Basic Study
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jul 21, 2015; 21(27): 8314-8325
Published online Jul 21, 2015. doi: 10.3748/wjg.v21.i27.8314
TLR4-HMGB1-, MyD88- and TRIF-dependent signaling in mouse intestinal ischemia/reperfusion injury
Jie Wang, Gui-Zhen He, Yu-Kang Wang, Qian-Kun Zhu, Wei Chen, Tai Guo
Jie Wang, Gui-Zhen He, Yu-Kang Wang, Qian-Kun Zhu, Wei Chen, Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Centre for Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
Tai Guo, National Institutes for Food and Drug Control, Beijing 100050, China
Author contributions: Wang J, Wang YK, Zhu QK, Chen W, and Guo T performed the animal experiments; Wang J and Chen W performed the research; Zhu QK collected the data; Wang J analyzed the data and wrote the paper; He GZ designed the research and was also involved in editing the manuscript.
Supported by National Natural Science Foundation of China, No. 30940069; and the Natural Sciences Foundation of Beijing, No.7102127.
Institutional review board statement: The study was reviewed and approved by the Academic Committee of Chinese Academy of Medical Sciences and Peking Union Medical College Hospital Institutional Review Board.
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Academic Committee of Chinese Academy of Medical Sciences and Peking Union Medical College Hospital (IACUC protocol number:XHDW-2013-008).
Conflict-of-interest statement: The authors declare no conflict of interests.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Gui-Zhen He, Professor, Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Centre for Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 ShuaifuyuanWangfujing, Dongcheng District, Beijing 100730, China. hgzpumc@163.com
Telephone: +86-10-69154096 Fax: +86-10-69154096
Received: December 22, 2014
Peer-review started: December 23, 2014
First decision: February 10, 2015
Revised: April 1, 2015
Accepted: May 21, 2015
Article in press: May 21, 2015
Published online: July 21, 2015
Core Tip

Core tip: Intestinal mucosal barrier injury induced by intestinal ischemia/reperfusion is often the basis for a poor prognosis in many diseases. Despite extensive investigative efforts,the underlying mechanism remains a subject of debate, and there are currently no effective methods for its prevention or control. The findings reported here suggest that the high-mobility group protein 1-toll-like receptor 4 axis and the two downstream signaling pathways play important roles in ischemia/reperfusion injury and show potential therapeutic value for their blockade. This study has an important clinical significance, which could improve the survival rate and reduce complications in critically ill patients.