Copyright
©The Author(s) 2025.
World J Psychiatry. May 19, 2025; 15(5): 102953
Published online May 19, 2025. doi: 10.5498/wjp.v15.i5.102953
Published online May 19, 2025. doi: 10.5498/wjp.v15.i5.102953
Table 1 Results of previous studies using neuroimaging techniques, machine learning, and deep learning in the context of major depressive disorder
Neuroimaging technique | Machine learning approaches | Deep learning approaches | Findings/applications | Ref. |
fMRI | SVM, XGBoost | CNN | Identification of functional connectivity alterations, prediction of treatment response, generalizable markers across imaging sites | Anderson et al[21], Shi et al[22], Yamashita et al[23] |
sMRI | PCA, ICA | Autoencoders | Detection of gray matter volume reductions, feature extraction, and identification of structural biomarkers | Zhang et al[24], Ho et al[25] |
PET | Feature selection | Evaluation of altered glucose metabolism, identification of treatment-specific biomarkers | McGrath et al[26], Kang and Cho[27] | |
EEG | Time-series analysis | CNN, RNN, LSTM | Analysis of altered neural oscillations, connectivity patterns, and prediction models using EEG-based approaches | Uyulan et al[28], Yang et al[29] |
Table 2 Demographic and clinical characteristics
Variable | MDD group (n = 44) | Control group (n = 43) | P value |
Age (years) | 15 ± 2 | 15 ± 2 | > 0.05 |
Sex (male/female) | 10/34 | 11/32 | > 0.05 |
Education (years) | 10 ± 3 | 10 ± 3 | > 0.05 |
HAMD-17 Score | 21 ± 5 | 5 ± 3 | < 0.05 |
- Citation: Byeon H. Unveiling the invisible: How cutting-edge neuroimaging transforms adolescent depression diagnosis. World J Psychiatry 2025; 15(5): 102953
- URL: https://www.wjgnet.com/2220-3206/full/v15/i5/102953.htm
- DOI: https://dx.doi.org/10.5498/wjp.v15.i5.102953