Basic Study
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Psychiatry. Sep 19, 2023; 13(9): 630-644
Published online Sep 19, 2023. doi: 10.5498/wjp.v13.i9.630
Exosomal miR-320e through wnt2targeted inhibition of the Wnt/β-catenin pathway allevisate cerebral small vessel disease and cognitive impairment
Zheng Wang, Xue-Ning Li, Shao-Nan Yang, Yuan Wang, Ke-Jin Gao, Bin Han, Ai-Jun Ma
Zheng Wang, Department of Internal Medicine-Neurology, Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
Xue-Ning Li, Shao-Nan Yang, Yuan Wang, Ke-Jin Gao, Bin Han, Ai-Jun Ma, Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266001, Shandong Province, China
Author contributions: Wang Z and Li XN concepted the study; Wang Z, Yang SN and Wang Y collected the data; Wang Z, Gao KJ, Han B and Ma AJ contributed to the formal analysis; Wang Z and Ma AJ contributed to the investigation; Wang Z, Li XN and Wang Y contributed to the methodology; Wang Z, Han B, Gao KJ and Ma AJ supervised the study; Yang SN validated the study; Wang Z and Yang SN contributed to the visualization of the study; Wang Z and Han B originally drafted the manuscript; Wang Z, Li XN, Yang SN, Wang Y Gao KJ Han B and Ma AJ reviewed and edited the manuscript.
Institutional review board statement: The study has passed the ethical review of Qingdao University Affiliated Hospital.
Informed consent statement: All specimens were collected after obtaining authorization from the patients and their families and signing a consent form.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Data sharing statement: All data generated and analyzed during the study are included in this published article. The datasets generated and/or analyzed in the current study are also available from the NCBI repository https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217872
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ai-Jun Ma, MD, Attending Doctor, Department of Neurology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Street, Qingdao 266001, Shandong Province, China. drmaj@qdu.edu.cn
Received: May 24, 2023
Peer-review started: May 24, 2023
First decision: June 12, 2023
Revised: June 20, 2023
Accepted: July 14, 2023
Article in press: July 14, 2023
Published online: September 19, 2023
Core Tip

Core Tip: Exosomal miR-320e is downregulated in patients with cerebral small vessel disease (CVSD), and it inhibits the Wnt/β-catenin pathway by targeting Wnt2 in response to oxidative stress. Uptake of exosomes carrying miR-320e can also target Wnt2 and inhibit the Wnt2/β-catenin pathway. Elevated miR-320e expression may protect patients with CVSD from severe cognitive impairment and depression, as it correlates positively with Montreal Cognitive Assessment/Executive Function Assessment and Hamilton Depression Scale/Beck Depression Inventory scores. Therefore, exosomal miR-320e may play a protective role in CVSD progression by suppressing the Wnt/β-catenin pathway, indicating its potential as a therapeutic target for CVSD.