Review Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Aug 15, 2025; 17(8): 109489
Published online Aug 15, 2025. doi: 10.4251/wjgo.v17.i8.109489
Unmasking immune checkpoint resistance in esophageal squamous cell carcinoma: Insights into the tumor microenvironment and biomarker landscape
Zhe Wang, Rui-Ying Zhang, Feng Wang, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
Yi-Fan Xu, Bing-Tong Yue, Jia-Yi Zhang, Department of Clinical Medicine, The First Clinical Medical College of Zhengzhou University, Zhengzhou 45000, Henan Province, China
ORCID number: Feng Wang (0000-0003-3335-5943).
Co-first authors: Zhe Wang and Rui-Ying Zhang.
Co-corresponding authors: Jia-Yi Zhang and Feng Wang.
Author contributions: Wang Z and Zhang RY contributed equally to this work as co-first authors; Zhang JY and Wang F contributed equally to this work as co-corresponding authors; Wang Z drafted the original manuscript; Zhang RY, Xu YF and Yue BT carried out the literature search and helped structure the review; Zhang JY and Wang F conceived and supervised the study and made critical revisions; all authors prepared the draft and approved the submitted version.
Conflict-of-interest statement: The authors declare no conflict of interests for this article.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Feng Wang, MD, PhD, Professor, Senior Researcher, Senior Scientist, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 50 Eastern Jianshe Road, Zhengzhou 450052, Henan Province, China. zzuwangfeng@zzu.edu.cn
Received: May 13, 2025
Revised: June 2, 2025
Accepted: July 16, 2025
Published online: August 15, 2025
Processing time: 93 Days and 15 Hours

Abstract

Esophageal squamous cell carcinoma (ESCC) remains a daunting global health concern. It is marked by aggressive progression and poor survival. While immunotherapy has emerged as a promising treatment modality, both primary and acquired resistance continue to limit its clinical impact, leaving many patients without durable benefits (e.g., CheckMate-648, ESCORT-1st). This review explains resistance mechanisms and suggests new strategies to improve outcomes. These mechanisms include immunosuppressive cells (Treg cells, myeloid-derived suppressor cells), inhibitory cytokines, molecular alterations involving programmed death 1/programmed death-ligand 1 signaling, and impaired antigen presentation. We also highlight key clinical trials—for example, CheckMate-648 and ESCORT-1st—that reveal both the potential and pitfalls of current immune checkpoint blockade strategies, underscoring the need for robust predictive biomarkers. Moreover, we examine cutting-edge tactics to overcome resistance, including combination regimens, tumor microenvironment remodeling, and tailored treatment approaches rooted in the patient’s unique genomic and immunologic landscape.

Key Words: Esophageal squamous cell carcinoma; Immunotherapy resistance; Tumor microenvironment; Immune checkpoint blockade; Biomarkers

Core Tip: Esophageal squamous cell carcinoma (ESCC) poses significant clinical challenges due to its aggressive progression and poor survival outcomes. While immunotherapy offers promise, resistance—both primary and acquired—remains a major hurdle, limiting its efficacy. This review explores the mechanisms of immunotherapy resistance in ESCC, including immunosuppressive cells, inhibitory cytokines, and molecular alterations in programmed death 1/programmed death-ligand 1 signaling. We also examine emerging strategies to overcome resistance, such as combination therapies and tumor microenvironment remodeling, emphasizing the need for predictive biomarkers to improve patient outcomes.



INTRODUCTION

Esophageal cancer, characterized by aggressive progression and poor prognosis, poses a significant global health challenge. According to GLOBOCAN 2022 estimates (511054 new cases and 445391 deaths in 2022), esophageal cancer ranks as the 11th most common cancer and the 7th leading cause of cancer-related death worldwide[1]. In the United States, 2001140 new cancer cases and 611720 deaths are projected in 2024, reflecting rising incidence in several major cancers and persistent disparities[2]. Distinct geographic variations in esophageal cancer incidence exist, particularly high in Eastern Asia and Eastern Africa, highlighting diverse etiologies across regions. Recent insights emphasize the importance of targeting not only tumor cells but also their surrounding microenvironment, including stromal and immune components, to overcome therapy resistance[3]. Notably, two major histologic subtypes—esophageal squamous cell carcinoma (ESCC) and adenocarcinoma—exhibit substantial epidemiological differences. ESCC, predominant globally, is strongly linked to lifestyle factors such as tobacco smoking and alcohol consumption.

Despite advancements in multimodal treatment such as surgery, chemotherapy, radiotherapy, and immunotherapy, the clinical outcomes of ESCC patients remain suboptimal. Recently, immune checkpoint inhibitors (ICIs) targeting programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) have become integral in ESCC management[4,5]. Landmark trials, including CheckMate-648, ESCORT-1st, JUPITER-06, RATIONALE-306 and GEMSTONE-304 have collectively confirmed the survival benefits of combining ICIs with chemotherapy[6-11]. For instance, ESCORT-NEO/NCCES01 demonstrated significantly improved pathological complete response rates with camrelizumab plus chemotherapy compared to chemotherapy alone in the neoadjuvant setting[12]. Similarly, first-line trials such as JUPITER-06 (toripalimab) and GEMSTONE-304 (sugemalimab) established significant enhancements in overall survival and progression-free survival, emphasizing immunotherapy's pivotal role in ESCC treatment[6,8].

However, the clinical effectiveness of immunotherapy in ESCC remains constrained by various resistance mechanisms. A substantial proportion of patients experience either primary or acquired resistance, diminishing long-term therapeutic benefits. Complex factors contribute to this resistance, including immunosuppressive cellular components within the tumor microenvironment (TME), notably regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Additional resistance mechanisms encompass molecular alterations affecting antigen presentation, immune checkpoint signaling dysregulation, and inhibitory cytokine production[13,14]. These multifaceted mechanisms underscore the urgent need for reliable biomarkers to predict immunotherapy responsiveness.

Addressing these challenges requires innovative strategies. Recent research emphasizes exploring combination therapies, integrating ICIs with chemotherapy, targeted therapies, and other immunomodulators to overcome immunotherapy resistance[14]. Emerging predictive biomarkers, such as immune-related gene signatures and proteomic profiles, hold promise for improved patient stratification and individualized therapeutic approaches[15,16]. Notably, G protein-coupled receptor 84 (GPR84), predominantly expressed on MDSCs, has been identified as a negative predictor for anti-PD-1 therapy efficacy in ESCC patients. High levels of GPR84+ MDSCs correlate with reduced CD8+ T cell infiltration and poorer overall survival, underscoring its potential as both a prognostic biomarker and a therapeutic target[17].

Collectively, elucidating resistance mechanisms and identifying effective predictive biomarkers remain critical unmet needs. This review synthesizes recent advances, provides a comprehensive analysis of resistance mechanisms, and highlights promising therapeutic strategies aimed at overcoming immunotherapy resistance, ultimately seeking transformative improvements in clinical outcomes for ESCC patients.

MOLECULAR MECHANISMS OF IMMUNOTHERAPY RESISTANCE IN ESCC
Immunosuppressive ESCC microenvironment

Recent evidence indicates that multiple immunosuppressive factors and cell populations within the ESCC microenvironment interact to inhibit effective antitumor immune responses. At the cytokine level, interleukin (IL)-10 is particularly notable for its dual role. While it can inhibit certain proinflammatory mediators (e.g., IL-6, IL-12/23) and block excessive myeloid or Treg accumulation, it may also potentiate CD8+ T-cell effector functions. This is achieved by enhancing interferon-gamma (IFN-γ) production, increasing major histocompatibility complex (MHC) expression, and mitigating terminal exhaustion[18-20]. Nevertheless, under particular conditions, macrophage-derived IL-10 can limit dendritic cell (DC) activity. This suggests that IL-10’s ultimate impact depends heavily on the overall immunological and therapeutic context[21]. IL-6, in contrast, more consistently drives tumor-cancer-associated fibroblast (CAF) interactions and is frequently associated with poorer survival outcomes, suggesting that strategies targeting IL-6 signaling could help disrupt a tumor-promoting microenvironment[22]. IL-1β has also emerged as a key mediator of immune escape in ESCC through ferroptosis resistance: Blocking IL-1β sensitizes tumor cells to CD8+ T-cell-mediated cytotoxicity, thereby synergizing with PD-1 blockade[23].

Beyond these soluble mediators, transforming-growth-factor-beta (TGF-β) exerts wide-ranging immunosuppressive and pro-tumorigenic effects in ESCC by impairing T-cell and natural killer (NK)-cell function, inducing Treg differentiation, and promoting invasion and metastasis[24,25]. The pleiotropic nature of TGF-β poses a challenge for clinical intervention, as globally blocking TGF-β may also remove its normal tissue homeostasis benefits. At the cellular level, CAFs serve as central modulators of the ESCC microenvironment through their capacity to secrete growth factors such as fibroblast growth factor 2 (FGF2), IL-6, and TGF-β[26,27]. They also remodel the extracellular matrix, a process that can hinder T-cell infiltration and enhance immune evasion[27,28]. Notably, certain subpopulations of CAFs may help activate T cells, underscoring the functional heterogeneity that complicates simple “CAF-depletion” strategies.

MDSCs promote immune tolerance through various mechanisms, including nutrient depletion and stabilization of PD-L1 expression. Specifically, GPR84 overexpression on MDSCs inhibits lysosomal degradation of PD-L1, leading to sustained PD-L1 Levels on the cell surface. This stabilization impairs CD8+ T cell function and contributes to resistance against anti-PD-1 therapies[29]. In parallel, Treg cells curtail cytotoxic T lymphocyte activity through multiple pathways, including trogocytosis of CD80/CD86 on antigen-presenting cells and the release of immunosuppressive cytokines[30-32]. Finally, tumor-associated macrophages (TAMs)—particularly M2-like phenotypes—facilitate immune escape through TGF-β1 secretion, PD-L1 upregulation, and direct interference with T-cell trafficking[33-36]. Taken together, these overlapping immunosuppressive signals and cell subsets form a multilayered barrier to immune-mediated tumor eradication (Figure 1). A deeper understanding of these interactions will be critical for designing precise combination therapies aimed at disarming immunosuppressive networks, thereby improving the efficacy of existing immunotherapeutic approaches in ESCC.

Figure 1
Figure 1 Immunosuppressive micro-environment in esophageal squamous cell carcinoma. The diagram highlights the dominant suppressor populations and cytokines that shape the esophageal squamous cell carcinoma tumor micro-environment. Treg, myeloid-derived suppressor cell, tumor-associated macrophage, dendritic cell and cancer-associated fibroblast are shown interacting with effector T cells and natural killer cells. Colored dots denote key soluble mediators [blue = transforming-growth-factor-beta, purple = interleukin (IL)-10, orange = interferon-gamma, grey = IL-6]. Solid and dashed arrows indicate predominant inhibitory or stimulatory signals affecting cytotoxicity and antigen presentation. The schematic inset at the top illustrates how dense stroma and aberrant vasculature further impede immune-cell trafficking. IL: Interleukin; MHC: Major histocompatibility complex; PD-L1: Programmed death-ligand 1; TGF-β: Transforming-growth-factor-beta; IFN-γ: Interferon-gamma.
Checkpoint and exhaustion pathways

Immune evasion in ESCC arises from a constellation of regulatory pathways and molecular alterations that collectively limit the effectiveness of immunotherapeutic interventions. Central to this process are well-characterized checkpoints such as PD-1/PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which orchestrate inhibitory signals not only in T cells but also in other immune cells including NK cells and macrophages[37-39]. PD-L1 engagement with PD-1, for instance, leads to the formation of suppressive microclusters that recruit phosphatases like SHP2, thereby attenuating TCR- and CD28-mediated costimulatory signals[40]. PD-L2, although overlapping in function with PD-L1, exhibits distinct expression patterns—particularly under low-antigen conditions—and further fortifies immunosuppression[41,42]. Meanwhile, CTLA-4 exerts inhibitory effects earlier in T-cell activation by outcompeting CD28 for B7 Ligands. This mechanism plays a particularly important role in regulatory T cells (Tregs), where CTLA-4 helps maintain immune tolerance—but in cancer, this can inadvertently protect tumor cells[43,44]. Importantly, immune suppression in the TME is not limited to checkpoint pathways alone. Tumor cells and stromal components cooperatively drive CD8+ T-cell dysfunction, often pushing them into an exhausted state through persistent antigen exposure and metabolic stress. Recent evidence from breast cancer, for example, has revealed novel exhaustion markers in CD8+ T cells, highlighting how the tumor milieu actively reprograms antitumor immunity[45]. These insights not only clarify mechanisms of immune evasion but also point toward innovative therapeutic strategies. Among them, next-generation chimeric antigen receptor (CAR) T-cell therapies are being designed to overcome the hostile metabolic conditions of solid tumors—such as nutrient deprivation and lactic acid accumulation—that blunt T-cell cytotoxicity[46].

In parallel, T-cell exhaustion is a major driver of immune escape in ESCC. Chronic antigen exposure induces sustained expression of inhibitory receptor proteins such as PD-1, LAG-3, and others, leading to functional impairment in proliferation, cytokine production, and cytotoxic activity[47-50]. Although PD-1 blockade can partially restore exhausted T-cell function, these effects are frequently transient. Emerging evidence points to epigenetic reprogramming as a key contributor to the stable maintenance of T-cell exhaustion. This includes mechanisms such as DNA methylation changes and the transcription factor TOX, which encodes the thymocyte selection-associated high mobility group box protein and helps enforce the exhausted state[48,51,52]. Nevertheless, a subset of exhausted T cells with progenitor-like properties retains a degree of proliferative capacity and can respond more effectively to ICIs[53,54]. Additional factors in ESCC, such as long non-coding RNA (lncRNA) FOXP4-AS1 or fibroblast-derived FGF2, further exacerbate T-cell exhaustion by stabilizing PD-L1 expression or upregulating SPRY1, respectively, underscoring the multifactorial nature of this process[55].

Reduced tumor antigen presentation represents another crucial mechanism of immune evasion. Multiple lines of evidence demonstrate that the downregulation of MHC class I molecules—whether through B2M or human leukocyte antigen (HLA) mutations, epigenetic silencing by Polycomb complexes, or disruptions in mitochondrial metabolism—compromises effective T-cell recognition[56-59]. Additionally, embryonic transcription factors such as DUX4 can override IFN-γ-mediated MHC-I upregulation, further compromising antigen presentation[60]. These multifaceted pathways collectively diminish the tumor’s visibility to cytotoxic lymphocytes and highlight the importance of restoring antigen presentation for successful immunotherapy.

Beyond T-cell dynamics and antigen presentation, ESCC cells can actively alter their immunophenotype to evade immune surveillance. Elevated CD276 (B7-H3) expression, for example, drives the formation of neutrophil extracellular traps via the CXCL1-CXCR2 axis, which in turn inhibits NK cell function and promotes immune escape[61]. The Hippo-YAP pathway similarly facilitates immune escape by upregulating CD24, generating a "do-not-eat-me" signal that impedes macrophage phagocytosis[62]. These findings highlight that ESCC cells exploit multiple parallel strategies—ranging from checkpoint molecule manipulation to metabolic reprogramming and interference with innate immune effectors.

Finally, additional molecular factors can further reinforce immune evasion. STC1, a less conventional “phagocytosis checkpoint”, limits calreticulin exposure on the tumor cell surface, thereby preventing effective macrophage and DC-mediated antigen uptake[63]. Moreover, certain lncRNAs modulate immune-related gene expression via epigenetic modifications such as mixed-lineage leukemia-1-dependent tri-methylation of histone H3K4me3 changes, further weakening tumor immunogenicity[64]. Taken together, these findings underscore the complex network of immunosuppressive pathways in ESCC, suggesting that future therapeutic approaches will likely require a combination of targeted interventions to reactivate T cells, restore antigen presentation, and dismantle tumor-intrinsic immune evasion strategies (Figure 2).

Figure 2
Figure 2 Integrated mechanisms of immune evasion in esophageal squamous cell carcinoma. This overview assembles the main, temporally and spatially coordinated, escape pathways employed by esophageal squamous cell carcinoma (ESCC). (1) Loss of tumor antigen visibility through B2M/human leukocyte antigen mutations, polycomb-mediated epigenetic silencing and mitochondrial dysfunction that down-regulate major histocompatibility complex-I; (2) FOXP4-AS1 and interferon-gamma-driven programmed death-ligand 1/programmed death-ligand 2 up-regulation recruits SHP-2 via PD-1 and LAG-3 to dampen TCR/CD28 signaling; (3) Tumour-intrinsic programmes—Hippo-YAP-induced CD24, CD276-CXCL1-CXCR2-mediated neutrophil extracellular traps, and STC1-mediated calreticulin masking—reconfigure “don’t-eat-me” or pro-inflammatory cues to alter immune phenotype; and (4) Cancer-associated fibroblast-derived fibroblast growth factor 2 elevates SPRY1 in CD8+ T cells, deepening functional exhaustion. Together these layers converge to reduce antigen presentation, blunt cytotoxic function and remodel innate immunity, thereby enabling durable immune escape in ESCC. HLA: Human leukocyte antigen; IFN-γ: Interferon-gamma PD-L1: Programmed death-ligand 1; PD-L2: Programmed death-ligand 2; FGF2: Fibroblast growth factor 2; MHC: Major histocompatibility complex; NK: Natural killer.
CLINICAL ADVANCES IN IMMUNOTHERAPY FOR ESCC
Clinical outcomes of immunotherapy and mechanisms of resistance

Checkpoint blockade has permeated every treatment window of ESCC, but the magnitude and durability of benefit are tightly linked to clinical context. In the adjuvant setting, the CheckMate 577 trial showed that one year of nivolumab nearly doubled median disease-free survival compared to placebo (22.4 months vs 11.0 months; HR = 0.69; P < 0.001). This provided the first strong evidence that immunotherapy can eliminate micrometastatic disease in ESCC[65]. This and other pivotal trials are summarized in Table 1. Yet the study deliberately excluded patients who achieved a pathologic complete response (pCR) to chemoradiotherapy, leaving unresolved whether adjuvant therapy is necessary for the very subgroup most likely to be cured by surgery alone. Longer follow-up is also required to confirm that disease-free survival improvements translate into overall survival benefits, especially as many patients relapse outside the thorax, where local control is optimal. The neoadjuvant setting is evolving even faster. The phase III ESCORTNEO trial established that adding camrelizumab to platinumtaxane chemotherapy significantly increases pCR in resectable, locally advanced tumors without delaying surgery or enhancing perioperative morbidity[12]. Smaller phase Ib/II trials have further expanded the possibilities: Two cycles of PD-L1 blockade with adebrelimab as monotherapy resulted in respectable major pathological responses with minimal high-grade toxicity[66], while toripalimab combined with chemoradiation achieved a remarkable 79% major response and 47% pCR, albeit with predictable cytopenias[67]. Collectively, these data argue that immune priming before resection is feasible and that chemotherapy—or radiation—augments, rather than duplicates, checkpoint activity. They also hint that an inflamed baseline microenvironment predicts deeper responses, whereas CAFrich tumors fare worse, a signal that could steer future patient selection.

Table 1 Summary of clinical studies on immunotherapy for esophageal squamous cell carcinoma.
Line of therapy
Study
Therapy/intervention
Sample size
Study design
Primary outcomes
Key findings
Treatment combination (if any)
NeoadjuvantChiCTR2000040034[14]Camrelizumab + nabpaclitaxel + cisplatin; camrelizumab + paclitaxel + cisplatin; paclitaxel + cisplatin391 (132/130/129)Multicenter, randomized, open-label, 3arm trialpCR rate; EFSEFS: PCR: 28.0% (camrelizumab + nabpaclitaxel) & 15.4% (camrelizumab + paclitaxel) vs 4.7% (paclitaxel); both P < 0.01; grade ≥ 3 TRAEs: 29%-34%; EFS immaturePD-1 inhibitor + doublet chemotherapy
NCT04389177[108]Pembrolizumab + paclitaxel + Cisplatin (neoadjuvant; adjuvant PD-1 if non-pCR)47Single-arm, single-center, open-label, phase IIMPR; safetyResults pending (protocol)PD-1 inhibitor + doublet chemotherapy
NCT04215471[73]Adebrelimab30Phase Ib, single-armSafety, feasibility, pCRpCR: 8%; major pathologic response: 24%; 2-year OS: 92%; acceptable safety profile with no grade ≥ 3 adverse eventsPD-L1 inhibitor monotherapy
ChiCTR2100045104[109]Toripalimab + paclitaxel/carboplatin + radiotherapy23Phase Ib, single-armMPR & pCRpCR: 55%; 2-year PFS: 63.8%; 2-year OS: 78%; manageable safety profilePD-1 inhibitor + doublet chemotherapy + radiotherapy
AdjuvantNCT02743494[72]Nivolumab vs placebo794 (532 nivolumab, 262 placebo)Phase III, randomized, double-blindDFSMedian DFS significantly improved with nivolumab (22.4 months vs 11.0 months, HR = 0.69, P < 0.001). Acceptable safety profilePD-1 inhibitor monotherapy
Firstline NCT03748134[9]Sintilimab + cisplatin + paclitaxel (or cisplatin + 5-FU)659 (327/332)Multicenter, randomized, double-blind, phase IIIOS & PFSOS: 16.7 months vs 12.5 months (HR = 0.63, P < 0.001); PFS: 7.2 months vs 5.7 months (HR = 0.56, P < 0.001); grade ≥ 3 TRAEs: 60% vs 55%PD-1 inhibitor + doublet chemotherapy
NCT03829969[8]Toripalimab + paclitaxel + cisplatin514 (257/arm)Multicenter, randomized, double-blind, placebo-controlled, phase IIIPFS; OSPFS: HR = 0.58 (95%CI = 0.46-0.74; P < 0.0001); OS: HR = 0.58 (95%CI = 0.43-0.78; P = 0.0004); grade ≥ 3 TEAEs: Similar between armsPD-1 inhibitor + doublet chemotherapy
NCT04187352[10]Sugemalimab + cisplatin + 5 fluorouracil540 (360/180)Multicenter, randomized, double-blind, phase IIIPFS; OS; ORRPFS: 6.2 months vs 5.4 months (HR = 0.67, P = 0.0002); OS: 15.3 months vs 11.5 months (HR = 0.70, P = 0.0076); ORR: 60.1% vs 45.2%; grade ≥ 3 TRAEs: 51.3% vs 48.4%PD-L1 inhibitor + doublet chemotherapy
NCT03143153[11]Nivolumab + chemo/nivolumab + ipilimumab vs chemo970 (321/325/324)Phase III, randomized, open-label, 3-armOS, PFSOS: 15.4 months (nivolumab + chemo) vs 10.7 months (chemo); HR = 0.54, P < 0.001; OS: 13.7 months (nivolumab + ipilimumab) vs 10.7 months; HR = 0.64; PFS and ORR also improvedPD-1 inhibitor ± CTLA-4 inhibitor + chemo
NCT03691090[12]Camrelizumab + paclitaxel + cisplatin vs paclitaxel + cisplatin596 (298/298)Phase III, randomized, open-labelOSOS: 15.3 months vs 12.0 months; HR = 0.70, P < 0.001; PFS and ORR also improved; acceptable safety profilePD-1 inhibitor + doublet chemotherapy
Second-line
NCT02564263[6]Pembrolizumab387Phase III, randomized, controlled trialOS; HRQoLNo significant difference in HRQoL between pembrolizumab and chemotherapy; stable global health, symptom scores in both groupsPD-1 inhibitor monotherapy
NCT02569242[7]Nivolumab vs chemotherapy419 (210 nivolumab, 209 chemotherapy)Phase III, randomized, open-labelOSMedian OS significantly improved with nivolumab (10.9 months vs 8.4 months, HR = 0.77, P = 0.019). Favorable safety profile compared to chemotherapyPD-1 inhibitor monotherapy
NCT03852251[90]Cadonilimab (anti-PD-1/CTLA-4 bispecific antibody)22 (ESCC cohort)Phase Ib/II, multicenter, open-labelORR, safetyORR: 18.2% in ESCC cohort; manageable safety profilePD-1/CTLA-4 inhibitor monotherapy
NCT03736863[95]Camrelizumab + apatinib52Single-arm, open-labelORRORR: 34.6%; manageable safety profilePD-1 inhibitor + VEGFR2 inhibitor
NCT03736863 (rechallenge)[96]Camrelizumab + apatinib49Single-arm, open-labelORRORR: 10.2%; DCR: 69%; median PFS: 4.6 months; manageable grade ≥ 3 AEs in 35%PD-1 inhibitor + VEGFR2 inhibitor

For patients with unresectable or metastatic disease, four recent phase III trials converge on a clear conclusion: Combining an anti-PD-1 or anti-PD-L1 antibody with platinumbased doublets reduces the risk of death by approximately onethird compared with chemotherapy alone. One-third achieved an initial. Notably, the benefit extends across PD-L1 subgroups, suggesting that chemotherapy-induced antigen release and dendriticcell maturation can compensate for a “cold” baseline immune phenotype. Toxicity remains manageable—grade ≥ 3 immune events hover below 15%—making these regimens broadly accessible even in resourcelimited settings. Earlyphase monotherapy data with SHR1210 remind us, however, that higher tumor mutational burden and PD-L1 staining of at least 5% enrich for response, reinforcing the idea that intrinsic immunogenicity still matters when cytotoxics are removed from the equation[68].

Once platinum failure occurs, checkpoint monotherapy yields more modest gains. Pembrolizumab improved overall survival over investigator’s-choice chemotherapy in the KEYNOTE181 trial, but only in tumors with a combined positive score ≥ 10—roughly onethird of screened patients[4]. Nivolumab in ATTRACTION3 extended survival irrespective of PD-L1 status, yet the absolute median benefit was only about 2.5 months[5]. These outcomes highlight a biological ceiling for singleagent activity in lateline settings and underscore the importance of earlier intervention or rational combinations, for example, with T-cell immunoreceptor with Ig and ITIM domains (TIGIT), LAG-3, or vascular endothelial growth-factor receptor 2 (VEGFR2) blockade, to break primary resistance.

In summary, the emerging evidence points to two guiding principles. First, the earlier PD-1/PD-L1 inhibition is embedded in the multimodality sequence, the deeper and more durable the response—likely because the tumor burden is lower, antigenic diversity is preserved, and the immune repertoire is less exhausted. Second, synergy with chemotherapy (and sometimes radiotherapy) appears to expand efficacy beyond strictly biomarkerdefined subsets, albeit at the cost of overlapping hematologic toxicity that must be managed. Future advances will depend on integrating multiomics biomarkers to identify patients who can safely omit chemotherapy, refining microenvironmentmodulating strategies for noninflamed tumors, and elucidating mechanisms of acquired resistance under prolonged immune pressure. Only then can the substantial, yet still fragile, benefits delivered by checkpoint blockade be translated into uniformly durable control of ESCC.

Clinical experience makes it increasingly clear that resistance, rather than response, is the dominant trajectory for checkpoint blockade in ESCC. A large realworld analysis spanning more than a thousand gastrointestinalcancer patients highlights the problem starkly: Barely onethird achieved an initial objective response to PD-1/PD-L1 inhibition. Almost half of those responders relapsed within two years, the vast majority with oligoprogression confined to a few lymph nodes or visceral sites[69]. This pattern is clinically telling. Localized escape is associated with far better postprogression survival than diffuse polymetastatic spread, implying that timely focal radiotherapy or surgery could meaningfully prolong the life of an otherwise effective systemic regimen. Yet it also underscores how quickly tumor-immune coevolution erodes initial gains.

Correlative studies have begun to reveal the molecular mechanisms underlying such escape. Refractory tumors that remain PD-L1 positive often upregulate alternative exhaustion checkpoints—most notably LAG-3 and the immunometabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1)—while blood-based assays have linked high baseline CXCL10 to longer survival and elevated IL-2Rα or IL-6 to early failure[70]. These findings suggest that once a tumor survives first-line PD-1 blockade, it does so not by switching off the pathway, but by building redundant inhibitory loops and inflammatory barriers. Consequently, rational combinations involving LAG-3, TIGIT, or IDO1 antagonists in combination with ongoing PD-1 therapy hold more mechanistic promise than merely substituting one PD-1 antibody for another. More broadly, early trials of nivolumab and pembrolizumab across solid tumors have confirmed that durable benefits are seen in roughly a quarter of heavily pre-treated patients, and no single baseline marker—PD-L1 included—reliably predicts who will belong to that fortunate minority[71]. Dynamic biomarkers, whether through serial chemokine measurements or on-treatment biopsies, are garnering increasing attention as a means to detect imminent failure before radiographic progression, thus opening a window for preemptive therapeutic switches.

Taken together, these clinical and translational signals converge on a pragmatic strategy: Treat early, monitor frequently, and intervene locally when progression is limited, all while layering additional immunomodulators that neutralize emergent escape nodes. Until multiomic signatures can prospectively identify durable responders, such adaptive, combinationoriented tactics remain the most realistic path to converting immunotherapy from a transient reprieve into sustained disease control for patients with ESCC.

Clinical biomarkers of immunotherapy resistance

Identifying who will, and will not, benefit from immunecheckpoint blockade in ESCC has proved far more complex than testing a single marker, yet several converging lines of evidence are beginning to outline a workable framework. Early pantumor analyses, such as KEYNOTE028, suggested that three variables—tumormutational burden (TMB), PD-L1 expression, and a Tcellinflamed geneexpression profile—each enrich for response, but only when they coincide do objective responses become truly frequent[72]. In ESCC specifically, immunohistochemical surveys confirm that PD-L1 positivity in both tumor cells and infiltrating immune cells tracks with robust CD8+ infiltration and, somewhat counterintuitively, with better overall survival after surgery, implying that PD-L1 may be more a surrogate of preexisting antitumor immunity than a strict brake on it[73]. This nuance is reinforced by mechanistic work showing that regression under PD-1 blockade requires CD8+ T cells poised at the invasive margin and held in check by the PD-1/PD-L1 axis—a setting in which PD-L1 is a marker of vulnerability rather than resistance[74].

Still, PD-L1 alone is far from sufficient. Genomic studies in lung and pancancer cohorts demonstrate that a high nonsynonymous mutation load or a copynumberadjusted TMB correlates with longer survival on checkpoint therapy, yet the cutpoints that matter vary by histology, and in ESCC copynumber instability itself can confound TMB estimates[75-77]. Epigenetic context adds another twist: Widespread DNA demethylation in highly proliferative, aneuploid tumors represses entire immunomodulatory pathways, attenuating benefit even when mutations are abundant[78]. In such cases methylation loss seems to outperform TMB as a negative predictor, highlighting the value of layered genomic and epigenomic profiling.

At the protein level, circulating angiogenic factors such as IL-8, TIE2, and hepatocyte growth factor (HGF) act as harbingers of poor outcome on checkpoint monotherapy, but they also flag patients who may benefit from adding an antiangiogenic agent, a hypothesis now supported by improved survival in combination trials[15]. Within the tumor microenvironment, co-expression patterns are equally informative: Simultaneous upregulation of PD-L1 with T-cell immunoglobulin and mucin-domain 3 (TIM-3) or TIGIT identifies patients with significantly shorter survival, likely reflecting convergent exhaustion programs on CD8+ tumorinfiltrating lymphocytes[79]. These observations dovetail with translational data from refractory cohorts where LAG-3 and IDO1 rise in PD-L1-positive tumors, providing a mechanistic rationale for emerging dualcheckpoint or metabolic combinations.

Neoadjuvant datasets offer a different vantage point. Sevengene signatures derived from pretreatment biopsies now predict which patients will achieve major pathological response after chemoimmunotherapy, and mesenchymal markers such as pleckstrin-2 and interferon-α-inducible protein 6 flag a stromalrich, immuneexcluded phenotype that correlates with failure of neoadjuvant PD-1 blockade[80,81]. Notably, these mesenchymal tumors show increased Treg and type-2 helper T cell infiltration with a concomitant absence of B cells and effector T cells, reiterating that cellular context outweighs any single checkpoint molecule.

Taken together, the field is moving away from binary biomarkers toward composite, contextspecific scores that integrate mutational load, immune infiltration, epigenetic state, and soluble mediators. The practical challenge is less about discovering additional markers than about harmonizing thresholds across platforms and treatment settings and, critically, validating that biomarkerguided decisions actually improve patient outcomes. Until then, clinicians must interpret any single assay with caution and favor multidimensional panels that capture the intricate balance between tumor antigenicity and microenvironmental suppression, the true fulcrum of resistance to immunotherapy in ESCC.

Clinical interventions to overcome immunotherapy resistance in ESCC

Combination immunotherapy strategies: Efforts to overcome immune resistance in ESCC often rely on PD-1 blockade. Combining it with agents that target additional immunosuppressive circuits has shown promising results. Dual checkpoint inhibition is the most mature of these strategies. Early data with the bispecific antibody cadonilimab, which targets both PD-1 and CTLA-4, show responses in roughly one-fifth of heavily pre-treated ESCC cases while maintaining a safety profile closer to singleagent therapy than to conventional ipilimumab combinations[82]. Mechanistic work helps explain why: CTLA-4 removal not only expands a progenitorlike pool of exhausted CD8+ T cells that can be rejuvenated by PD-1 blockade but also strips regulatory T cells of their ability to steal CD80/86 from antigenpresenting cells, thereby freeing additional PD-L1 for interception[31,83]. Similar logic underpins PD-1 + LAG-3 regimens. Transcriptomic profiling of tumors exposed to relatlimab plus nivolumab reveals that CD8+ T cells can sustain an “exhausted yet cytotoxic” hybrid state—marked by TOX, PR/SET domain 1, and BATF—if LAG-3 signaling is suppressed, resulting in clonal expansion and improved disease control[84]. These findings suggest that exhaustion is not an irreversible fate but a tunable equilibrium whose effector side can be weighted by multicheckpoint therapy.

Checkpoint combinations alone, however, are unlikely to suffice for the onethird of patients whose tumors lack baseline immune infiltration. Here, coupling immunotherapy to cytotoxic or targeted modalities becomes critical. Mathematical modeling and early clinical experience concur that radiotherapy given concurrently with PD-1 or in the periradiation window for CTLA-4 or TIGIT blockade maximizes antigen release, dendriticcell activation, and systemic Tcell trafficking[85]. Chemotherapy partnerships are already standard in the firstline metastatic setting, but targeted agents may push response rates even higher. Fibroblast growth-factor receptor (FGFR) inhibitors exemplify this potential: Erdafitinib kills FGFR-dependent tumor cells, broadens the Tcell receptor repertoire through necrotic antigen release, and—when combined with PD-1 blockade—narrows that repertoire into a focused, highaffinity antitumor response while simultaneously depleting TAMs[86]. Early futibatinib plus pembrolizumab data reinforce these principles in the clinic, with objective response rates climbing toward 70% when chemotherapy is also onboard.

Normalizing the tumor vasculature adds yet another layer. In the CAP02 program, camrelizumab in combination with the VEGFR2 inhibitor apatinib achieved a 35% response rate in platinumrefractory disease and even coaxed modest tumor control when reintroduced after prior checkpoint failure, hinting that VEGF blockade can reprime an immuneexcluded microenvironment[87,88]. Serum IL8, TIE2, and HGF levels—proxies for angiogenic drive—track with poorer outcomes on monotherapy and may therefore identify patients who stand to gain most from the addition of an anti-angiogenic agent.

Collectively, these vignettes argue that combination therapy should be chosen to match a tumor’s dominant escape route: Multiple checkpoint antibodies for Tcell-rich yet functionally inert tumors, radiotherapy or chemotherapy to inflame “cold” lesions, and pathwaytargeted or antiangiogenic drugs to dismantle stromal and metabolic shields. The common denominator is that each partner both relieves a discrete immunosuppressive mechanism and amplifies antigenspecific Tcell activity rather than merely adding independent cytotoxic pressure.

Beyond checkpoint pairing and pathway-directed regimens, modern immuno-oncology is expanding to include cellular engineering and microenvironmental modulation. In melanoma, circulating biomarkers—such as soluble PD-L1, cytokine profiles, and lymphocyte subsets—have shown potential in predicting responses to PD-1/PD-L1 blockade, and may ultimately inform immunotherapy stratification strategies in ESCC[89]. Likewise, next-generation CAR T-cell therapies are being designed to resist hostile metabolic conditions in solid tumors by enhancing mitochondrial function and adapting to lactic acidosis, offering a path forward in otherwise unresponsive tumors[46]. In gastric cancer, recent work underscores the value of tailoring PD-1/PD-L1-based therapies to immune subtypes, highlighting the promise of combinatorial checkpoint strategies guided by TME profiling[90]. Furthermore, disrupting small extracellular vesicle-mediated crosstalk between tumor cells and TAMs has emerged as a novel strategy to reprogram immunosuppressive macrophages and boost antitumor immunity[91].

As biomarker refinement proceeds, the field’s challenge is less about inventing new agents than about deploying existing ones in the right sequence, dose, and patient subset to convert transient tumor control into durable remission.

Novel targeted immunotherapy strategies: Efforts to outflank resistance in ESCC have begun to look well beyond the classical PD-1 axis and focus instead on nodal suppressors that either fortify the tumor microenvironment or blunt innate immune priming. One of the most compelling examples is the MDSC receptor GPR84. In both human specimens and orthotopic mouse models, GPR84 is virtually restricted to MDSCs, where it prevents lysosomal degradation of PD-L1 and thereby protects tumors from CD8+ mediated killing. Pharmacologic antagonism of GPR84, when layered onto PD-1 blockade, reverses that protection and restores cytotoxic Tcell activity, offering a clinically actionable means of dismantling myeloidbased resistance—an avenue that conventional checkpoint inhibitors leave untouched[17].

SMARCAL1, a DNA translocase of the SWI/SNF family, facilitates tumor immune evasion through two distinct mechanisms. First, it suppresses the cGAS-STING pathway by limiting endogenous DNA damage, thereby reducing innate immune signaling. Second, SMARCAL1 collaborates with the transcription factor JUN to maintain chromatin accessibility at the PD-L1 promoter region, promoting PD-L1 expression. Consequently, loss of SMARCAL1 Leads to increased activation of innate immune responses and decreased PD-L1 expression, enhancing the tumor's sensitivity to immune checkpoint blockade therapies. These findings suggest that SMARCAL1 represents a promising therapeutic target to overcome resistance to immunotherapy in cancers such as ESCC[92,93]. Although these data are from melanoma models, they may apply to ESCC. The mechanism appears agnostic to tissue type and may be particularly relevant to ESCC, where frequent genomic instability could be harnessed—rather than suppressed—if SMARCAL1 were inhibited. To validate this hypothesis, future studies should employ patient-derived xenograft models that better recapitulate the tumor biology of ESCC. Xenograft systems have been widely used to investigate cancer biology in vivo, including studies exploring microRNA-based therapeutic strategies in non-small cell lung cancer[94].

Checkpoint innovation is also progressing toward targets that sit upstream or parallel to PD-1. TIGIT has advanced furthest, propelled by a clear mechanistic rationale: PD-1’s intracellular tail dephosphorylates the costimulatory receptor CD226, whereas TIGIT prevents CD226 engagement altogether by monopolising its ligand, CD155[95]. Preclinical studies further reveal that Fcγreceptor engagement by antiTIGIT antibodies can reprogram TAMs and DCs, converting an exhausted CD8+ population into a memorylike pool capable of durable control[96,97]. Together, these observations underscore that TIGIT blockade is not merely additive but rewires both innate and adaptive compartments.

Finally, a growing body of transcriptomic and multiplexedimmunofluorescence data ties coexpression of PD-L1 with TIM3 or TIGIT on CD8+ tumorinfiltrating lymphocytes to particularly poor survival in ESCC, implying that these checkpoints operate cooperatively in the very cells most needed for tumor rejection[79]. That convergence argues for combination regimens that include TIM3 or TIGIT antagonists, especially in patients whose tumors display the doublepositive signature at baseline. The current generation of trials—some pairing antiTIGIT with chemotherapy, others evaluating bispecific antibodies that engage multiple receptors simultaneously—will tell whether such precision targeting can transform biological insight into consistent clinical gain. What is already evident is that breaking resistance in ESCC will require dismantling the layered suppressive architecture one node at a time, and these new targets offer the first credible blueprint for doing so.

TME modulation: Reprogramming the tumor microenvironment is emerging as a practical way to convert immunologically “cold” ESCC into responsive disease. One angle is to amplify endogenous effector cells rather than simply unleash them. Pegilodecakin is an IL-10 variant modified with polyethylene glycol to enhance its stability and delivery. It stimulates interferon-γ and granzyme B production, expands novel CD8+ T cell clones, and increases PD-1+ LAG-3+ populations that can be rescued by checkpoint blockade—especially when combined with anti-PD-1 therapy[98]. A second, complementary tactic is to dismantle physical and metabolic barriers erected by CAFs. Inhibition of NADPH oxidase 4 with setanaxib “normalizes” CAFs, reverses the CD8+cell exclusion phenotype, and restores sensitivity to PD-1 blockade[99]. Senolytic clearance of aging CAFs with venetoclax similarly reinvigorates cytotoxic T cell activity and deepens responses in otherwise refractory, stroma-rich tumors[100]. Beyond lymphocytes and fibroblasts, engineered immunocytokines such as PD-1IL2v colocalize an IL2 variant to PD-1+ T cells, fostering a stem-like CD8+ pool and simultaneously re-educating TAMs; when paired with anti-PD-L1, this approach has achieved durable regressions in models that resist conventional checkpoints[101]. Taken together, these studies illustrate that microenvironmental intervention is not a single maneuver but a spectrum of strategies—cytokine amplification, stromal normalization, and myeloid reprogramming—that, when integrated with existing checkpoints, can erode the layered defenses that underpin immunotherapy resistance in ESCC.

Personalized immunotherapy: Personalizing immunotherapy for ESCC is moving from singlemarker triage toward composite genomic and epigenomic stratification. A notable example is the JUPITER-06 cohort, where whole-exome sequencing of 486 tumors was used to integrate refined tumor mutational burden with HLA diversity and key driver mutations like PIK3CA and TET2. This led to the development of the Esophageal Genome Immuno-Oncology Classification, which stratifies patients into three groups. Importantly, only those with immunogenic features or lacking high-risk oncogenic alterations benefited from chemoimmunotherapy[77]. In other words, the therapeutic dividend depends on the balance between antigenicity and oncogenic immune evasion, rather than on mutational load alone. Another caution comes from epigenetics: Genomewide hypomethylation, especially in latereplicating domains that harbour many immunomodulatory genes, can transcriptionally silence antigenpresentation pathways and blunt checkpoint efficacy even in tumors with abundant mutations[78]. Across multiple data sets, loss of methylation outperformed raw mutation count in predicting resistance, underscoring that “how the genome is packaged” may outweigh “how much it is mutated”. Together, these findings argue that truly individualized immunotherapy for ESCC will require multilayered profiling—combining refined mutational indices, drivergene status, and methylome context—to identify patients whose tumors are both visible to the immune system and not hardwired for immune escape.

CONCLUSION

Despite the expanding application of ICIs in ESCC, several obstacles limit efficacy. From the immunoediting perspective, the tumor undergoes stages of elimination, equilibrium, and escape, culminating in a highly heterogeneous microenvironment. As a result, therapies targeting a single molecule often fail to address the myriad resistance mechanisms at play. Although “counter-immunoediting therapy” proposes an individualized approach based on immunoediting stages, practical implementation remains challenging: Accurately identifying each patient’s immune phase and deploying multiple “normalization” interventions in a coordinated manner is complex and resource-intensive[102]. Moreover, current immunotherapeutic approaches—especially immune checkpoint blockade—exhibit considerable variability in response across patient subgroups. Their efficacy is often limited to individuals with high PD-L1 expression or pre-existing immune infiltration, while patients with “immune-cold” tumors derive minimal benefit. Additionally, immune-related adverse events such as pneumonitis, colitis, or endocrinopathies can compromise tolerability, particularly in older adults or those with autoimmune predispositions. These limitations underscore the need to better define the indications, stratify responders, and manage toxicity profiles in clinical practice. Another critical challenge arises from the biophysical properties of the TME, such as matrix stiffness, interstitial fluid pressure, solid stress, and vascular abnormalities. These factors limit immune cell infiltration into tumor tissue and are not easily reversed by conventional immunotherapies alone[103]. Although emerging strategies—such as physical methods to disrupt the extracellular matrix or normalize fluid dynamics—offer promise, translating these into safe, clinically viable protocols requires deeper mechanistic insights and validation in large-scale trials. In parallel, the quest for reliable predictive biomarkers illustrates both progress and complexity. While PD-L1 expression, TMB, and immune cell infiltration can each hint at potential response, none fully captures the intricacies of ESCC’s immune landscape[104,105]. This shortfall has driven the development of multidimensional frameworks—such as the Esophageal Genome Immuno-Oncology Classification—that integrate genomic, epigenetic, and immunological indicators. Although such systems show promise for guiding patient-specific therapies, their clinical implementation is often hampered by high costs, assay variability, and limited availability in routine settings. Ensuring the clinical utility of these biomarkers will require not only biological validation but also improvements in affordability, standardization, and platform compatibility across institutions. Incorporating emerging biotechnologies into ESCC immunotherapy research could help overcome current limitations. For example, CRISPR/Cas9 gene editing can be used to modify T cells, enhancing their cytotoxicity, persistence, and resistance to exhaustion, thereby supporting personalized adoptive therapies[106]. In addition, nanomedicine platforms allow targeted delivery of agents such as checkpoint inhibitors, STING agonists, or RNA-based drugs into the TME, improving therapeutic precision while reducing systemic toxicity. Although these technologies remain at the preclinical stage in ESCC, combining them with spatially resolved immune profiling may enable modulation of hard-to-target tumor components and broaden the clinical benefit of immunotherapy[107]. Moving forward, surmounting these clinical challenges will likely require a robust, multidisciplinary collaboration. Incorporating molecular, epigenetic, and microenvironmental data sets within unified treatment algorithms can inform combination therapies tailored to each patient’s unique tumor biology. Moreover, large-scale prospective trials and real-world evidence are essential to validate these integrative models. It is equally important that future studies include multi-center, multi-ethnic patient cohorts to enhance the generalizability and global relevance of findings. To improve translational relevance, future studies should adopt preclinical tools such as patient-derived xenografts, spatial transcriptomics, and multiplex immune phenotyping to assess treatment efficacy in biologically representative systems. In parallel, detailed experimental design frameworks—defining relevant models, patient stratification strategies, and evaluation endpoints—should be embedded in early-phase studies to guide clinical translation. Only by addressing the multi-layered nature of ESCC immune resistance—from biophysical barriers to complex biomarker profiles—can immunotherapy be refined to deliver durable survival benefits for the broader patient population. Future studies should test integrated biomarker-guided and microenvironment-modulating regimens in prospective trials.

ACKNOWLEDGEMENTS

We express our gratitude to Dr. Tan for assisting in the preparation of the manuscript.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Oncology

Country of origin: China

Peer-review report’s classification

Scientific Quality: Grade B, Grade B, Grade C

Novelty: Grade A, Grade B, Grade B

Creativity or Innovation: Grade A, Grade A, Grade B

Scientific Significance: Grade A, Grade A, Grade B

P-Reviewer: Liu HR; Tang J S-Editor: Lin C L-Editor: A P-Editor: Zhang XD

References
1.  Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-263.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5690]  [Cited by in RCA: 8084]  [Article Influence: 8084.0]  [Reference Citation Analysis (2)]
2.  Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12-49.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2279]  [Cited by in RCA: 4680]  [Article Influence: 4680.0]  [Reference Citation Analysis (3)]
3.  Liu H, Dilger JP. Different strategies for cancer treatment: Targeting cancer cells or their neighbors? Chin J Cancer Res. 2025;37:289-292.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 10]  [Reference Citation Analysis (0)]
4.  Kojima T, Shah MA, Muro K, Francois E, Adenis A, Hsu CH, Doi T, Moriwaki T, Kim SB, Lee SH, Bennouna J, Kato K, Shen L, Enzinger P, Qin SK, Ferreira P, Chen J, Girotto G, de la Fouchardiere C, Senellart H, Al-Rajabi R, Lordick F, Wang R, Suryawanshi S, Bhagia P, Kang SP, Metges JP; KEYNOTE-181 Investigators. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J Clin Oncol. 2020;38:4138-4148.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 299]  [Cited by in RCA: 688]  [Article Influence: 137.6]  [Reference Citation Analysis (0)]
5.  Kato K, Cho BC, Takahashi M, Okada M, Lin CY, Chin K, Kadowaki S, Ahn MJ, Hamamoto Y, Doki Y, Yen CC, Kubota Y, Kim SB, Hsu CH, Holtved E, Xynos I, Kodani M, Kitagawa Y. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20:1506-1517.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 428]  [Cited by in RCA: 797]  [Article Influence: 132.8]  [Reference Citation Analysis (0)]
6.  Wang ZX, Cui C, Yao J, Zhang Y, Li M, Feng J, Yang S, Fan Y, Shi J, Zhang X, Shen L, Shu Y, Wang C, Dai T, Mao T, Chen L, Guo Z, Liu B, Pan H, Cang S, Jiang Y, Wang J, Ye M, Chen Z, Jiang D, Lin Q, Ren W, Wang J, Wu L, Xu Y, Miao Z, Sun M, Xie C, Liu Y, Wang Q, Zhao L, Li Q, Huang C, Jiang K, Yang K, Li D, Liu Y, Zhu Z, Chen R, Jia L, Li W, Liao W, Liu HX, Ma D, Ma J, Qin Y, Shi Z, Wei Q, Xiao K, Zhang Y, Zhang Y, Chen X, Dai G, He J, Li J, Li G, Liu Y, Liu Z, Yuan X, Zhang J, Fu Z, He Y, Ju F, Liu Z, Tang P, Wang T, Wang W, Zhang J, Luo X, Tang X, May R, Feng H, Yao S, Keegan P, Xu RH, Wang F. Toripalimab plus chemotherapy in treatment-naïve, advanced esophageal squamous cell carcinoma (JUPITER-06): A multi-center phase 3 trial. Cancer Cell. 2022;40:277-288.e3.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 293]  [Cited by in RCA: 270]  [Article Influence: 90.0]  [Reference Citation Analysis (0)]
7.  Lu Z, Wang J, Shu Y, Liu L, Kong L, Yang L, Wang B, Sun G, Ji Y, Cao G, Liu H, Cui T, Li N, Qiu W, Li G, Hou X, Luo H, Xue L, Zhang Y, Yue W, Liu Z, Wang X, Gao S, Pan Y, Galais MP, Zaanan A, Ma Z, Li H, Wang Y, Shen L; ORIENT-15 study group. Sintilimab versus placebo in combination with chemotherapy as first line treatment for locally advanced or metastatic oesophageal squamous cell carcinoma (ORIENT-15): multicentre, randomised, double blind, phase 3 trial. BMJ. 2022;377:e068714.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 58]  [Cited by in RCA: 216]  [Article Influence: 72.0]  [Reference Citation Analysis (0)]
8.  Li J, Chen Z, Bai Y, Liu B, Li Q, Zhang J, Zhou J, Deng T, Zhou F, Gao S, Yang S, Ye F, Chen L, Bai W, Yin X, Cang S, Liu L, Pan Y, Luo H, Ji Y, Zhang Z, Wang J, Yang Q, Li N, Huang R, Qu C, Ni J, Wang B, Xu Y, Hu J, Shi Q, Yang J. First-line sugemalimab with chemotherapy for advanced esophageal squamous cell carcinoma: a randomized phase 3 study. Nat Med. 2024;30:740-748.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 17]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
9.  Doki Y, Ajani JA, Kato K, Xu J, Wyrwicz L, Motoyama S, Ogata T, Kawakami H, Hsu CH, Adenis A, El Hajbi F, Di Bartolomeo M, Braghiroli MI, Holtved E, Ostoich SA, Kim HR, Ueno M, Mansoor W, Yang WC, Liu T, Bridgewater J, Makino T, Xynos I, Liu X, Lei M, Kondo K, Patel A, Gricar J, Chau I, Kitagawa Y; CheckMate 648 Trial Investigators. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N Engl J Med. 2022;386:449-462.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 174]  [Cited by in RCA: 640]  [Article Influence: 213.3]  [Reference Citation Analysis (2)]
10.  Luo H, Lu J, Bai Y, Mao T, Wang J, Fan Q, Zhang Y, Zhao K, Chen Z, Gao S, Li J, Fu Z, Gu K, Liu Z, Wu L, Zhang X, Feng J, Niu Z, Ba Y, Zhang H, Liu Y, Zhang L, Min X, Huang J, Cheng Y, Wang D, Shen Y, Yang Q, Zou J, Xu RH; ESCORT-1st Investigators. Effect of Camrelizumab vs Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients With Advanced or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA. 2021;326:916-925.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 137]  [Cited by in RCA: 461]  [Article Influence: 115.3]  [Reference Citation Analysis (0)]
11.  Xu J, Kato K, Raymond E, Hubner RA, Shu Y, Pan Y, Park SR, Ping L, Jiang Y, Zhang J, Wu X, Yao Y, Shen L, Kojima T, Gotovkin E, Ishihara R, Wyrwicz L, Van Cutsem E, Jimenez-Fonseca P, Lin CY, Wang L, Shi J, Li L, Yoon HH. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first-line treatment for advanced or metastatic oesophageal squamous cell carcinoma (RATIONALE-306): a global, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2023;24:483-495.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 38]  [Cited by in RCA: 127]  [Article Influence: 63.5]  [Reference Citation Analysis (0)]
12.  Qin J, Xue L, Hao A, Guo X, Jiang T, Ni Y, Liu S, Chen Y, Jiang H, Zhang C, Kang M, Lin J, Li H, Li C, Tian H, Li L, Fu J, Zhang Y, Ma J, Wang X, Fu M, Yang H, Yang Z, Han Y, Chen L, Tan L, Dai T, Liao Y, Zhang W, Li B, Chen Q, Guo S, Qi Y, Wei L, Li Z, Tian Z, Kang X, Zhang R, Li Y, Wang Z, Chen X, Hou Z, Zheng R, Zhu W, He J, Li Y. Neoadjuvant chemotherapy with or without camrelizumab in resectable esophageal squamous cell carcinoma: the randomized phase 3 ESCORT-NEO/NCCES01 trial. Nat Med. 2024;30:2549-2557.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 42]  [Cited by in RCA: 52]  [Article Influence: 52.0]  [Reference Citation Analysis (0)]
13.  Vesely MD, Zhang T, Chen L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu Rev Immunol. 2022;40:45-74.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 243]  [Cited by in RCA: 258]  [Article Influence: 86.0]  [Reference Citation Analysis (6)]
14.  Bell HN, Zou W. Beyond the Barrier: Unraveling the Mechanisms of Immunotherapy Resistance. Annu Rev Immunol. 2024;42:521-550.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 34]  [Cited by in RCA: 36]  [Article Influence: 36.0]  [Reference Citation Analysis (0)]
15.  Gao M, Wu X, Jiao X, Hu Y, Wang Y, Zhuo N, Dong F, Wang Y, Wang F, Cao Y, Liu C, Li J, Shen L, Zhang H, Lu Z. Prognostic and predictive value of angiogenesis-associated serum proteins for immunotherapy in esophageal cancer. J Immunother Cancer. 2024;12:e006616.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5]  [Cited by in RCA: 13]  [Article Influence: 13.0]  [Reference Citation Analysis (0)]
16.  Ma F, Li Y, Xiang C, Wang B, Lv J, Wei J, Qin Z, Pu Y, Li K, Teng H, Tan S, Feng J, Shang Z, Wang Y, Tian S, Du C, Han Y, Ding C. Proteomic characterization of esophageal squamous cell carcinoma response to immunotherapy reveals potential therapeutic strategy and predictive biomarkers. J Hematol Oncol. 2024;17:11.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 4]  [Reference Citation Analysis (0)]
17.  Qin G, Liu S, Liu J, Hu H, Yang L, Zhao Q, Li C, Zhang B, Zhang Y. Overcoming resistance to immunotherapy by targeting GPR84 in myeloid-derived suppressor cells. Signal Transduct Target Ther. 2023;8:164.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 16]  [Cited by in RCA: 21]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
18.  Tanikawa T, Wilke CM, Kryczek I, Chen GY, Kao J, Núñez G, Zou W. Interleukin-10 ablation promotes tumor development, growth, and metastasis. Cancer Res. 2012;72:420-429.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 101]  [Cited by in RCA: 129]  [Article Influence: 9.2]  [Reference Citation Analysis (0)]
19.  Guo Y, Xie YQ, Gao M, Zhao Y, Franco F, Wenes M, Siddiqui I, Bevilacqua A, Wang H, Yang H, Feng B, Xie X, Sabatel CM, Tschumi B, Chaiboonchoe A, Wang Y, Li W, Xiao W, Held W, Romero P, Ho PC, Tang L. Metabolic reprogramming of terminally exhausted CD8(+) T cells by IL-10 enhances anti-tumor immunity. Nat Immunol. 2021;22:746-756.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 103]  [Cited by in RCA: 262]  [Article Influence: 65.5]  [Reference Citation Analysis (0)]
20.  Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, Blaisdell S, Basham B, Dai J, Grein J, Sheppard C, Hong K, Cutler C, Turner S, LaFace D, Kleinschek M, Judo M, Ayanoglu G, Langowski J, Gu D, Paporello B, Murphy E, Sriram V, Naravula S, Desai B, Medicherla S, Seghezzi W, McClanahan T, Cannon-Carlson S, Beebe AM, Oft M. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell. 2011;20:781-796.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 281]  [Cited by in RCA: 333]  [Article Influence: 23.8]  [Reference Citation Analysis (0)]
21.  Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS, Coussens LM. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26:623-637.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 608]  [Cited by in RCA: 768]  [Article Influence: 69.8]  [Reference Citation Analysis (0)]
22.  Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, Klein-Szanto AJ, Sahu V, Basu D, Ohashi S, Baba K, Giaccone ZT, Walker SR, Frank DA, Wileyto EP, Long Q, Dunagin MC, Raj A, Diehl JA, Wong KK, Bass AJ, Rustgi AK. IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Res. 2018;78:4957-4970.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 121]  [Cited by in RCA: 212]  [Article Influence: 30.3]  [Reference Citation Analysis (0)]
23.  Han Y, Zhang YY, Pan YQ, Zheng XJ, Liao K, Mo HY, Sheng H, Wu QN, Liu ZX, Zeng ZL, Yang W, Yuan SQ, Huang P, Ju HQ, Xu RH. IL-1β-associated NNT acetylation orchestrates iron-sulfur cluster maintenance and cancer immunotherapy resistance. Mol Cell. 2023;83:1887-1902.e8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 57]  [Reference Citation Analysis (0)]
24.  Veen LM, Skrabanja TLP, Derks S, de Gruijl TD, Bijlsma MF, van Laarhoven HWM. The role of transforming growth factor β in upper gastrointestinal cancers: A systematic review. Cancer Treat Rev. 2021;100:102285.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6]  [Cited by in RCA: 13]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
25.  Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Şenbabaoğlu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Höglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544-548.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3113]  [Cited by in RCA: 3647]  [Article Influence: 521.0]  [Reference Citation Analysis (1)]
26.  Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X, Xi Y, Ma Y, Cheng G, Lin D, Wu C. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell. 2023;41:903-918.e8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 86]  [Reference Citation Analysis (0)]
27.  Liu B, Zhang B, Qi J, Zhou H, Tan L, Huang J, Huang J, Fang X, Gong L, Luo J, Liu S, Fu L, Ling F, Ma S, Lai-Wan Kwong D, Wang X, Guan XY. Targeting MFGE8 secreted by cancer-associated fibroblasts blocks angiogenesis and metastasis in esophageal squamous cell carcinoma. Proc Natl Acad Sci U S A. 2023;120:e2307914120.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 20]  [Article Influence: 10.0]  [Reference Citation Analysis (0)]
28.  Qiu H, Zhang X, Qi J, Zhang J, Tong Y, Li L, Fu L, Qin YR, Guan X, Zhang L. Identification and characterization of FGFR2(+) hematopoietic stem cell-derived fibrocytes as precursors of cancer-associated fibroblasts induced by esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2022;41:240.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 11]  [Reference Citation Analysis (0)]
29.  Karakasheva TA, Waldron TJ, Eruslanov E, Kim SB, Lee JS, O'Brien S, Hicks PD, Basu D, Singhal S, Malavasi F, Rustgi AK. CD38-Expressing Myeloid-Derived Suppressor Cells Promote Tumor Growth in a Murine Model of Esophageal Cancer. Cancer Res. 2015;75:4074-4085.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 89]  [Cited by in RCA: 137]  [Article Influence: 13.7]  [Reference Citation Analysis (0)]
30.  Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med. 2025;222:e20240445.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 3]  [Reference Citation Analysis (0)]
31.  Tekguc M, Wing JB, Osaki M, Long J, Sakaguchi S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci U S A. 2021;118:e2023739118.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 40]  [Cited by in RCA: 253]  [Article Influence: 63.3]  [Reference Citation Analysis (0)]
32.  Kidani Y, Nogami W, Yasumizu Y, Kawashima A, Tanaka A, Sonoda Y, Tona Y, Nashiki K, Matsumoto R, Hagiwara M, Osaki M, Dohi K, Kanazawa T, Ueyama A, Yoshikawa M, Yoshida T, Matsumoto M, Hojo K, Shinonome S, Yoshida H, Hirata M, Haruna M, Nakamura Y, Motooka D, Okuzaki D, Sugiyama Y, Kinoshita M, Okuno T, Kato T, Hatano K, Uemura M, Imamura R, Yokoi K, Tanemura A, Shintani Y, Kimura T, Nonomura N, Wada H, Mori M, Doki Y, Ohkura N, Sakaguchi S. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc Natl Acad Sci U S A. 2022;119:e2114282119.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 6]  [Cited by in RCA: 116]  [Article Influence: 38.7]  [Reference Citation Analysis (0)]
33.  Lan J, Sun L, Xu F, Liu L, Hu F, Song D, Hou Z, Wu W, Luo X, Wang J, Yuan X, Hu J, Wang G. M2 Macrophage-Derived Exosomes Promote Cell Migration and Invasion in Colon Cancer. Cancer Res. 2019;79:146-158.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 269]  [Cited by in RCA: 482]  [Article Influence: 68.9]  [Reference Citation Analysis (2)]
34.  Jia Y, Zhang B, Zhang C, Kwong DL, Chang Z, Li S, Wang Z, Han H, Li J, Zhong Y, Sui X, Fu L, Guan X, Qin Y. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Esophageal Squamous Cell Carcinoma. Adv Sci (Weinh). 2023;10:e2204565.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 38]  [Article Influence: 19.0]  [Reference Citation Analysis (0)]
35.  Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, Liu Y, Liu J, Chang R, Li Y, Liang G, Lai W, Sun M, Dougherty U, Bissonnette MB, Wang H, Shen L, Xu MM, Han D. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell. 2021;39:945-957.e10.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 65]  [Cited by in RCA: 178]  [Article Influence: 44.5]  [Reference Citation Analysis (0)]
36.  Wei JR, Zhang B, Zhang Y, Chen WM, Zhang XP, Zeng TT, Li Y, Zhu YH, Guan XY, Li L. QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci U S A. 2024;121:e2407506121.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 9]  [Reference Citation Analysis (0)]
37.  Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, Vale RD. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-1433.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 860]  [Cited by in RCA: 1217]  [Article Influence: 152.1]  [Reference Citation Analysis (0)]
38.  Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, Lape IT, Paluskievicz C, Hippen KL, Lee Y, Silverman E, Shirkey MW, Riella LV, Blazar BR, Bromberg JS. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022;13:2176.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 39]  [Cited by in RCA: 39]  [Article Influence: 13.0]  [Reference Citation Analysis (0)]
39.  Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B, Buttar C, Li E, Sundberg B, Salas RD, Chen R, Wang J, Kim M, Farooq MS, Nguy S, Fedele C, Tang KH, Chen T, Wang W, Hundeyin M, Rossi JAK, Kurz E, Haq MIU, Karlen J, Kruger E, Sekendiz Z, Wu D, Shadaloey SAA, Baptiste G, Werba G, Selvaraj S, Loomis C, Wong KK, Leinwand J, Miller G. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol. 2020;21:442-454.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 150]  [Cited by in RCA: 278]  [Article Influence: 55.6]  [Reference Citation Analysis (0)]
40.  Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209:1201-1217.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 638]  [Cited by in RCA: 874]  [Article Influence: 67.2]  [Reference Citation Analysis (0)]
41.  Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261-268.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2021]  [Cited by in RCA: 2245]  [Article Influence: 93.5]  [Reference Citation Analysis (0)]
42.  Okadome K, Baba Y, Nomoto D, Yagi T, Kalikawe R, Harada K, Hiyoshi Y, Nagai Y, Ishimoto T, Iwatsuki M, Iwagami S, Miyamoto Y, Yoshida N, Watanabe M, Komohara Y, Shono T, Sasaki Y, Baba H. Prognostic and clinical impact of PD-L2 and PD-L1 expression in a cohort of 437 oesophageal cancers. Br J Cancer. 2020;122:1535-1543.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 31]  [Cited by in RCA: 43]  [Article Influence: 8.6]  [Reference Citation Analysis (0)]
43.  Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405-413.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1559]  [Cited by in RCA: 1638]  [Article Influence: 52.8]  [Reference Citation Analysis (0)]
44.  Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459-465.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1519]  [Cited by in RCA: 1640]  [Article Influence: 54.7]  [Reference Citation Analysis (0)]
45.  Liu H, Dong A, Rasteh AM, Wang P, Weng J. Identification of the novel exhausted T cell CD8 + markers in breast cancer. Sci Rep. 2024;14:19142.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 43]  [Cited by in RCA: 68]  [Article Influence: 68.0]  [Reference Citation Analysis (0)]
46.  Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther. 2024;259:108667.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 20]  [Cited by in RCA: 16]  [Article Influence: 16.0]  [Reference Citation Analysis (0)]
47.  Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682-687.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2815]  [Cited by in RCA: 3161]  [Article Influence: 158.1]  [Reference Citation Analysis (0)]
48.  Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG, Youngblood B. De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation. Cell. 2017;170:142-157.e19.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 386]  [Cited by in RCA: 583]  [Article Influence: 72.9]  [Reference Citation Analysis (0)]
49.  Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schenkel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354:1160-1165.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 691]  [Cited by in RCA: 984]  [Article Influence: 109.3]  [Reference Citation Analysis (0)]
50.  Andrews LP, Butler SC, Cui J, Cillo AR, Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, Ngiow SF, Huang YJ, Manne S, Sharpe AH, Delgoffe GM, Wherry EJ, Kirkwood JM, Bruno TC, Workman CJ, Vignali DAA. LAG-3 and PD-1 synergize on CD8(+) T cells to drive T cell exhaustion and hinder autocrine IFN-γ-dependent anti-tumor immunity. Cell. 2024;187:4355-4372.e22.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 106]  [Cited by in RCA: 84]  [Article Influence: 84.0]  [Reference Citation Analysis (0)]
51.  Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y, Eisenberg V, Wohlleber D, Steiger K, Merkler D, Delorenzi M, Knolle PA, Cohen CJ, Thimme R, Youngblood B, Zehn D. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature. 2019;571:265-269.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 381]  [Cited by in RCA: 642]  [Article Influence: 107.0]  [Reference Citation Analysis (0)]
52.  Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE, Attanasio J, Yan P, George SM, Bengsch B, Staupe RP, Donahue G, Xu W, Amaravadi RK, Xu X, Karakousis GC, Mitchell TC, Schuchter LM, Kaye J, Berger SL, Wherry EJ. TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion. Nature. 2019;571:211-218.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1020]  [Cited by in RCA: 1072]  [Article Influence: 178.7]  [Reference Citation Analysis (0)]
53.  Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, Manos M, Gjini E, Kuchroo JR, Ishizuka JJ, Collier JL, Griffin GK, Maleri S, Comstock DE, Weiss SA, Brown FD, Panda A, Zimmer MD, Manguso RT, Hodi FS, Rodig SJ, Sharpe AH, Haining WN. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326-336.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 668]  [Cited by in RCA: 1385]  [Article Influence: 230.8]  [Reference Citation Analysis (0)]
54.  Liu Z, Zhang Y, Ma N, Yang Y, Ma Y, Wang F, Wang Y, Wei J, Chen H, Tartarone A, Velotta JB, Dayyani F, Gabriel E, Wakefield CJ, Kidane B, Carbonelli C, Long L, Liu Z, Su J, Li Z. Progenitor-like exhausted SPRY1(+)CD8(+) T cells potentiate responsiveness to neoadjuvant PD-1 blockade in esophageal squamous cell carcinoma. Cancer Cell. 2023;41:1852-1870.e9.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 51]  [Article Influence: 25.5]  [Reference Citation Analysis (0)]
55.  Shen GY, Zhang Y, Huang RZ, Huang ZY, Yang LY, Chen DZ, Yang SB. FOXP4-AS1 promotes CD8(+) T cell exhaustion and esophageal cancer immune escape through USP10-stabilized PD-L1. Immunol Res. 2024;72:766-775.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 4]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
56.  Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, Henry JY, Ghorani E, Wilson GA, Birkbak NJ, Jamal-Hanjani M, Veeriah S, Szallasi Z, Loi S, Hellmann MD, Feber A, Chain B, Herrero J, Quezada SA, Demeulemeester J, Van Loo P, Beck S, McGranahan N, Swanton C; TRACERx consortium. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479-485.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 628]  [Cited by in RCA: 683]  [Article Influence: 113.8]  [Reference Citation Analysis (0)]
57.  Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, Jackson S, Tan L, Wong SQ, Hollizeck S, Michalak EM, Siddle HV, McCabe MT, Prinjha RK, Guerra GR, Solomon BJ, Sandhu S, Dawson SJ, Beavis PA, Tothill RW, Cullinane C, Lehner PJ, Sutherland KD, Dawson MA. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell. 2019;36:385-401.e8.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 335]  [Cited by in RCA: 447]  [Article Influence: 74.5]  [Reference Citation Analysis (0)]
58.  Mangalhara KC, Varanasi SK, Johnson MA, Burns MJ, Rojas GR, Esparza Moltó PB, Sainz AG, Tadepalle N, Abbott KL, Mendiratta G, Chen D, Farsakoglu Y, Kunchok T, Hoffmann FA, Parisi B, Rincon M, Vander Heiden MG, Bosenberg M, Hargreaves DC, Kaech SM, Shadel GS. Manipulating mitochondrial electron flow enhances tumor immunogenicity. Science. 2023;381:1316-1323.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 19]  [Cited by in RCA: 64]  [Article Influence: 32.0]  [Reference Citation Analysis (0)]
59.  Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia PLM, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell. 2023;186:3903-3920.e21.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 47]  [Cited by in RCA: 89]  [Article Influence: 44.5]  [Reference Citation Analysis (0)]
60.  Chew GL, Campbell AE, De Neef E, Sutliff NA, Shadle SC, Tapscott SJ, Bradley RK. DUX4 Suppresses MHC Class I to Promote Cancer Immune Evasion and Resistance to Checkpoint Blockade. Dev Cell. 2019;50:658-671.e7.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 80]  [Cited by in RCA: 81]  [Article Influence: 13.5]  [Reference Citation Analysis (0)]
61.  Xiong G, Chen Z, Liu Q, Peng F, Zhang C, Cheng M, Ling R, Chen S, Liang Y, Chen D, Zhou Q. CD276 regulates the immune escape of esophageal squamous cell carcinoma through CXCL1-CXCR2 induced NETs. J Immunother Cancer. 2024;12:e008662.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 24]  [Article Influence: 24.0]  [Reference Citation Analysis (0)]
62.  Zhou X, Yan Z, Hou J, Zhang L, Chen Z, Gao C, Ahmad NH, Guo M, Wang W, Han T, Chang T, Kang X, Wang L, Liang Y, Li X. The Hippo-YAP signaling pathway drives CD24-mediated immune evasion in esophageal squamous cell carcinoma via macrophage phagocytosis. Oncogene. 2024;43:495-510.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 13]  [Article Influence: 13.0]  [Reference Citation Analysis (0)]
63.  Lin H, Kryczek I, Li S, Green MD, Ali A, Hamasha R, Wei S, Vatan L, Szeliga W, Grove S, Li X, Li J, Wang W, Yan Y, Choi JE, Li G, Bian Y, Xu Y, Zhou J, Yu J, Xia H, Wang W, Alva A, Chinnaiyan AM, Cieslik M, Zou W. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell. 2021;39:480-493.e6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 42]  [Cited by in RCA: 107]  [Article Influence: 26.8]  [Reference Citation Analysis (0)]
64.  Liu J, Zhou WY, Luo XJ, Chen YX, Wong CW, Liu ZX, Bo Zheng J, Yu Mo H, Chen JQ, Li JJ, Zhong M, Xu YH, Zhang QH, Pu HY, Wu QN, Jin Y, Wang ZX, Xu RH, Luo HY. Long noncoding RNA Regulating ImMune Escape regulates mixed lineage leukaemia protein-1-H3K4me3-mediated immune escape in oesophageal squamous cell carcinoma. Clin Transl Med. 2023;13:e1410.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 30]  [Reference Citation Analysis (0)]
65.  Kelly RJ, Ajani JA, Kuzdzal J, Zander T, Van Cutsem E, Piessen G, Mendez G, Feliciano J, Motoyama S, Lièvre A, Uronis H, Elimova E, Grootscholten C, Geboes K, Zafar S, Snow S, Ko AH, Feeney K, Schenker M, Kocon P, Zhang J, Zhu L, Lei M, Singh P, Kondo K, Cleary JM, Moehler M; CheckMate 577 Investigators. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N Engl J Med. 2021;384:1191-1203.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 469]  [Cited by in RCA: 1082]  [Article Influence: 270.5]  [Reference Citation Analysis (0)]
66.  Yin J, Yuan J, Li Y, Fang Y, Wang R, Jiao H, Tang H, Zhang S, Lin S, Su F, Gu J, Jiang T, Lin D, Huang Z, Du C, Wu K, Tan L, Zhou Q. Neoadjuvant adebrelimab in locally advanced resectable esophageal squamous cell carcinoma: a phase 1b trial. Nat Med. 2023;29:2068-2078.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1]  [Cited by in RCA: 44]  [Article Influence: 22.0]  [Reference Citation Analysis (0)]
67.  Xu X, Sun Z, Liu Q, Zhang Y, Shen L, Zhang C, Lin H, Hu B, Rong L, Chen H, Wang X, Zhao X, Bai YR, Ye Q, Ma X. Neoadjuvant chemoradiotherapy combined with sequential perioperative toripalimab in locally advanced esophageal squamous cell cancer. J Immunother Cancer. 2024;12:e008631.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 9]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
68.  Huang J, Xu B, Mo H, Zhang W, Chen X, Wu D, Qu D, Wang X, Lan B, Yang B, Wang P, Zhang H, Yang Q, Jiao Y. Safety, Activity, and Biomarkers of SHR-1210, an Anti-PD-1 Antibody, for Patients with Advanced Esophageal Carcinoma. Clin Cancer Res. 2018;24:1296-1304.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 99]  [Cited by in RCA: 148]  [Article Influence: 21.1]  [Reference Citation Analysis (0)]
69.  Zhuo N, Liu C, Zhang Q, Li J, Zhang X, Gong J, Lu M, Peng Z, Zhou J, Wang X, Jiao X, Wang Y, Wang Y, Gao M, Shen L, Lu Z. Characteristics and Prognosis of Acquired Resistance to Immune Checkpoint Inhibitors in Gastrointestinal Cancer. JAMA Netw Open. 2022;5:e224637.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3]  [Cited by in RCA: 13]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
70.  de Klerk LK, Patel AK, Derks S, Pectasides E, Augustin J, Uduman M, Raman N, Akarca FG, McCleary NJ, Cleary JM, Rubinson DA, Clark JW, Fitzpatrick B, Brais LK, Cavanaugh ME, Rode AJ, Jean MG, Lizotte PH, Nazzaro MJ, Severgnini M, Zheng H, Fuchs CS, Enzinger PC, Bass AJ. Phase II study of pembrolizumab in refractory esophageal cancer with correlates of response and survival. J Immunother Cancer. 2021;9:e002472.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 12]  [Cited by in RCA: 18]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
71.  Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-2454.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 8900]  [Cited by in RCA: 9899]  [Article Influence: 761.5]  [Reference Citation Analysis (0)]
72.  Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O'Neil BH, Mehnert JM, Lopez J, Doi T, van Brummelen EMJ, Cristescu R, Yang P, Emancipator K, Stein K, Ayers M, Joe AK, Lunceford JK. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J Clin Oncol. 2019;37:318-327.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 713]  [Cited by in RCA: 668]  [Article Influence: 111.3]  [Reference Citation Analysis (0)]
73.  Hatogai K, Kitano S, Fujii S, Kojima T, Daiko H, Nomura S, Yoshino T, Ohtsu A, Takiguchi Y, Doi T, Ochiai A. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma. Oncotarget. 2016;7:47252-47264.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 66]  [Cited by in RCA: 78]  [Article Influence: 11.1]  [Reference Citation Analysis (0)]
74.  Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568-571.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4180]  [Cited by in RCA: 5234]  [Article Influence: 523.4]  [Reference Citation Analysis (0)]
75.  Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124-128.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 6065]  [Cited by in RCA: 6330]  [Article Influence: 633.0]  [Reference Citation Analysis (0)]
76.  Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, Al-Ahmadie HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW, Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D'Angelo SP, Saltz L, Stadler ZK, Scher HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N, Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202-206.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2239]  [Cited by in RCA: 2797]  [Article Influence: 466.2]  [Reference Citation Analysis (0)]
77.  Chen YX, Wang ZX, Jin Y, Zhao Q, Liu ZX, Zuo ZX, Ju HQ, Cui C, Yao J, Zhang Y, Li M, Feng J, Tian L, Xia XJ, Feng H, Yao S, Wang FH, Li YH, Wang F, Xu RH. An immunogenic and oncogenic feature-based classification for chemotherapy plus PD-1 blockade in advanced esophageal squamous cell carcinoma. Cancer Cell. 2023;41:919-932.e5.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 23]  [Reference Citation Analysis (0)]
78.  Jung H, Kim HS, Kim JY, Sun JM, Ahn JS, Ahn MJ, Park K, Esteller M, Lee SH, Choi JK. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun. 2019;10:4278.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 135]  [Cited by in RCA: 346]  [Article Influence: 57.7]  [Reference Citation Analysis (0)]
79.  Wang P, Chen Y, Long Q, Li Q, Tian J, Liu T, Wu Y, Ding Z. Increased coexpression of PD-L1 and TIM3/TIGIT is associated with poor overall survival of patients with esophageal squamous cell carcinoma. J Immunother Cancer. 2021;9:e002836.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 22]  [Cited by in RCA: 51]  [Article Influence: 12.8]  [Reference Citation Analysis (0)]
80.  Feng T, Li Q, Zhu R, Yu C, Xu L, Ying L, Wang C, Xu W, Wang J, Zhu J, Huang M, Xu C, Jin J, Zhang X, Lu T, Yang Y, Zhu C, Chen Q, Su D. Tumor microenvironment biomarkers predicting pathological response to neoadjuvant chemoimmunotherapy in locally advanced esophageal squamous cell carcinoma: post-hoc analysis of a single center, phase 2 study. J Immunother Cancer. 2024;12:e008942.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
81.  Liu J, Chen H, Qiao G, Zhang JT, Zhang S, Zhu C, Chen Y, Tang J, Li W, Wang S, Tian H, Chen Z, Ma D, Tian J, Wu YL. PLEK2 and IFI6, representing mesenchymal and immune-suppressive microenvironment, predicts resistance to neoadjuvant immunotherapy in esophageal squamous cell carcinoma. Cancer Immunol Immunother. 2023;72:881-893.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 11]  [Cited by in RCA: 11]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
82.  Gao X, Xu N, Li Z, Shen L, Ji K, Zheng Z, Liu D, Lou H, Bai L, Liu T, Li Y, Li Y, Fan Q, Feng M, Zhong H, Huang Y, Lou G, Wang J, Lin X, Chen Y, An R, Li C, Zhou Q, Huang X, Guo Z, Wang S, Li G, Fei J, Zhu L, Zhu H, Li X, Li F, Liao S, Min Q, Tang L, Shan F, Gong J, Gao Y, Zhou J, Lu Z, Li X, Li J, Ren H, Liu X, Yang H, Li W, Song W, Wang ZM, Li B, Xia M, Wu X, Ji J. Safety and antitumour activity of cadonilimab, an anti-PD-1/CTLA-4 bispecific antibody, for patients with advanced solid tumours (COMPASSION-03): a multicentre, open-label, phase 1b/2 trial. Lancet Oncol. 2023;24:1134-1146.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 80]  [Cited by in RCA: 86]  [Article Influence: 43.0]  [Reference Citation Analysis (0)]
83.  Wang K, Coutifaris P, Brocks D, Wang G, Azar T, Solis S, Nandi A, Anderson S, Han N, Manne S, Kiner E, Sachar C, Lucas M, George S, Yan PK, Kier MW, Laughlin AI, Kothari S, Giles J, Mathew D, Ghinnagow R, Alanio C, Flowers A, Xu W, Tenney DJ, Xu X, Amaravadi RK, Karakousis GC, Schuchter LM, Buggert M, Oldridge D, Minn AJ, Blank C, Weber JS, Mitchell TC, Farwell MD, Herati RS, Huang AC. Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8(+) T cells. Cancer Cell. 2024;42:1582-1597.e10.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 22]  [Article Influence: 22.0]  [Reference Citation Analysis (0)]
84.  Cillo AR, Cardello C, Shan F, Karapetyan L, Kunning S, Sander C, Rush E, Karunamurthy A, Massa RC, Rohatgi A, Workman CJ, Kirkwood JM, Bruno TC, Vignali DAA. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8(+) T cells to promote antitumor immunity. Cell. 2024;187:4373-4388.e15.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 75]  [Cited by in RCA: 58]  [Article Influence: 58.0]  [Reference Citation Analysis (0)]
85.  Sakai SA, Saeki K, Chi S, Hamaya Y, Du J, Nakamura M, Hojo H, Kojima T, Nakamura Y, Bando H, Kojima M, Suzuki A, Suzuki Y, Akimoto T, Tsuchihara K, Haeno H, Yamashita R, Kageyama SI. Mathematical Modeling Predicts Optimal Immune Checkpoint Inhibitor and Radiotherapy Combinations and Timing of Administration. Cancer Immunol Res. 2025;13:353-364.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]
86.  Palakurthi S, Kuraguchi M, Zacharek SJ, Zudaire E, Huang W, Bonal DM, Liu J, Dhaneshwar A, DePeaux K, Gowaski MR, Bailey D, Regan SN, Ivanova E, Ferrante C, English JM, Khosla A, Beck AH, Rytlewski JA, Sanders C, Laquerre S, Bittinger MA, Kirschmeier PT, Packman K, Janne PA, Moy C, Wong KK, Verona RI, Lorenzi MV. The Combined Effect of FGFR Inhibition and PD-1 Blockade Promotes Tumor-Intrinsic Induction of Antitumor Immunity. Cancer Immunol Res. 2019;7:1457-1471.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 60]  [Cited by in RCA: 106]  [Article Influence: 17.7]  [Reference Citation Analysis (0)]
87.  Meng X, Wu T, Hong Y, Fan Q, Ren Z, Guo Y, Yang X, Shi P, Yang J, Yin X, Luo Z, Xia J, Zhou Y, Xu M, Liu E, Jiang G, Li S, Zhao F, Ma C, Ma C, Hou Z, Li J, Wang J, Wang F. Camrelizumab plus apatinib as second-line treatment for advanced oesophageal squamous cell carcinoma (CAP 02): a single-arm, open-label, phase 2 trial. Lancet Gastroenterol Hepatol. 2022;7:245-253.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 10]  [Cited by in RCA: 56]  [Article Influence: 18.7]  [Reference Citation Analysis (0)]
88.  Meng X, Wang J, Xia J, Wu T, Luo Z, Hong Y, Lu P, Guo Y, Ji Y, Zhang M, Yang L, Cheng P, Liang W, Shan Z, Zhou Y, Wang M, Lu T, Song M, Zong H, Song L, Wang W, Guan L, Li Y, Xing J, Xing S, Wu H, Chu J, Luo X, Lu Y, Xin D, Li A, Jiang B, Li S, Jiang G, Fan Q, Zhao F, Zheng R, Zhu W, Hou Z, Jia Y, Wang F. Efficacy and safety of camrelizumab plus apatinib in patients with advanced esophageal squamous cell carcinoma previously treated with immune checkpoint inhibitors (CAP 02 Re-challenge): A single-arm, phase II study. Eur J Cancer. 2024;212:114328.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 4]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
89.  Splendiani E, Besharat ZM, Covre A, Maio M, Di Giacomo AM, Ferretti E. Immunotherapy in melanoma: Can we predict response to treatment with circulating biomarkers? Pharmacol Ther. 2024;256:108613.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5]  [Cited by in RCA: 26]  [Article Influence: 26.0]  [Reference Citation Analysis (0)]
90.  Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis. 2024;1870:166881.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 11]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
91.  Niu L, Wang Q, Feng F, Yang W, Xie Z, Zheng G, Zhou W, Duan L, Du K, Li Y, Tian Y, Chen J, Xie Q, Fan A, Dan H, Liu J, Fan D, Hong L, Zhang J, Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim Biophys Acta Mol Basis Dis. 2024;1870:166917.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 8]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
92.  Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, Cuella-Martin R, Hayward SB, Kesner JS, Ghasemzadeh A, Nambiar TS, Ho P, Rialdi A, Hebrard M, Li Y, Gao J, Gopinath S, Adeleke OA, Venters BJ, Drake CG, Baer R, Izar B, Guccione E, Keogh MC, Guerois R, Sun L, Lu C, Califano A, Ciccia A. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell. 2024;187:861-881.e32.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 24]  [Cited by in RCA: 40]  [Article Influence: 40.0]  [Reference Citation Analysis (0)]
93.  Zhao WJ, Wang ML, Zhao YF, Zhao WP, Huang QH, Lu ZW, Jia F, Shi JJ, Liu BS, Han WH, Lu HW, Zhang BC, Wang ZX. Pan-cancer analysis reveals SMARCAL1 expression is associated with immune cell infiltration and poor prognosis in various cancers. Sci Rep. 2025;15:6591.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 1]  [Reference Citation Analysis (0)]
94.  Lee SJ, Jeon SH, Cho S, Kim CM, Yoo JK, Oh SH, Kim JH, Yang YD, Kim JK. hsa-miR-CHA2, a novel microRNA, exhibits anticancer effects by suppressing cyclin E1 in human non-small cell lung cancer cells. Biochim Biophys Acta Mol Basis Dis. 2024;1870:167250.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 13]  [Reference Citation Analysis (0)]
95.  Banta KL, Xu X, Chitre AS, Au-Yeung A, Takahashi C, O'Gorman WE, Wu TD, Mittman S, Cubas R, Comps-Agrar L, Fulzele A, Bennett EJ, Grogan JL, Hui E, Chiang EY, Mellman I. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8(+) T cell responses. Immunity. 2022;55:512-526.e9.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 19]  [Cited by in RCA: 209]  [Article Influence: 69.7]  [Reference Citation Analysis (0)]
96.  Guan X, Hu R, Choi Y, Srivats S, Nabet BY, Silva J, McGinnis L, Hendricks R, Nutsch K, Banta KL, Duong E, Dunkle A, Chang PS, Han CJ, Mittman S, Molden N, Daggumati P, Connolly W, Johnson M, Abreu DR, Cho BC, Italiano A, Gil-Bazo I, Felip E, Mellman I, Mariathasan S, Shames DS, Meng R, Chiang EY, Johnston RJ, Patil NS. Anti-TIGIT antibody improves PD-L1 blockade through myeloid and T(reg) cells. Nature. 2024;627:646-655.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 7]  [Cited by in RCA: 52]  [Article Influence: 52.0]  [Reference Citation Analysis (0)]
97.  Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, Eaton DL, Grogan JL. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26:923-937.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 685]  [Cited by in RCA: 881]  [Article Influence: 80.1]  [Reference Citation Analysis (0)]
98.  Naing A, Infante JR, Papadopoulos KP, Chan IH, Shen C, Ratti NP, Rojo B, Autio KA, Wong DJ, Patel MR, Ott PA, Falchook GS, Pant S, Hung A, Pekarek KL, Wu V, Adamow M, McCauley S, Mumm JB, Wong P, Van Vlasselaer P, Leveque J, Tannir NM, Oft M. PEGylated IL-10 (Pegilodecakin) Induces Systemic Immune Activation, CD8(+) T Cell Invigoration and Polyclonal T Cell Expansion in Cancer Patients. Cancer Cell. 2018;34:775-791.e3.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 128]  [Cited by in RCA: 184]  [Article Influence: 26.3]  [Reference Citation Analysis (0)]
99.  Ford K, Hanley CJ, Mellone M, Szyndralewiez C, Heitz F, Wiesel P, Wood O, Machado M, Lopez MA, Ganesan AP, Wang C, Chakravarthy A, Fenton TR, King EV, Vijayanand P, Ottensmeier CH, Al-Shamkhani A, Savelyeva N, Thomas GJ. NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8 T-cell Exclusion from Tumors. Cancer Res. 2020;80:1846-1860.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 176]  [Cited by in RCA: 234]  [Article Influence: 46.8]  [Reference Citation Analysis (0)]
100.  Assouline B, Kahn R, Hodali L, Condiotti R, Engel Y, Elyada E, Mordechai-Heyn T, Pitarresi JR, Atias D, Steinberg E, Bidany-Mizrahi T, Forkosh E, Katz LH, Benny O, Golan T, Hofree M, Stewart SA, Atlan KA, Zamir G, Stanger BZ, Berger M, Ben-Porath I. Senescent cancer-associated fibroblasts in pancreatic adenocarcinoma restrict CD8(+) T cell activation and limit responsiveness to immunotherapy in mice. Nat Commun. 2024;15:6162.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 21]  [Reference Citation Analysis (0)]
101.  Tichet M, Wullschleger S, Chryplewicz A, Fournier N, Marcone R, Kauzlaric A, Homicsko K, Deak LC, Umaña P, Klein C, Hanahan D. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8(+) T cells and reprogramming macrophages. Immunity. 2023;56:162-179.e6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1]  [Cited by in RCA: 78]  [Article Influence: 39.0]  [Reference Citation Analysis (0)]
102.  Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol. 2023;16:38.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 37]  [Reference Citation Analysis (1)]
103.  Zhang T, Jia Y, Yu Y, Zhang B, Xu F, Guo H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev. 2022;186:114319.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4]  [Cited by in RCA: 72]  [Article Influence: 24.0]  [Reference Citation Analysis (0)]
104.  Pérez-Ruiz E, Melero I, Kopecka J, Sarmento-Ribeiro AB, García-Aranda M, De Las Rivas J. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resist Updat. 2020;53:100718.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 65]  [Cited by in RCA: 136]  [Article Influence: 27.2]  [Reference Citation Analysis (0)]
105.  Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Zeng Z, Xiong W. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer. 2020;19:19.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 89]  [Cited by in RCA: 197]  [Article Influence: 39.4]  [Reference Citation Analysis (0)]
106.  Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer. 2022;21:78.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 4]  [Cited by in RCA: 201]  [Article Influence: 67.0]  [Reference Citation Analysis (0)]
107.  Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023;41:404-420.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 192]  [Reference Citation Analysis (0)]
108.  Shang X, Zhao G, Liang F, Zhang C, Zhang W, Liu L, Li R, Duan X, Ma Z, Yue J, Chen C, Meng B, Ren X, Jiang H. Safety and effectiveness of pembrolizumab combined with paclitaxel and cisplatin as neoadjuvant therapy followed by surgery for locally advanced resectable (stage III) esophageal squamous cell carcinoma: a study protocol for a prospective, single-arm, single-center, open-label, phase-II trial (Keystone-001). Ann Transl Med. 2022;10:229.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 31]  [Article Influence: 10.3]  [Reference Citation Analysis (0)]
109.  Jiang N, Zhang J, Guo Z, Wu Y, Zhao L, Kong C, Song X, Gu L, Zhao Y, Li S, He X, Ren B, Zhu X, Jiang M. Short-course neoadjuvant radiotherapy combined with chemotherapy and toripalimab for locally advanced esophageal squamous cell carcinoma (SCALE-1): a single-arm phase Ib clinical trial. J Immunother Cancer. 2024;12:e008229.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 2]  [Cited by in RCA: 14]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]