BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Chow JYC, Li ZJ, Kei WK, Cho CH. Cathelicidin a potential therapeutic peptide for gastrointestinal inflammation and cancer. World J Gastroenterol 2013; 19(18): 2731-2735 [PMID: 23687409 DOI: 10.3748/wjg.v19.i18.2731]
URL: https://www.wjgnet.com/1007-9327/full/v19/i18/2731.htm
Number Citing Articles
1
Jing Shen, Zhangang Xiao. Antimicrobial Peptides in Gastrointestinal Diseases2018; : 61 doi: 10.1016/B978-0-12-814319-3.00004-0
2
Saurabh Singhal, Harit Kapoor, Saravanan Subramanian, Devendra K. Agrawal, Sumeet K. Mittal. Polymorphisms of Genes Related to Function and Metabolism of Vitamin D in Esophageal AdenocarcinomaJournal of Gastrointestinal Cancer 2019; 50(4): 867 doi: 10.1007/s12029-018-0164-6
3
Hadeesha Piyadasa, Ka-Yee Grace Choi, Neeloffer Mookherjee. Encyclopedia of Inflammatory Diseases2014; : 1 doi: 10.1007/978-3-0348-0620-6_100-1
4
Ye Eun Ra, Ye-Ji Bang. Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and HealthJournal of Microbiology 2024;  doi: 10.1007/s12275-024-00122-3
5
Sae‐Hae Kim, In‐Young Yang, Ju Kim, Kyung‐Yeol Lee, Yong‐Suk Jang. Antimicrobial peptide LL‐37 promotes antigen‐specific immune responses in mice by enhancing Th17‐skewed mucosal and systemic immunitiesEuropean Journal of Immunology 2015; 45(5): 1402 doi: 10.1002/eji.201444988
6
Nadanasabesan Nimalan, Solveig Lysfjord Sørensen, Adriána Fečkaninová, Jana Koščová, Dagmar Mudroňová, Soňa Gancarčíková, Ioannis N. Vatsos, Saraswathy Bisa, Viswanath Kiron, Mette Sørensen. Mucosal barrier status in Atlantic salmon fed marine or plant-based diets supplemented with probioticsAquaculture 2022; 547: 737516 doi: 10.1016/j.aquaculture.2021.737516
7
Daniela Xhindoli, Sabrina Pacor, Monica Benincasa, Marco Scocchi, Renato Gennaro, Alessandro Tossi. The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulatorBiochimica et Biophysica Acta (BBA) - Biomembranes 2016; 1858(3): 546 doi: 10.1016/j.bbamem.2015.11.003
8
Patrick Brendan Timmons, Chandralal M. Hewage. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networksScientific Reports 2020; 10(1) doi: 10.1038/s41598-020-67701-3
9
María G. Ramírez-Ledesma, Mayra C. Rodríguez, Nayeli Alva-Murillo, Eva E. Avila. The antimicrobial peptides LL-37, KR-20, FK-13 and KR-12 inhibit the growth of a sensitive and a metronidazole-resistant strain of Trichomonas vaginalisParasitology Research 2022; 121(12): 3503 doi: 10.1007/s00436-022-07674-6
10
Joseph G Daft, Robin G Lorenz. Role of the gastrointestinal ecosystem in the development of type 1 diabetesPediatric Diabetes 2015; 16(6): 407 doi: 10.1111/pedi.12282
11
Hadeesha Piyadasa, Ka-Yee Grace Choi, Neeloffer Mookherjee. Compendium of Inflammatory Diseases2016; : 69 doi: 10.1007/978-3-7643-8550-7_100
12
J LIANG, J CHEN, Z YE, D BAO. Cathelicidin LL-37 Improves Bone Metabolic Balance in Rats With Ovariectomy-Induced Osteoporosis via the Wnt/β-Catenin PathwayPhysiological Research 2022; : 369 doi: 10.33549/physiolres.934820
13
Mathias Gehrmann, Stefan Stangl, Gemma A. Foulds, Rupert Oellinger, Stephanie Breuninger, Roland Rad, Alan G. Pockley, Gabriele Multhoff, Philip C. Trackman. Tumor Imaging and Targeting Potential of an Hsp70-Derived 14-Mer PeptidePLoS ONE 2014; 9(8): e105344 doi: 10.1371/journal.pone.0105344
14
Matteo Bosso, Ludger Ständker, Frank Kirchhoff, Jan Münch. Exploiting the human peptidome for novel antimicrobial and anticancer agentsBioorganic & Medicinal Chemistry 2018; 26(10): 2719 doi: 10.1016/j.bmc.2017.10.038
15
Jan Münch, Ludger Ständker, Wolf-Georg Forssmann, Frank Kirchhoff. Discovery of modulators of HIV-1 infection from the human peptidomeNature Reviews Microbiology 2014; 12(10): 715 doi: 10.1038/nrmicro3312
16
Lin Zhang, Wei Hu, Jeffery Ho, Ross J. Fitzgerald, Tony Gin, Matthew T.V. Chan, William K.K. Wu. Antimicrobial Peptides in Gastrointestinal Diseases2018; : 21 doi: 10.1016/B978-0-12-814319-3.00002-7
17
Chen Wang, Min Li, Xiaohui Xia, Yuxuan Fu, Yi Wang, Wei Xu, Hongqi Wei, Lin Wei. Construction of exosome-loaded LL-37 and its protection against zika virus infectionAntiviral Research 2024; 225: 105855 doi: 10.1016/j.antiviral.2024.105855
18
Katarzyna Bandurska, Agnieszka Berdowska, Renata Barczyńska‐Felusiak, Piotr Krupa. Unique features of human cathelicidin LL‐37BioFactors 2015; 41(5): 289 doi: 10.1002/biof.1225
19
Lin Wei, Jiuxiang Gao, Shumin Zhang, Sijin Wu, Zeping Xie, Guiying Ling, Yi-Qun Kuang, Yongliang Yang, Haining Yu, Yipeng Wang. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special MechanismJournal of Biological Chemistry 2015; 290(27): 16633 doi: 10.1074/jbc.M115.642645
20
Bruno S. Lopes, Alfizah Hanafiah, Ramesh Nachimuthu, Saravanan Muthupandian, Zarith Nameyrra Md Nesran, Sandip Patil. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial ResistanceMolecules 2022; 27(9): 2995 doi: 10.3390/molecules27092995
21
Xin Fang, Keyi Nong, Zihan Wang, Yuanli Jin, Feng Gao, Qiuyu Zeng, Xuemei Wang, Haiwen Zhang. Human cathelicidin LL-37 exerts amelioration effects against EHEC O157:H7 infection regarding inflammation, enteric dysbacteriosis, and impairment of gut barrier functionPeptides 2023; 159: 170903 doi: 10.1016/j.peptides.2022.170903
22
Barbara Hutka, Anett Várallyay, Szilvia B. László, András S. Tóth, Bálint Scheich, Sándor Paku, Imre Vörös, Zoltán Pós, Zoltán V. Varga, Derek D. Norman, Andrea Balogh, Zoltán Benyó, Gábor Tigyi, Klára Gyires, Zoltán S. Zádori. A dual role of lysophosphatidic acid type 2 receptor (LPAR2) in nonsteroidal anti-inflammatory drug-induced mouse enteropathyActa Pharmacologica Sinica 2024; 45(2): 339 doi: 10.1038/s41401-023-01175-7