomorphic nuclei and clear to eosinophilic cytoplasm. Psammoma bodies may be seen. The tumor cells are nuclear immunopositive for TFE3. TFEB rearranged RCCs have biphasic appearance comprising large epithelioid cells and small cells around basement membrane[92].

Both TFE3 and TFEB rearranged RCCs exhibit different molecular pathology. TFE3 rearranged RCCs include fusion of TFE3 with other genes like ASPL, PRCC, PSF, CLTC and many more[93]. On the other hand, TFEB rearranged RCCs displays MALAT1 (Alpha)::TFEB fusion[94].

The tumors can be diagnosed on imaging, histopathology, immunohistochemistry and fluorescent in situ hybridization (FISH) analysis. The differential diagnosis includes clear cell RCC, papillary RCC and clear cell papillary RCC. Surgery remains the mainstay treatment for localized tumors including regional nodal metastasis. Immunotherapy and therapies targeting vascular endothelial growth factor receptor are being tried in metastatic cases. Prognosis is variable; prognosis is worse compared to papillary RCC and similar as that of clear cell RCC[95].

ALK-rearranged RCCs

ALK-rearranged RCCs comprises less than 1% of all renal neoplasms. Patients present with haematuria, abdominal pain or periumbilical pain[96]. Patient age ranges from 3 to 85 years. It comprises 3.5%-3.8% of paediatric renal cancers. Microscopically, the tumor cells are infiltrative having vesicular nuclei and small nucleoli. The tumor cells have granular eosinophilic cytoplasm. Mucin pools, lymphoplasmacytic infiltrate and intravascular sickled red blood cells (RBCs) can be found. On immunohistochemistry, the tumor cells are ALK positive. INI1/SMARCB1 is retained in tumor cells[97]. Various fusions with ALK gene observed are VCL-ALK fusion; associated with sickle cell trait[98]. TPM3-ALK fusion; not associated with sickle cell trait[97]. Rarely STRN-ALK, EML4-ALK, HOOK1-ALK fusions[96,99].

Diagnosis can be made by ultrasonography and CT scan. On contrast CT scan, a heterogeneous enhancing mass is seen[96]. Its differential diagnosis includes renal medullary carcinoma[100]. For small tumors confined to kidney, radical nephrectomy or nephroureterectomy is preferred. ALK targeted inhibitors (alectinib) are tried in metastatic cases. The reported cases have limited follow-up; however dramatic responses has been seen in patients who received ALK targeted inhibitors[101].

Eosinophilic solid and cystic RCC

Eosinophilic solid and cystic RCC (ESC-RCC) is a rare and indolent renal tumor that affects female individuals both with and without tuberous sclerosis complex[102]. Around 70 cases are reported in literature. The age of presentation ranges from 14 to 75 years. Patients have mostly asymptomatic presentation[103]. On histopathology, eosinophilic tumor cells are seen arranged in compact nests surrounded by macro and microscopic cysts demonstrating hob nailing pattern of single layered neoplastic cells[104]. On immunohistochemistry, the tumor cells are positive for CK20 and PAX8 whereas negative for CK7 and C-kit[105]. Biallelic somatic mutations of TSC1 (hamartin) or TSC2 (tuberin) genes, resulting in upregulation of mTOR pathway are seen in these tumors[106].

Children are generally asymptomatic and the tumor may be discovered incidentally on routine imaging. Its differential diagnosis includes renal oncocytoma and chromophobe RCC. Surgical resection is the treatment of choice. mTOR pathway inhibitors are tried in metastatic cases[103]. Although there is little follow-up data, surgical resection seems to have cured most ESC-RCCs[106].

SMARCB1-deficient renal medullary carcinoma

Patients have broad age of presentation ranging from childhood to old age. This tumor predominantly involves right kidney and is strongly associated with sickle cell trait patients[107-108]. It comprises less than 0.5% of all renal carcinomas. These patients are always almost symptomatic and present with haematuria, flank or abdominal pain, dysuria and weight loss[107]. The tumor cells are arranged in cords, tubules, sheets and nests. The tumor cells have pleomorphic nuclei, vesicular nuclear chromatin, prominent nucleoli and eosinophilic cytoplasm. Sickled RBCs are present[109]. On immunohistochemistry, the tumor cells are PAX8, cytokeratin, EMA and vimentin positive[110]. SMARCB1/INI1 is lost in tumor cells[111]. Chromosomal translocation or deletion leading to inactivation of SMARCB1 gene are seen in these cases[112].

Histopathology along with immunohistochemistry demonstrating infiltrating high-grade adenocarcinoma with SMARCB1 loss is diagnostic. Its differential diagnosis includes VCL::ALK fusion RCC[100]. Treatment includes radical nephrectomy and chemotherapy administering platinum-based regimens[113]. Prognosis is poor. Most patients present with nodal or liver / lung metastasis at the time of diagnosis[114].

ROLE OF ULTRASOUND GUIDED RENAL MASS BIOPSY

Diagnosis of renal masses can be made safely and accurately using ultrasound guided method which has low rate of non-diagnostic outcome and complications[115]. Apart from routine histopathology and immunohistochemistry, the biopsy can also be utilized for molecular characterization and ancillary techniques. FISH analysis, chromosomal study, microarray technique for understanding gene expression profiling of renal tumors can also be performed[116].

CONCLUSION

This review article summarizes the spectrum of paediatric renal tumors. Every tumor has its own unique histomorphology, immunohistochemistry and molecular pathology. Histopathology followed by immunohistochemistry is always the gold standard for definitive diagnoses of these tumors. Certain tumors have association with genetic syndromes, which makes it prognostically more challenging for children. Thus, management goal should always be early diagnosis of these tumors.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Urology and nephrology

Country of origin: India

Peer-review report’s classification

Scientific Quality: Grade C

Novelty: Grade C

Creativity or Innovation: Grade C

Scientific Significance: Grade C

P-Reviewer: Yellanthoor RB S-Editor: Liu H L-Editor: A P-Editor: Zhang XD

References
1.  Malkan AD, Loh A, Bahrami A, Navid F, Coleman J, Green DM, Davidoff AM, Sandoval JA. An approach to renal masses in pediatrics. Pediatrics. 2015;135:142-158.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 46]  [Cited by in RCA: 48]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
2.  Ooms AHAG, Vujanić GM, D'Hooghe E, Collini P, L'Herminé-Coulomb A, Vokuhl C, Graf N, Heuvel-Eibrink MMVD, de Krijger RR. Renal Tumors of Childhood-A Histopathologic Pattern-Based Diagnostic Approach. Cancers (Basel). 2020;12:729.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 8]  [Cited by in RCA: 20]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
3.  Jain J, Sutton KS, Hong AL. Progress Update in Pediatric Renal Tumors. Curr Oncol Rep. 2021;23:33.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5]  [Cited by in RCA: 15]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
4.  Menon P, Rao KLN, Nazki S, Behera S, Gupta K, Samujh R, Solanki S, Saxena A, Bansal D, Trehan A. Benign Renal Tumors in Pediatric Age Group: Retrospective Analysis. J Indian Assoc Pediatr Surg. 2021;26:380-392.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Reference Citation Analysis (0)]
5.  Lee JS, Sanchez TR, Wootton-Gorges S. Malignant renal tumors in children. J Kidney Cancer VHL. 2015;2:84-89.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 10]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
6.  Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov. 2022;12:331-355.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 68]  [Cited by in RCA: 92]  [Article Influence: 30.7]  [Reference Citation Analysis (0)]
7.  Cajaiba MM, Khanna G, Smith EA, Gellert L, Chi YY, Mullen EA, Hill DA, Geller JI, Dome JS, Perlman EJ. Pediatric cystic nephromas: distinctive features and frequent DICER1 mutations. Hum Pathol. 2016;48:81-87.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 27]  [Cited by in RCA: 21]  [Article Influence: 2.1]  [Reference Citation Analysis (0)]
8.  Sredni ST, Tomita T. Rhabdoid tumor predisposition syndrome. Pediatr Dev Pathol. 2015;18:49-58.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 88]  [Cited by in RCA: 79]  [Article Influence: 7.9]  [Reference Citation Analysis (0)]
9.  Kucinskas L, Rudaitis S, Pundziene B, Just W. Denys-Drash syndrome. Medicina (Kaunas). 2005;41:132-134.  [PubMed]  [DOI]
10.  Hol JA, Jongmans MCJ, Sudour-Bonnange H, Ramírez-Villar GL, Chowdhury T, Rechnitzer C, Pal N, Schleiermacher G, Karow A, Kuiper RP, de Camargo B, Avcin S, Redzic D, Wachtel A, Segers H, Vujanic GM, van Tinteren H, Bergeron C, Pritchard-Jones K, Graf N, van den Heuvel-Eibrink MM; International Society of Pediatric Oncology Renal Tumor Study Group (SIOP-RTSG). Clinical characteristics and outcomes of children with WAGR syndrome and Wilms tumor and/or nephroblastomatosis: The 30-year SIOP-RTSG experience. Cancer. 2021;127:628-638.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 24]  [Cited by in RCA: 21]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
11.  MacFarland SP, Duffy KA, Bhatti TR, Bagatell R, Balamuth NJ, Brodeur GM, Ganguly A, Mattei PA, Surrey LF, Balis FM, Kalish JM. Diagnosis of Beckwith-Wiedemann syndrome in children presenting with Wilms tumor. Pediatr Blood Cancer. 2018;65:e27296.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 21]  [Cited by in RCA: 30]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
12.  Doros LA, Rossi CT, Yang J, Field A, Williams GM, Messinger Y, Cajaiba MM, Perlman EJ, A Schultz K, Cathro HP, Legallo RD, LaFortune KA, Chikwava KR, Faria P, Geller JI, Dome JS, Mullen EA, Gratias EJ, Dehner LP, Hill DA. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Mod Pathol. 2014;27:1267-1280.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 128]  [Cited by in RCA: 128]  [Article Influence: 11.6]  [Reference Citation Analysis (0)]
13.  Charlton J, Irtan S, Bergeron C, Pritchard-Jones K. Bilateral Wilms tumor: a review of clinical and molecular features. Expert Rev Mol Med. 2017;19:e8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 70]  [Cited by in RCA: 67]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
14.  Caliò A, Eble JN, Grignon DJ, Delahunt B. Cystic Nephroma in Adults: A Clinicopathologic Study of 46 Cases. Am J Surg Pathol. 2016;40:1591-1600.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 10]  [Article Influence: 1.1]  [Reference Citation Analysis (0)]
15.  van den Hoek J, de Krijger R, van de Ven K, Lequin M, van den Heuvel-Eibrink MM. Cystic nephroma, cystic partially differentiated nephroblastoma and cystic Wilms' tumor in children: a spectrum with therapeutic dilemmas. Urol Int. 2009;82:65-70.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 29]  [Cited by in RCA: 33]  [Article Influence: 2.1]  [Reference Citation Analysis (0)]
16.  Li Y, Pawel BR, Hill DA, Epstein JI, Argani P. Pediatric Cystic Nephroma Is Morphologically, Immunohistochemically, and Genetically Distinct From Adult Cystic Nephroma. Am J Surg Pathol. 2017;41:472-481.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 24]  [Cited by in RCA: 21]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
17.  Abbo O, Pinnagoda K, Brouchet L, Leobon B, Savagner F, Oliver I, Galinier P, Castex MP, Pasquet M. Wilms tumor, pleuropulmonary blastoma, and DICER1: case report and literature review. World J Surg Oncol. 2018;16:164.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 19]  [Cited by in RCA: 12]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
18.  Robertson JC, Jorcyk CL, Oxford JT. DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers (Basel). 2018;10:143.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 65]  [Cited by in RCA: 92]  [Article Influence: 13.1]  [Reference Citation Analysis (0)]
19.  Luithle T, Szavay P, Furtwängler R, Graf N, Fuchs J; SIOP/GPOH Study Group. Treatment of cystic nephroma and cystic partially differentiated nephroblastoma--a report from the SIOP/GPOH study group. J Urol. 2007;177:294-296.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 28]  [Cited by in RCA: 30]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
20.  Wang P, Tian Y, Xiao Y, Zhang Y, Sun FA, Tang K. A metanephric adenoma of the kidney associated with polycythemia: A case report. Oncol Lett. 2016;11:352-354.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 3]  [Article Influence: 0.3]  [Reference Citation Analysis (0)]
21.  Saltzman AF, Carrasco A Jr, Maccini MA, Caldwell BT, Treece AL, Cost NG. Large Cystic Metanephric Adenoma in a 15-Year-Old Girl. Urology. 2017;101:147-150.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 5]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
22.  Obulareddy SJ, Xin J, Truskinovsky AM, Anderson JK, Franklin MJ, Dudek AZ. Metanephric adenoma of the kidney: an unusual diagnostic challenge. Rare Tumors. 2010;2:e38.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 11]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
23.  Wu J, Zhu Q, Zhu W, Zhang H. Metanephric adenoma with diffuse calcifications: A case report. Oncol Lett. 2015;10:1816-1818.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 1]  [Article Influence: 0.1]  [Reference Citation Analysis (0)]
24.  Kinney SN, Eble JN, Hes O, Williamson SR, Grignon DJ, Wang M, Zhang S, Baldrige LA, Martignoni G, Brunelli M, Wang L, Comperat E, Fan R, Montironi R, MacLennan GT, Cheng L. Metanephric adenoma: the utility of immunohistochemical and cytogenetic analyses in differential diagnosis, including solid variant papillary renal cell carcinoma and epithelial-predominant nephroblastoma. Mod Pathol. 2015;28:1236-1248.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 46]  [Cited by in RCA: 47]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
25.  Choueiri TK, Cheville J, Palescandolo E, Fay AP, Kantoff PW, Atkins MB, McKenney JK, Brown V, Lampron ME, Zhou M, Hirsch MS, Signoretti S. BRAF mutations in metanephric adenoma of the kidney. Eur Urol. 2012;62:917-922.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 78]  [Cited by in RCA: 83]  [Article Influence: 6.4]  [Reference Citation Analysis (0)]
26.  Catic A, Kurtovic-Kozaric A, Johnson SH, Vasmatzis G, Pins MR, Kogan J. A novel cytogenetic and molecular characterization of renal metanephric adenoma: Identification of partner genes involved in translocation t(9;15)(p24;q24). Cancer Genet. 2017;214-215:9-15.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 7]  [Cited by in RCA: 7]  [Article Influence: 0.9]  [Reference Citation Analysis (0)]
27.  Paner GP, Turk TM, Clark JI, Lindgren V, Picken MM. Passive seeding in metanephric adenoma: a review of pseudometastatic lesions in perinephric lymph nodes. Arch Pathol Lab Med. 2005;129:1317-1321.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 16]  [Cited by in RCA: 16]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
28.  Bluebond-Langner R, Pinto PA, Argani P, Chan TY, Halushka M, Jarrett TW. Adult presentation of metanephric stromal tumor. J Urol. 2002;168:1482-1483.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 10]  [Cited by in RCA: 10]  [Article Influence: 0.4]  [Reference Citation Analysis (0)]
29.  Zhang X, Yadav PK, Niu Q, Cheng H, Xiao Y, Wang Y, Gui H, Wang H, Rodriguez R, Wang Z. Reevaluation of metanephric stromal tumor two decades after it was named: A narrative review. J Pediatr Urol. 2020;16:822-829.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 1]  [Article Influence: 0.2]  [Reference Citation Analysis (0)]
30.  McDonald OG, Rodriguez R, Bergner A, Argani P. Metanephric stromal tumor arising in a patient with neurofibromatosis type 1 syndrome. Int J Surg Pathol. 2011;19:667-671.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 10]  [Cited by in RCA: 12]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
31.  Argani P, Beckwith JB. Metanephric stromal tumor: report of 31 cases of a distinctive pediatric renal neoplasm. Am J Surg Pathol. 2000;24:917-926.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 102]  [Cited by in RCA: 80]  [Article Influence: 3.2]  [Reference Citation Analysis (0)]
32.  Argani P, Lee J, Netto GJ, Zheng G, Tseh-Lin M, Park BH. Frequent BRAF V600E Mutations in Metanephric Stromal Tumor. Am J Surg Pathol. 2016;40:719-722.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 26]  [Cited by in RCA: 23]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
33.  Sharma PG, Esnakula AK, Rajderkar DA. An "accidental" discovery: Incidentally found metanephric adenofibroma in a 5-year-old male trauma patient. Radiol Case Rep. 2018;13:610-613.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 1]  [Article Influence: 0.1]  [Reference Citation Analysis (0)]
34.  Arroyo MR, Green DM, Perlman EJ, Beckwith JB, Argani P. The spectrum of metanephric adenofibroma and related lesions: clinicopathologic study of 25 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2001;25:433-444.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 104]  [Cited by in RCA: 109]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
35.  Chami R, Yin M, Marrano P, Teerapakpinyo C, Shuangshoti S, Thorner PS. BRAF mutations in pediatric metanephric tumors. Hum Pathol. 2015;46:1153-1161.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 31]  [Cited by in RCA: 32]  [Article Influence: 3.2]  [Reference Citation Analysis (0)]
36.  Galluzzo ML, Garcia de Davila MT, Vujanić GM. A composite renal tumor: metanephric adenofibroma, Wilms tumor, and renal cell carcinoma: a missing link? Pediatr Dev Pathol. 2012;15:65-70.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 11]  [Cited by in RCA: 13]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
37.  Hajiran A, Jessop M, Werner Z, Crigger C, Barnard J, Vos J, Ost M. Ossifying Renal Tumor of Infancy: Laparoscopic Treatment and Literature Review. Case Rep Urol. 2018;2018:1935657.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
38.  Vaillancourt B, Oligny L, Déry J, Franc-Guimond J, Soglio DB. Ossifying Renal Tumor of Infancy: Report of a Case With Positive WT1 Immunohistochemistry and High Mitotic Index and Review of the Literature. Pediatr Dev Pathol. 2017;20:511-516.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 3]  [Article Influence: 0.4]  [Reference Citation Analysis (0)]
39.  Liu J, Guzman MA, Pawel BR, Pezanowski DM, Patel DM, Roth JA, Halligan GE, de Chadarévian JP. Clonal trisomy 4 cells detected in the ossifying renal tumor of infancy: study of 3 cases. Mod Pathol. 2013;26:275-281.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 7]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
40.  Lee SH, Choi YH, Kim WS, Cheon JE, Moon KC. Ossifying renal tumor of infancy: findings at ultrasound, CT and MRI. Pediatr Radiol. 2014;44:625-628.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 14]  [Cited by in RCA: 10]  [Article Influence: 0.9]  [Reference Citation Analysis (0)]
41.  Flannigan RK, Heran MK, Oviedo A, Wong N, Masterson JS. Case report and literature review of a rare diagnosis of ossifying renal tumor of infancy. Can Urol Assoc J. 2014;8:E184-E187.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 7]  [Cited by in RCA: 7]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
42.  England RJ, Haider N, Vujanic GM, Kelsey A, Stiller CA, Pritchard-Jones K, Powis M. Mesoblastic nephroma: a report of the United Kingdom Children's Cancer and Leukaemia Group (CCLG). Pediatr Blood Cancer. 2011;56:744-748.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 51]  [Cited by in RCA: 36]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
43.  van den Heuvel-Eibrink MM, Grundy P, Graf N, Pritchard-Jones K, Bergeron C, Patte C, van Tinteren H, Rey A, Langford C, Anderson JR, de Kraker J. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: A collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms tumor study groups. Pediatr Blood Cancer. 2008;50:1130-1134.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 122]  [Cited by in RCA: 92]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
44.  Gooskens SL, Houwing ME, Vujanic GM, Dome JS, Diertens T, Coulomb-l'Herminé A, Godzinski J, Pritchard-Jones K, Graf N, van den Heuvel-Eibrink MM. Congenital mesoblastic nephroma 50 years after its recognition: A narrative review. Pediatr Blood Cancer. 2017;64.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 71]  [Cited by in RCA: 73]  [Article Influence: 9.1]  [Reference Citation Analysis (0)]
45.  Vokuhl C, Nourkami-Tutdibi N, Furtwängler R, Gessler M, Graf N, Leuschner I. ETV6-NTRK3 in congenital mesoblastic nephroma: A report of the SIOP/GPOH nephroblastoma study. Pediatr Blood Cancer. 2018;65.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 32]  [Cited by in RCA: 30]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
46.  Sandstedt B, Delemarre JF, Krul EJ, Tournade MF. Mesoblastic nephromas: a study of 29 tumors from the SIOP nephroblastoma file. Histopathology. 1985;9:741-750.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 38]  [Cited by in RCA: 38]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
47.  Zhao M, Yin M, Kuick CH, Chen H, Aw SJ, Merchant K, Ng EHQ, Gunaratne S, Loh AHP, Gu W, Tang H, Chang KTE. Congenital mesoblastic nephroma is characterised by kinase mutations including EGFR internal tandem duplications, the ETV6-NTRK3 fusion, and the rare KLHL7-BRAF fusion. Histopathology. 2020;77:611-621.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 9]  [Cited by in RCA: 23]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
48.  Do AY, Kim JS, Choi SJ, Oh SY, Roh CR, Kim JH. Prenatal diagnosis of congenital mesoblastic nephroma. Obstet Gynecol Sci. 2015;58:405-408.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 14]  [Cited by in RCA: 12]  [Article Influence: 1.2]  [Reference Citation Analysis (0)]
49.  Jehangir S, Kurian JJ, Selvarajah D, Thomas RJ, Holland AJA. Recurrent and metastatic congenital mesoblastic nephroma: where does the evidence stand? Pediatr Surg Int. 2017;33:1183-1188.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 21]  [Cited by in RCA: 18]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
50.  Breslow N, Olshan A, Beckwith JB, Green DM. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21:172-181.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 357]  [Cited by in RCA: 336]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
51.  Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am J Med Genet. 1998;79:268-273.  [PubMed]  [DOI]  [Full Text]
52.  Vujanić GM, Apps JR, Moroz V, Ceroni F, Williams RD, Sebire NJ, Pritchard-Jones K. Nephrogenic rests in Wilms tumors treated with preoperative chemotherapy: The UK SIOP Wilms Tumor 2001 Trial experience. Pediatr Blood Cancer. 2017;64.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 27]  [Cited by in RCA: 20]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
53.  Reddy R. Multifocal Unilateral Wilms’ Tumor: Radiopathological Correlation. J Microsc Ultrastruct. 2023;11:190-192.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Reference Citation Analysis (0)]
54.  Mukhopadhyay B, Shukla RM, Mukhopadhyay M, Mandi S, Roy D, Bhattacharya MK. Teratoid Wilms' tumor - A rare renal tumor. Urol Ann. 2011;3:155-157.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 7]  [Cited by in RCA: 8]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
55.  Vujanić GM, Gessler M, Ooms AHAG, Collini P, Coulomb-l'Hermine A, D'Hooghe E, de Krijger RR, Perotti D, Pritchard-Jones K, Vokuhl C, van den Heuvel-Eibrink MM, Graf N; International Society of Paediatric Oncology–Renal Tumor Study Group (SIOP–RTSG). The UMBRELLA SIOP-RTSG 2016 Wilms tumor pathology and molecular biology protocol. Nat Rev Urol. 2018;15:693-701.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 149]  [Cited by in RCA: 126]  [Article Influence: 18.0]  [Reference Citation Analysis (0)]
56.  Treger TD, Chowdhury T, Pritchard-Jones K, Behjati S. The genetic changes of Wilms tumor. Nat Rev Nephrol. 2019;15:240-251.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 136]  [Cited by in RCA: 146]  [Article Influence: 24.3]  [Reference Citation Analysis (0)]
57.  Tenorio J, Arias P, Martínez-Glez V, Santos F, García-Miñaur S, Nevado J, Lapunzina P. Simpson-Golabi-Behmel syndrome types I and II. Orphanet J Rare Dis. 2014;9:138.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 58]  [Cited by in RCA: 61]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
58.  Bhatnagar S. Management of Wilms' tumor: NWTS vs SIOP. J Indian Assoc Pediatr Surg. 2009;14:6-14.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 55]  [Cited by in RCA: 67]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
59.  Dome JS, Perlman EJ, Graf N. Risk stratification for wilms tumor: current approach and future directions. Am Soc Clin Oncol Educ Book. 2014;215-223.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 93]  [Cited by in RCA: 109]  [Article Influence: 10.9]  [Reference Citation Analysis (0)]
60.  Watson T, Oostveen M, Rogers H, Pritchard-Jones K, Olsen Ø. The role of imaging in the initial investigation of paediatric renal tumors. Lancet Child Adolesc Health. 2020;4:232-241.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 17]  [Cited by in RCA: 26]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
61.  Groenendijk A, Spreafico F, de Krijger RR, Drost J, Brok J, Perotti D, van Tinteren H, Venkatramani R, Godziński J, Rübe C, Geller JI, Graf N, van den Heuvel-Eibrink MM, Mavinkurve-Groothuis AMC. Prognostic Factors for Wilms Tumor Recurrence: A Review of the Literature. Cancers (Basel). 2021;13:3142.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 2]  [Cited by in RCA: 32]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
62.  Furtwängler R, Kager L, Melchior P, Rübe C, Ebinger M, Nourkami-Tutdibi N, Niggli F, Warmann S, Hubertus J, Amman G, Leuschner I, Vokuhl C, Graf N, Frühwald MC. High-dose treatment for malignant rhabdoid tumor of the kidney: No evidence for improved survival-The Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH) experience. Pediatr Blood Cancer. 2018;65.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 27]  [Cited by in RCA: 28]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
63.  Vujanić GM, Sandstedt B, Harms D, Boccon-Gibod L, Delemarre JF. Rhabdoid tumor of the kidney: a clinicopathological study of 22 patients from the International Society of Paediatric Oncology (SIOP) nephroblastoma file. Histopathology. 1996;28:333-340.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 85]  [Cited by in RCA: 87]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
64.  Judkins AR. Immunohistochemistry of INI1 expression: a new tool for old challenges in CNS and soft tissue pathology. Adv Anat Pathol. 2007;14:335-339.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 95]  [Cited by in RCA: 78]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
65.  Pawel BR. SMARCB1-deficient Tumors of Childhood: A Practical Guide. Pediatr Dev Pathol. 2018;21:6-28.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 61]  [Cited by in RCA: 80]  [Article Influence: 11.4]  [Reference Citation Analysis (0)]
66.  Nemes K, Bens S, Bourdeaut F, Johann P, Kordes U, Siebert R, Frühwald MC.   Rhabdoid Tumor Predisposition Syndrome. 2017 Dec 7. In: GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–.  [PubMed]  [DOI]
67.  Miniati D, Gay AN, Parks KV, Naik-Mathuria BJ, Hicks J, Nuchtern JG, Cass DL, Olutoye OO. Imaging accuracy and incidence of Wilms' and non-Wilms' renal tumors in children. J Pediatr Surg. 2008;43:1301-1307.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 47]  [Cited by in RCA: 49]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
68.  Nemes K, Johann PD, Tüchert S, Melchior P, Vokuhl C, Siebert R, Furtwängler R, Frühwald MC. Current and Emerging Therapeutic Approaches for Extracranial Malignant Rhabdoid Tumors. Cancer Manag Res. 2022;14:479-498.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 15]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
69.  van den Heuvel-Eibrink MM, van Tinteren H, Rehorst H, Coulombe A, Patte C, de Camargo B, de Kraker J, Leuschner I, Lugtenberg R, Pritchard-Jones K, Sandstedt B, Spreafico F, Graf N, Vujanic GM. Malignant rhabdoid tumors of the kidney (MRTKs), registered on recent SIOP protocols from 1993 to 2005: a report of the SIOP renal tumor study group. Pediatr Blood Cancer. 2011;56:733-737.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 103]  [Cited by in RCA: 101]  [Article Influence: 7.2]  [Reference Citation Analysis (0)]
70.  SukdevJadhav A, Jain S, Tuteja N, Agrawal L. Clear cell sarcoma of kidney in a neonate. J Neonatal Surg. 2014;3:35.  [PubMed]  [DOI]
71.  Argani P, Perlman EJ, Breslow NE, Browning NG, Green DM, D'Angio GJ, Beckwith JB. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2000;24:4-18.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 289]  [Cited by in RCA: 217]  [Article Influence: 8.7]  [Reference Citation Analysis (0)]
72.  Aw SJ, Chang KTE. Clear Cell Sarcoma of the Kidney. Arch Pathol Lab Med. 2019;143:1022-1026.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 14]  [Cited by in RCA: 14]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
73.  Jet Aw S, Hong Kuick C, Hwee Yong M, Wen Quan Lian D, Wang S, Liang Loh AH, Ling S, Lian Peh G, Yen Soh S, Pheng Loh AH, Hoon Tan P, Tou En Chang K. Novel Karyotypes and Cyclin D1 Immunoreactivity in Clear Cell Sarcoma of the Kidney. Pediatr Dev Pathol. 2015;18:297-304.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 22]  [Cited by in RCA: 23]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
74.  Ueno-Yokohata H, Okita H, Nakasato K, Akimoto S, Hata J, Koshinaga T, Fukuzawa M, Kiyokawa N. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet. 2015;47:861-863.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 108]  [Cited by in RCA: 122]  [Article Influence: 12.2]  [Reference Citation Analysis (0)]
75.  Wong MK, Ng CCY, Kuick CH, Aw SJ, Rajasegaran V, Lim JQ, Sudhanshi J, Loh E, Yin M, Ma J, Zhang Z, Iyer P, Loh AHP, Lian DWQ, Wang S, Goh SGH, Lim TH, Lim AST, Ng T, Goytain A, Loh AHL, Tan PH, Teh BT, Chang KTE. Clear cell sarcomas of the kidney are characterised by BCOR gene abnormalities, including exon 15 internal tandem duplications and BCOR-CCNB3 gene fusion. Histopathology. 2018;72:320-329.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 44]  [Cited by in RCA: 47]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
76.  O'Meara E, Stack D, Lee CH, Garvin AJ, Morris T, Argani P, Han JS, Karlsson J, Gisselson D, Leuschner I, Gessler M, Graf N, Fletcher JA, O'Sullivan MJ. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227:72-80.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 105]  [Cited by in RCA: 110]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
77.  Furtwängler R, Gooskens SL, van Tinteren H, de Kraker J, Schleiermacher G, Bergeron C, de Camargo B, Acha T, Godzinski J, Sandstedt B, Leuschner I, Vujanic GM, Pieters R, Graf N, van den Heuvel-Eibrink MM. Clear cell sarcomas of the kidney registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 protocols: a report of the SIOP Renal Tumor Study Group. Eur J Cancer. 2013;49:3497-3506.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 79]  [Cited by in RCA: 76]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
78.  Gooskens SL, Furtwängler R, Spreafico F, van Tinteren H, de Kraker J, Vujanic GM, Leuschner I, Coulomb-L'Herminé A, Godzinski J, Schleiermacher G, Stoneham S, Bergeron C, Pritchard-Jones K, Graf N, van den Heuvel-Eibrink MM. Treatment and outcome of patients with relapsed clear cell sarcoma of the kidney: a combined SIOP and AIEOP study. Br J Cancer. 2014;111:227-233.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 37]  [Cited by in RCA: 37]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
79.  Arabi H, Al-Maghraby H, Yamani A, Yousef Y, Huwait H. Anaplastic Sarcoma of the Kidney: A Rare Unique Renal Neoplasm. Int J Surg Pathol. 2016;24:556-561.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 4]  [Article Influence: 0.4]  [Reference Citation Analysis (0)]
80.  Vujanić GM, Kelsey A, Perlman EJ, Sandstedt B, Beckwith JB. Anaplastic sarcoma of the kidney: a clinicopathologic study of 20 cases of a new entity with polyphenotypic features. Am J Surg Pathol. 2007;31:1459-1468.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 53]  [Cited by in RCA: 55]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
81.  Chen CC, Liao KS. Anaplastic sarcoma of the kidney: Case report and literature review. Tzu Chi Med J. 2019;31:129-132.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 3]  [Article Influence: 0.5]  [Reference Citation Analysis (0)]
82.  Wu MK, Vujanic GM, Fahiminiya S, Watanabe N, Thorner PS, O'Sullivan MJ, Fabian MR, Foulkes WD. Anaplastic sarcomas of the kidney are characterized by DICER1 mutations. Mod Pathol. 2018;31:169-178.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 44]  [Cited by in RCA: 55]  [Article Influence: 7.9]  [Reference Citation Analysis (0)]
83.  Caroleo AM, De Ioris MA, Boccuto L, Alessi I, Del Baldo G, Cacchione A, Agolini E, Rinelli M, Serra A, Carai A, Mastronuzzi A. DICER1 Syndrome and Cancer Predisposition: From a Rare Pediatric Tumor to Lifetime Risk. Front Oncol. 2020;10:614541.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 9]  [Cited by in RCA: 31]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
84.  Kao JL, Tsung SH, Shiao CC. Rare anaplastic sarcoma of the kidney: A case report. World J Clin Cases. 2020;8:1495-1501.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in CrossRef: 1]  [Cited by in RCA: 3]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
85.  Zöllner S, Dirksen U, Jürgens H, Ranft A. Renal Ewing tumors. Ann Oncol. 2013;24:2455-2461.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 27]  [Cited by in RCA: 29]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
86.  Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, Karzeladze A, Savelov N, Petrov S, Alvarado-Cabrero I, Mihaila D, Terrier P, Lopez-Guerrero JA, Picci P. Histological heterogeneity of Ewing's sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch. 2009;455:397-411.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 154]  [Cited by in RCA: 138]  [Article Influence: 8.6]  [Reference Citation Analysis (0)]
87.  Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, Weiss SW. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29:1025-1033.  [PubMed]  [DOI]
88.  Yoshida A, Sekine S, Tsuta K, Fukayama M, Furuta K, Tsuda H. NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma. Am J Surg Pathol. 2012;36:993-999.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 119]  [Cited by in RCA: 125]  [Article Influence: 9.6]  [Reference Citation Analysis (0)]
89.  Sankar S, Lessnick SL. Promiscuous partnerships in Ewing's sarcoma. Cancer Genet. 2011;204:351-365.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 187]  [Cited by in RCA: 168]  [Article Influence: 12.0]  [Reference Citation Analysis (0)]
90.  Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR. Ewing sarcoma with ERG gene rearrangements: A molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer. 2016;55:340-349.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 77]  [Cited by in RCA: 87]  [Article Influence: 8.7]  [Reference Citation Analysis (0)]
91.  Hakky TS, Gonzalvo AA, Lockhart JL, Rodriguez AR. Primary Ewing sarcoma of the kidney: a symptomatic presentation and review of the literature. Ther Adv Urol. 2013;5:153-159.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 33]  [Cited by in RCA: 37]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
92.  Argani P. MiT family translocation renal cell carcinoma. Semin Diagn Pathol. 2015;32:103-113.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 167]  [Cited by in RCA: 184]  [Article Influence: 18.4]  [Reference Citation Analysis (0)]
93.  Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, Reuter VE, Garvin AJ, Perez-Atayde AR, Fletcher JA, Beckwith JB, Bridge JA, Ladanyi M. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159:179-192.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 492]  [Cited by in RCA: 446]  [Article Influence: 18.6]  [Reference Citation Analysis (0)]
94.  Davis IJ, Hsi BL, Arroyo JD, Vargas SO, Yeh YA, Motyckova G, Valencia P, Perez-Atayde AR, Argani P, Ladanyi M, Fletcher JA, Fisher DE. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Proc Natl Acad Sci U S A. 2003;100:6051-6056.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 206]  [Cited by in RCA: 195]  [Article Influence: 8.9]  [Reference Citation Analysis (0)]
95.  Caliò A, Segala D, Munari E, Brunelli M, Martignoni G. MiT Family Translocation Renal Cell Carcinoma: from the Early Descriptions to the Current Knowledge. Cancers (Basel). 2019;11:1110.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 86]  [Cited by in RCA: 92]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
96.  Kuroda N, Sugawara E, Kusano H, Yuba Y, Yorita K, Takeuchi K. A review of ALK-rearranged renal cell carcinomas with a focus on clinical and pathobiological aspects. Pol J Pathol. 2018;69:109-113.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 12]  [Cited by in RCA: 14]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
97.  Cajaiba MM, Jennings LJ, Rohan SM, Perez-Atayde AR, Marino-Enriquez A, Fletcher JA, Geller JI, Leuer KM, Bridge JA, Perlman EJ. ALK-rearranged renal cell carcinomas in children. Genes Chromosomes Cancer. 2016;55:442-451.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 37]  [Cited by in RCA: 37]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
98.  Mariño-Enríquez A, Ou WB, Weldon CB, Fletcher JA, Pérez-Atayde AR. ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer. 2011;50:146-153.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 116]  [Cited by in RCA: 112]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
99.  Kusano H, Togashi Y, Akiba J, Moriya F, Baba K, Matsuzaki N, Yuba Y, Shiraishi Y, Kanamaru H, Kuroda N, Sakata S, Takeuchi K, Yano H. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene. Am J Surg Pathol. 2016;40:761-769.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 55]  [Cited by in RCA: 68]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
100.  Smith NE, Deyrup AT, Mariño-Enriquez A, Fletcher JA, Bridge JA, Illei PB, Netto GJ, Argani P. VCL-ALK renal cell carcinoma in children with sickle-cell trait: the eighth sickle-cell nephropathy? Am J Surg Pathol. 2014;38:858-863.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 67]  [Cited by in RCA: 77]  [Article Influence: 7.0]  [Reference Citation Analysis (0)]
101.  Pal SK, Bergerot P, Dizman N, Bergerot C, Adashek J, Madison R, Chung JH, Ali SM, Jones JO, Salgia R. Responses to Alectinib in ALK-rearranged Papillary Renal Cell Carcinoma. Eur Urol. 2018;74:124-128.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 33]  [Cited by in RCA: 51]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
102.  Trpkov K, Abou-Ouf H, Hes O, Lopez JI, Nesi G, Comperat E, Sibony M, Osunkoya AO, Zhou M, Gokden N, Leroy X, Berney DM, Werneck Cunha I, Musto ML, Athanazio DA, Yilmaz A, Donnelly B, Hyndman E, Gill AJ, McKenney JK, Bismar TA. Eosinophilic Solid and Cystic Renal Cell Carcinoma (ESC RCC): Further Morphologic and Molecular Characterization of ESC RCC as a Distinct Entity. Am J Surg Pathol. 2017;41:1299-1308.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 78]  [Cited by in RCA: 108]  [Article Influence: 13.5]  [Reference Citation Analysis (0)]
103.  Loghin A, Popelea MC, Todea-Moga CD, Cocuz IG, Borda A. Eosinophilic Solid and Cystic Renal Cell Carcinoma-A Systematic Review and Meta-Analysis. Int J Mol Sci. 2024;25.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Reference Citation Analysis (0)]
104.  Trpkov K, Hes O, Bonert M, Lopez JI, Bonsib SM, Nesi G, Comperat E, Sibony M, Berney DM, Martinek P, Bulimbasic S, Suster S, Sangoi A, Yilmaz A, Higgins JP, Zhou M, Gill AJ, Przybycin CG, Magi-Galluzzi C, McKenney JK. Eosinophilic, Solid, and Cystic Renal Cell Carcinoma: Clinicopathologic Study of 16 Unique, Sporadic Neoplasms Occurring in Women. Am J Surg Pathol. 2016;40:60-71.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 104]  [Cited by in RCA: 136]  [Article Influence: 15.1]  [Reference Citation Analysis (0)]
105.  Tretiakova MS. Eosinophilic solid and cystic renal cell carcinoma mimicking epithelioid angiomyolipoma: series of 4 primary tumors and 2 metastases. Hum Pathol. 2018;80:65-75.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 38]  [Cited by in RCA: 53]  [Article Influence: 7.6]  [Reference Citation Analysis (0)]
106.  Palsgrove DN, Li Y, Pratilas CA, Lin MT, Pallavajjalla A, Gocke C, De Marzo AM, Matoso A, Netto GJ, Epstein JI, Argani P. Eosinophilic Solid and Cystic (ESC) Renal Cell Carcinomas Harbor TSC Mutations: Molecular Analysis Supports an Expanding Clinicopathologic Spectrum. Am J Surg Pathol. 2018;42:1166-1181.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 94]  [Cited by in RCA: 103]  [Article Influence: 14.7]  [Reference Citation Analysis (0)]
107.  Beckermann KE, Sharma D, Chaturvedi S, Msaouel P, Abboud MR, Allory Y, Bourdeaut F, Calderaro J, de Cubas AA, Derebail VK, Hong AL, Naik RP, Malouf GG, Mullen EA, Reuter VE, Roberts CWM, Walker CL, Wood CG, DeBaun MR, Van Poppel H, Tannir NM, Rathmell WK. Renal Medullary Carcinoma: Establishing Standards in Practice. J Oncol Pract. 2017;13:414-421.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 41]  [Cited by in RCA: 55]  [Article Influence: 6.9]  [Reference Citation Analysis (0)]
108.  Hakimi AA, Koi PT, Milhoua PM, Blitman NM, Li M, Hugec V, Dutcher JP, Ghavamian R. Renal medullary carcinoma: the Bronx experience. Urology. 2007;70:878-882.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 64]  [Cited by in RCA: 68]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
109.  Ohe C, Smith SC, Sirohi D, Divatia M, de Peralta-Venturina M, Paner GP, Agaimy A, Amin MB, Argani P, Chen YB, Cheng L, Colecchia M, Compérat E, Werneck da Cunha I, Epstein JI, Gill AJ, Hes O, Hirsch MS, Jochum W, Kunju LP, Maclean F, Magi-Galluzzi C, McKenney JK, Mehra R, Nesi G, Osunkoya AO, Picken MM, Rao P, Reuter VE, de Oliveira Salles PG, Schultz L, Tickoo SK, Tomlins SA, Trpkov K, Amin MB. Reappraisal of Morphologic Differences Between Renal Medullary Carcinoma, Collecting Duct Carcinoma, and Fumarate Hydratase-deficient Renal Cell Carcinoma. Am J Surg Pathol. 2018;42:279-292.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 79]  [Cited by in RCA: 87]  [Article Influence: 14.5]  [Reference Citation Analysis (0)]
110.  Liu Q, Galli S, Srinivasan R, Linehan WM, Tsokos M, Merino MJ. Renal medullary carcinoma: molecular, immunohistochemistry, and morphologic correlation. Am J Surg Pathol. 2013;37:368-374.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 76]  [Cited by in RCA: 72]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
111.  Cheng JX, Tretiakova M, Gong C, Mandal S, Krausz T, Taxy JB. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol. 2008;21:647-652.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 195]  [Cited by in RCA: 177]  [Article Influence: 10.4]  [Reference Citation Analysis (0)]
112.  Carlo MI, Chaim J, Patil S, Kemel Y, Schram AM, Woo K, Coskey D, Nanjangud GJ, Voss MH, Feldman DR, Hsieh JJ, Hakimi AA, Chen YB, Motzer RJ, Lee CH. Genomic Characterization of Renal Medullary Carcinoma and Treatment Outcomes. Clin Genitourin Cancer. 2017;15:e987-e994.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 35]  [Cited by in RCA: 37]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
113.  Wilson NR, Wiele AJ, Surasi DS, Rao P, Sircar K, Tamboli P, Shah AY, Genovese G, Karam JA, Wood CG, Tannir NM, Msaouel P. Efficacy and safety of gemcitabine plus doxorubicin in patients with renal medullary carcinoma. Clin Genitourin Cancer. 2021;19:e401-e408.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 18]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
114.  Iacovelli R, Modica D, Palazzo A, Trenta P, Piesco G, Cortesi E. Clinical outcome and prognostic factors in renal medullary carcinoma: A pooled analysis from 18 years of medical literature. Can Urol Assoc J. 2015;9:E172-E177.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 33]  [Cited by in RCA: 39]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
115.  Sutherland EL, Choromanska A, Al-Katib S, Coffey M. Outcomes of ultrasound guided renal mass biopsies. J Ultrasound. 2018;21:99-104.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8]  [Cited by in RCA: 8]  [Article Influence: 1.1]  [Reference Citation Analysis (0)]
116.  Leão RR, Richard PO, Jewett MA. Indications for biopsy and the current status of focal therapy for renal tumors. Transl Androl Urol. 2015;4:283-293.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 4]  [Reference Citation Analysis (0)]