Editorial
Copyright ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Infect Dis. Aug 15, 2019; 9(2): 11-22
Published online Aug 15, 2019. doi: 10.5495/wjcid.v9.i2.11
Towards the worldwide eradication of hepatitis B virus infection: A combination of prophylactic and therapeutic factors
Caterina Sagnelli, Evangelista Sagnelli
Caterina Sagnelli, Evangelista Sagnelli, Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80131, Italy
ORCID number: Caterina Sagnelli (0000-0002-6413-7810); Evangelista Sagnelli (0000-0003-2817-8436).
Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting, critical revision and editing, and final approval of the final version.
Conflict-of-interest statement: The authors have no conflict of interest to declare.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Caterina Sagnelli, MD, PhD, Associate Professor, Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Via L. Armanni 5, Naples 80131, Italy. caterina.sagnelli@unicampania.it
Telephone: +39-81-5666719 Fax: +39-81-5666207
Received: April 30, 2019
Peer-review started: May 7, 2019
First decision: June 18, 2019
Revised: June 22, 2019
Accepted: July 16, 2019
Article in press: July 17, 2019
Published online: August 15, 2019

Abstract

Hepatitis B virus (HBV) is still a global health problem, mostly because of the intermediate/high rates of HBV chronic carriers living in most Asian, African and eastern European countries. The universal HBV vaccination of new-borns undertaken in most nations over the last 3 decades and effective HBV antiviral treatments (nucleos(t)ide analogue with high genetic barrier to viral resistance) introduced in the last decade have shown their beneficial effects in inducing a clear reduction of HBV endemicity in the countries where they have been extensively applied. Great hopes are now placed on new antiviral and immunotherapeutic drugs that are now at an advanced stage of study. It is in fact already conceivable that the synergistic use of new drugs targeting more than one HBV-lifecycle steps (covalent closed circular DNA destruction/silencing, HBV entry inhibitors, nucleocapsid assembly modulators targeting viral transcripts) and of some new immunotherapeutic agents might eliminate the intrahepatic covalent closed circular DNA and achieve the eradication of HBV infection. In spite of this, a strong effort should be given to extensive educational and screening programs for the at-risk population and to the implementation of HBV vaccination in developing countries.

Key Words: Hepatitis B virus, Chronic hepatitis B infection, Hepatitis B virus prevention, Vaccination

Core tip: The spread of hepatitis B virus (HBV) infection has recently decreased in several countries due to the universal HBV vaccination of new-born babies and to the extended use of HBV nucleos(t)ide analogues with high genetic barrier to viral resistance. However, HBV vaccination and extensive educational and screening programs for at risk populations should be implemented predominantly in developing countries. New drugs targeting more than one HBV-lifecycle steps and of some new immunotherapeutic agents are under investigation with the aim of obtaining the clearance of hepatocytic covalent closed circular DNA through their synergistic action.



INTRODUCTION

Despite the universal vaccination campaigns against hepatitis B virus (HBV) undertaken in most nations over the last 3 decades, HBV is still a global health problem with about 257 million people chronically infected, at least 40% of world population being an HBV contact or carrier[1]. About half million deaths per year are due to complications of advanced chronic hepatitis, and 340000 are due to hepatocellular carcinoma (HCC)[2,3].

The level of HBV endemicity, evaluated on the prevalence of subjects with HBV chronic infection, varies significantly from one country to another and in some countries from one geographic area to another. The rate of hepatitis B surface antigen (HBsAg) chronic carriers ranges from 0.5% to 2% (low endemicity) in most countries of North and South America, Western and Central Europe, Australia and northern Africa, from 2.1% to 8% (intermediate endemicity) in most eastern European and central Asian nations and above 8% (high endemicity) in some eastern Asian and sub-Saharan African countries and in Alaska[4,5]. Ten HBV genotypes (HBV-GT) have been identified at present, and their geographical distribution is of great epidemiological interest because it is conditioned by both local diffusion and migratory flows[4-8]. HBV-GT-A predominates in North America, eastern Africa and northern/western Europe[9,10], HBV-GT-B and -C in Asia[11], HBV-GT-D in countries facing the Mediterranean sea[11-21], in the Middle-East and in southern Asia[5], HBV-GT-E in central-western Africa[4,19,22], genotype F in southern and central America[5], HBV-GT-G in France and in some region in the United States[5], HBV-GT-H in Latin America[5] and HBV-GT-I and -J in eastern Asia[5,10]. However, several cases of acute hepatitis related to HBV-GT typical of geographic areas with high or intermediate endemicity have occurred in western countries hosting migrant populations from those areas[6,23-32].

Promiscuous unprotected sexual activity is a main risk factor for acquiring HBV infection worldwide, while other main risk factors have a different impact in different geographical areas. In fact, HBV infection is most frequently acquired at birth from hepatitis B e-antigen (HBeAg) positive mothers or through household contacts in early childhood in countries with intermediate/high endemicity, with a high rate of progression to chronicity that helps to maintain the high levels of endemicity. On the other hand, in countries with low HBV endemicity like Western Europe, North America and Australia, the major risk factor for acquiring HBV infection is the sharing of needles and other equipment between intravenous drug users[33,34], which causes the infection to remain confined to this at-risk population.

Acute Hepatitis B onset occurs 45-180 d after HBV has been acquired with some constitutional symptoms followed by dark urine and jaundice in less than 10% of children aged less than 5 years and in more than 50% of adults. The symptomatic phase of the illness lasts about 15 d and even longer in adults. Immune-complexes related extrahepatic manifestation (membranous glomerulonephritis, necrotizing vasculitis and papular acrodermatitis) are rare events[35,36].

Fulminant hepatitis is due to an overreaction of the immune system; it develops in about 1% of the patients[37,38], leading to death in about three-quarter of them and requiring liver transplantation. The age-related difference in the clinical outcome of acute HBV infection is striking[39]. In fact, more than 95% of adult patients spontaneously recover and develop a long-lasting immunological protection against reinfection, provided by seroconversion to hepatitis B surface antibody (anti-HBs) and by cellular immunity, while only 2%-5% progresses to chronicity[40]; instead, 90% of new-borns and 30% of children aged 1-5 years progresses to chronicity[41]. The difference in the outcome between children and adults is based on the degree of reactivity of the cell‐mediated immunity, recognized as the true engine for eliminating HBV infection, low in new-borns and children and normal or high in teenagers and adults[42]. Risk factors for a more severe clinical course have been recognized in being a young adult or of female sex, in coinfection with hepatitis D virus (HDV), hepatitis C virus (HCV) or human immunodeficiency virus (HIV), in alcohol abuse and in intravenous drug use[43-53].

Once a patient has recovered and serum HBsAg cleared, a residual HBV replication persists, as evidenced by the detection of small amount of HBV-DNA inside the hepatocytes, a virologic condition named occult B infection[54-63].

Depending on the entity of HBV replication and on the effectiveness of the immune-response, chronic infection has a variable clinical presentation broadly grouped in either an asymptomatic stable HBsAg carriage, chronic hepatitis or liver cirrhosis with or without HCC[23,64,65]. Patients with chronic hepatitis progress to cirrhosis at a rate of 1%-5% per year[66]; and, in turn, HBV cirrhotic patients develop HCC at a median rate of about 3.7% per year[24,67-70].

The wide spread of HBV infection, its frequent evolution into chronicity with the possibility of developing liver cirrhosis and HCC and its progression to death in patients who do not undergo a successful liver transplantation have called for extensive HBV vaccination campaigns and effective therapeutic measures.

USE OF HBV VACCINATION IN REDUCING THE SPREAD OF HBV INFECTION

Introduced in 1982, HBV vaccination is the most effective measure to prevent HBV infection[71]. One dose of the currently used HBV vaccine contains 5 μg of recombinant HBsAg produced in in yeast Saccharomyces cerevisiae with recombinant DNA technology and adsorbed on amorphous aluminium sulphate hydroxyphosphate. Hepatitis B vaccine is given as a three-dose series. Post-vaccination testing is required, and a person with suboptimal response (serum titters of antibody to HBsAg < 10 mIU/mL), like immunocompromised persons and those with advanced renal disease[71], should receive a fourth dose or be revaccinated[71-75]. HBV vaccination provides a protective production of antibody to HBsAg > 10 mIU/mL in about 95% of subjects and is more effective in children and young adults than in adults over 40. In adults, about 90% reach anti-HBs protective levels, and females respond to HBV vaccine better than males[76,77]. It has also been documented that vaccine induced anti HBV immunity lasts at least 3 decades[78-81] and is presumably life-long.

HBV vaccination had been initially recommended for infants born to HBV-infected mothers and for adults at risk for acquiring HBV infection (sexual partners or household contacts of HBsAg-positive persons, subjects with more than one sexual partner, males having sex with males; injection drugs users; incarcerated persons; health care workers and public safety employees at risk for exposure to blood or blood-contaminated body fluids; adults with diabetes mellitus; persons with advanced renal disease, persons with chronic liver disease not HBV-related, pregnant women who are at risk during pregnancy, HIV-infected persons; international travellers to regions with high or intermediate levels of HBV endemicity and any adult seeking protection from HBV infection)[71-73]. HBV vaccination offered to young or adult subjects at risk of infection has not been particularly effective, since it is estimated that only 20%-30% of those in need have accepted vaccination, and, consequently, no evident reduction in HBV endemicity has been obtained. Worthy of mention, the prevalence of acceptance of HBV vaccination in healthcare workers (HCWs) ranges from 15% in African countries to nearly 75% in the United States[82-87]. In addition, half of HBV vaccinated subjects completed the vaccination schedule, resulting in a lower production of anti HBs and, consequently, in a risk of lower level and lower duration of protection. Several reasons contribute to the poor acceptance of a necessary vaccination, like little information on the usefulness or effectiveness of the vaccine, poor confidence in its effectiveness, fear of adverse reactions, lack of availability and cost of vaccine in some countries[88-91]. That being the case, countless decades would have been necessary to reach the worldwide eradication of HBV infection.

A more effective vaccination strategy was therefore chosen in most countries. The universal vaccination of all new-born babies has shown beneficial effect wherever it has been correctly applied, with a clear reduction of the levels of HBV endemicity. Worthy of mention, prior to the introduction of the national HBV vaccination program in 1984, approximately 15%-20% of the Taiwanese adult population were HBsAg positive[92,93]. The effectiveness of this program was demonstrated by the significant decrease in the incidence rate of HBV chronic carriers and the rate of mother-to-child HBV vertical transmission[94-98]. An example of this favourable effect is the strong decrease in the rate of HBsAg positivity in university students of this country, which was decreased from 9.7% in those born before 1974 to less than 1% in those born after 1992[99].

After an 8-year application of universal HBV vaccination of new-borns in Saudi Arabia, the HBsAg prevalence in children aged 1-12 years dropped from 6.7% in 1989 to 0.3% in 1997[100]. In Gambia, a clear reduction in newly acquired HBV infections, HBsAg carrier rate and HBV-related mortality was observed 14 years after the introduction of HBV vaccination in children[101]. Also, in Alaska, the implementation of HBV vaccination induced a decrease in the HBsAg carrier rate[102].

The impressive reduction in HBV endemicity in countries where universal vaccination against HBV has been applied is in stark contrast to the persistence of high HBV endemicity persisting in developing countries where HBV vaccination programs have been poorly applied. An example of this contrast was recently observed by us in a cohort of migrants who came from countries of sub-Saharan western Africa to Europe. In this cohort, migrants born in western African countries where HBV vaccination has been not sufficiently applied showed an HBsAg positivity ranging from 9.7% to 22.5%, whereas those born in Nigeria showed the beneficial effects of a universal HBV vaccination of new-borns well applied from 2 decades. Those from Nigeria had a global rate of HBsAg positivity of 4.1% and age-related rates of 3.5% in subjects less than 25 years, 4.1% in those aged 26-40 years and 17.9% in those aged over 41, a cohort effect underscoring a tendency of HBV endemicity towards reduction.

Concluding on this point, there remains much to be done to get a proper extended application of all the possible prophylaxis measures aimed at reaching the eradication of HBV infection. Firstly, HBV universal vaccination programs of new-born babies should be extensively applied and never discontinued in all world countries. Secondly, extensive information campaigns will have to be undertaken so that people at risk of HBV infection may receive instructions on how this infection spreads and how to prevent it and then be encouraged to undergo screening and, if exposed to infection, to HBV vaccination[103]. Thirdly, a permanent program of screening and vaccination of migrants from areas of intermediate or high endemicity must be applied in all host nations. These remedies, however, will not be enough as there are, as of now, some hundreds of millions of infected subjects able to transmit the infection worldwide.

Mainly due to individual factors (e.g., immunogenetic conditions, advanced age, obesity, smoking or chronic diseases such as celiac disease, diabetes, HIV infection, advanced kidney disease, autoimmune diseases), 5%-10% of the adult population does not respond or responds insufficiently to anti-HBV vaccine (anti-HBs titres < 10 mIU / mL). For non-responders, the pathway to improve the immunogenicity of the vaccine adjuvant has been followed and an oligonucleotide of the cytosine phospho-guanosine, a Toll-like 9 agonist receptor potent stimulator of the vertebrate innate immune system, has been used as an adjuvant for a recombinant two-dose hepatitis B vaccine (administered at wk 0 and 4). Recently approved for use in adults, initial data have shown a higher percentage of protected subjects compared to alum-adjuvanted vaccines[71,73,74,79,81].

USE OF THE ANALOGOUS NUCLEOS(T)IDES IN ABOLISHING THE INFECTIVITY OF HBV CHRONIC CARRIERS

The pharmacological suppression of HBV replication in HBV chronic carriers is another opportunity for health authorities to undertake an effective path towards the eradication of HBV infection. Although a sustained eradication of intrahepatic covalent closed circular DNA (cccDNA) as well as integrated cccDNA is currently not feasible, long term suppression of viral replication with HBV DNA serum clearance may be easily obtained with long-term administration, maybe life-long, of high genetic barrier to resistance nucleos(t)ide analogues tenofovir disoproxil fumarate (TDF), entecavir (ETV) or tenofovir alafenamide (TAF). These drugs have improved the outcomes of HBV-related chronic hepatitis by lowering the rate of transition to liver cirrhosis and reducing the risk of HCC development, but the clearance of serum HBsAg is only achieved in a small portion of treated patients[104].

Treatment with interferon in its pegylated form (PEG-IFNα), extensively used as monotherapy in the past, will become obsolete because of its poor efficacy and of the frequent occurrence of badly endured and sometimes severe adverse reactions during long-term treatment. In HBsAg/HBeAg positive patients, the seroconversion to anti-HBe was obtained only in 29%-32% of patients after 1-year PEG-IFN treatment and to anti-HBS only in 3%-5%[105,106]. In HBeAg-negative patients, a favourable response with stable normalization of serum alanine aminotransferase and serum HBV DNA reduced below 400 copies/ml was obtained only in 15% of cases treated for 12 mo, with HBsAg loss in about 4%[107].

The first generation nucleos(t)ide analogues lamivudine, adefovir and telbivudine have become obsolete because their low genetic barrier is unable to prevent the formation of viral resistant strains. In addition, the sequential use of ETV to treat lamivudine resistance increases the risk of ETV resistance. A switch to tenofovir has been demonstrated to be effective in patients with confirmed lamivudine, telbivudine, adefovir or ETV resistance.

Long-term therapy with nucleos(t)ide analogues with high genetic barrier to viral resistance (ETV, TDF) is required to obtain a stable suppression of HBV replication[108]. These drugs are highly recommended as first-line therapy because HBV resistance is a rare event in nucleoside-naïve patients during a 5-year treatment with ETV and no resistance with a 7-year treatment with TDF[109]. Histological evaluation after a long-term treatment with ETV or TDF showed an impressive improvement in liver necroinflammation and fibrosis scores in most patients[110,111]. In addition, compared with controls, a significant reduction in the incidence of HCC has been observed in HBsAg positive cirrhotic patients undergoing a long-term therapy with ETV or TDF[112-117].

A 5-year ETV treatment induced HBV DNA serum clearance in more than 90% of HBeAg positive patients with chronic hepatitis[118], and a similar rate was obtained with TDF[109]. Seroconversion to anti-HBe was obtained in about 20% of patients after 1-year of ETV or TDF therapy[118,119].

HBsAg loss occurred in 11.8% of HBeAg-positive patients after 7 years of TDF treatment, more frequently in Caucasians than in Asians[109]. Consolidation therapy is recommended after the loss of HBsAg[120].

TAF is an oral second-generation prodrug of TDF with a high genetic barrier to viral resistance. Although TDF and TAF show similar rates of cure[121-123], switching from TDF to TAF provides improvement in bone density and renal function, a favourable effect in a log-term treatment[124,125].

Currently, new drugs are being tested that are aimed at eradicating chronic HBV infection: HBV entry inhibitors, capsid inhibitors, short interfering RNA and targeting cccDNA[126-132]. Briefly, a blockade of HBV entry in experimental cells was obtained using a pre-S acylated peptide of the large HBsAg protein, and further studies on chronic HBV and HDV infection are ongoing[133]. In some experimental models it has been shown that the AB-423 capsid inhibitor is able to direct erroneously capsid assembly to inhibit pregenomic RNA encapsidation and consequently to reduce cccDNA concentrations in liver cells[128-138].

Several antisense short interfering RNAs targeted towards HBsAg transcripts have achieved mRNA degradation in pre-clinical or clinical evaluation. Among these, ARC 520 is of interest. It is directed towards HBV RNA transcripts and reduces the synthesis of HBV DNA and viral proteins[138]. Regarding cccDNA targeting, several DNA cleavage enzymes have been tested in experimental models and preliminary data seem encouraging[132].

In addition, experimental studies are underway to develop new drugs or therapeutic vaccines that may regulate the immune-system dysfunction in hepatitis B[139-150].

CONCLUSION

The universal HBV vaccination of new-borns has produced significant results in countries where, responding to the demand of the World Health Organization, it has been correctly applied. Nevertheless, in several developing countries, socio-economic reasons have impaired the application of HBV vaccination, delaying the achievement of a global reduction in HBV endemicity. Also, the vaccination on a voluntary basis of adults at risk of HBV infection has failed to contribute to the project of a progressive reduction of the levels of endemicity. This being the case, we believe that an additional 2-3 decades of extensive application of the universal HBV vaccination will be needed to achieve a substantial reduction of HBV spread.

Another aspect of the ambitious project to eradicate HBV infection is the extensive information campaign on how to acquire the infection and how to prevent it. So far, information campaigns have been occasional and limited to certain risk categories in many countries and therefore have not substantially contributed to the reduction of HBV endemicity.

Good news comes from the therapeutic management of chronic hepatitis B. In fact, the new nucleos(t)ide analogues (ETV, TDF and TAF) that effectively suppress HBV replication may be used for a very long period with no risk to induce viral resistance. In addition, new drugs for the complete eradication of HBV replication, thus ensuring a complete cure, are currently being developed and will be very likely be available in the next decade.

The set of data reported here suggests that prolonged extended application of the universal HBV vaccination of new-borns and the utilization of the high genetic barrier to resistance nucleos(t)ide analogues and, in the near future, of some drugs today in experimental development will allow for, in the next 2-3 decades, a strong reduction of HBV endemicity and possibly the eradication of HBV infection.

Footnotes

Manuscript source: Invited manuscript

Specialty type: Infectious Diseases

Country of origin: Italy

Peer-review report classification

Grade A (Excellent): 0

Grade B (Very good): B, B

Grade C (Good): C

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Abushady EAE, Farshadpour F, Gencdal G S-Editor: Cui LJ L-Editor: Filipodia E-Editor: Wu YXJ

References
1.  World Health Organization. Global Hepatitis Report, 2017. Geneva: World Health Organization; 2017.  Available from: https://apps.who.int/iris/bitstream/handle/10665/255016/9789241565455-eng.pdf;sequence=1.  [PubMed]  [DOI]
2.  World Health Organization Guidelines for the Prevention, Care and Treatment of Persons with Chronic Hepatitis B Virus Infection. World Health Organization 2015. 2019;[cited 2019 May 17] Available from: http://www.worldhepatitisalliance.org/sites/default/files/resources/documents/Hep%20B%20Guidelines.pdf.  [PubMed]  [DOI]
3.  World Health Organization. Disease burden and mortality estimates. Geneva: World Health Organization; 2016.  Available from: https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html.  [PubMed]  [DOI]
4.  Zehender G, Ebranati E, Gabanelli E, Sorrentino C, Lo Presti A, Tanzi E, Ciccozzi M, Galli M. Enigmatic origin of hepatitis B virus: an ancient travelling companion or a recent encounter? World J Gastroenterol. 2014;20:7622-7634.  [PubMed]  [DOI]
5.  Croagh CM, Desmond PV, Bell SJ. Genotypes and viral variants in chronic hepatitis B: A review of epidemiology and clinical relevance. World J Hepatol. 2015;7:289-303.  [PubMed]  [DOI]
6.  European Commission. Migration and Home Affairs.  Available from: http://ec.europa.eu/dgs/home-affairs/what-we-do/networks/european_migration_network/reports/docs/annual-policy/2014/00.emn_annual_report_on_immigration_and_asylum_synthesis_report.pdf.  [PubMed]  [DOI]
7.  Paraskevis D, Magiorkinis G, Magiorkinis E, Ho SY, Belshaw R, Allain JP, Hatzakis A. Dating the origin and dispersal of hepatitis B virus infection in humans and primates. Hepatology. 2013;57:908-916.  [PubMed]  [DOI]
8.  Lai A, Sagnelli C, Presti AL, Cella E, Angeletti S, Spoto S, Costantino S, Sagnelli E, Ciccozzi M. What is changed in HBV molecular epidemiology in Italy? J Med Virol. 2018;90:786-795.  [PubMed]  [DOI]
9.  Zehender G, De Maddalena C, Giambelli C, Milazzo L, Schiavini M, Bruno R, Tanzi E, Galli M. Different evolutionary rates and epidemic growth of hepatitis B virus genotypes A and D. Virology. 2008;380:84-90.  [PubMed]  [DOI]
10.  Norder H, Couroucé AM, Coursaget P, Echevarria JM, Lee SD, Mushahwar IK, Robertson BH, Locarnini S, Magnius LO. Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology. 2004;47:289-309.  [PubMed]  [DOI]
11.  Okamoto H, Tsuda F, Sakugawa H, Sastrosoewignjo RI, Imai M, Miyakawa Y, Mayumi M. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol. 1988;69:2575-2583.  [PubMed]  [DOI]
12.  Amini-Bavil-Olyaee S, Sarrami-Forooshani R, Mahboudi F, Sabahi F, Adeli A, Noorinayer B, Azizi M, Reza Zali M. Genotype characterization and phylogenetic analysis of hepatitis B virus isolates from Iranian patients. J Med Virol. 2005;75:227-234.  [PubMed]  [DOI]
13.  Arauz-Ruiz P, Norder H, Robertson BH, Magnius LO. Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J Gen Virol. 2002;83:2059-2073.  [PubMed]  [DOI]
14.  Coppola N, Masiello A, Tonziello G, Pisapia R, Pisaturo M, Sagnelli C, Messina V, Iodice V, Sagnelli E. Factors affecting the changes in molecular epidemiology of acute hepatitis B in a Southern Italian area. J Viral Hepat. 2010;17:493-500.  [PubMed]  [DOI]
15.  Coppola N, Sagnelli C, Pisaturo M, Minichini C, Messina V, Alessio L, Starace M, Signoriello G, Gentile I, Filippini P, Sagnelli E. Clinical and virological characteristics associated with severe acute hepatitis B. Clin Microbiol Infect. 2014;20:O991-O997.  [PubMed]  [DOI]
16.  Coppola N, Tonziello G, Colombatto P, Pisaturo M, Messina V, Moriconi F, Alessio L, Sagnelli C, Cavallone D, Brunetto M, Sagnelli E. Lamivudine-resistant HBV strain rtM204V/I in acute hepatitis B. J Infect. 2013;67:322-328.  [PubMed]  [DOI]
17.  Forbi JC, Vaughan G, Purdy MA, Campo DS, Xia GL, Ganova-Raeva LM, Ramachandran S, Thai H, Khudyakov YE. Epidemic history and evolutionary dynamics of hepatitis B virus infection in two remote communities in rural Nigeria. PLoS One. 2010;5:e11615.  [PubMed]  [DOI]
18.  Sagnelli C, Ciccozzi M, Pisaturo M, Lo Presti A, Cella E, Coppola N, Sagnelli E. The impact of viral molecular diversity on the clinical presentation and outcome of acute hepatitis B in Italy. New Microbiol. 2015;38:137-147.  [PubMed]  [DOI]
19.  Sagnelli E, Stroffolini T, Mele A, Imparato M, Sagnelli C, Coppola N, Almasio PL. Impact of comorbidities on the severity of chronic hepatitis B at presentation. World J Gastroenterol. 2012;18:1616-1621.  [PubMed]  [DOI]
20.  Sagnelli E, Taliani G, Castelli F, Bartolozzi D, Cacopardo B, Armignacco O, Scotto G, Coppola N, Stroffolini T, Sagnelli C. Chronic HBV infection in pregnant immigrants: a multicenter study of the Italian Society of Infectious and Tropical Diseases. New Microbiol. 2016;39:114-118.  [PubMed]  [DOI]
21.  Calogero A, Sagnelli E, Creta M, Angeletti S, Peluso G, Incollingo P, Candida M, Minieri G, Carlomagno N, Dodaro CA, Ciccozzi M, Sagnelli C. Eradication of HCV Infection with the Direct-Acting Antiviral Therapy in Renal Allograft Recipients. Biomed Res Int. 2019;2019:4674560.  [PubMed]  [DOI]
22.  Stroffolini T, Sagnelli E, Sagnelli C, Morisco F, Babudieri S, Furlan C, Pirisi M, Russello M, Smedile A, Pisaturo M, Almasio PL. Decreasing role of HCV and HBV infections as aetiological factors of hepatocellular carcinoma in Italy. Infection. 2019;.  [PubMed]  [DOI]
23.  Sagnelli E, Sagnelli C, Pisaturo M, Macera M, Coppola N. Epidemiology of acute and chronic hepatitis B and delta over the last 5 decades in Italy. World J Gastroenterol. 2014;20:7635-7643.  [PubMed]  [DOI]
24.  Sagnelli C, Ciccozzi M, Coppola N, Minichini C, Lo Presti A, Starace M, Alessio L, Macera M, Cella E, Gualdieri L, Caprio N, Pasquale G, Sagnelli E. Molecular diversity in irregular or refugee immigrant patients with HBV-genotype-E infection living in the metropolitan area of Naples. J Med Virol. 2017;89:1015-1024.  [PubMed]  [DOI]
25.  El-Hamad I, Pezzoli MC, Chiari E, Scarcella C, Vassallo F, Puoti M, Ciccaglione A, Ciccozzi M, Scalzini A, Castelli F; ad-hoc Working Group for Hepatitis B in migrants. Point-of-care screening, prevalence, and risk factors for hepatitis B infection among 3,728 mainly undocumented migrants from non-EU countries in northern Italy. J Travel Med. 2015;22:78-86.  [PubMed]  [DOI]
26.  Coppola N, Alessio L, Gualdieri L, Pisaturo M, Sagnelli C, Caprio N, Maffei R, Starace M, Angelillo IF, Pasquale G, Sagnelli E. Hepatitis B virus, hepatitis C virus and human immunodeficiency virus infection in undocumented migrants and refugees in southern Italy, January 2012 to June 2013. Euro Surveill. 2015;20:30009.  [PubMed]  [DOI]
27.  Coppola N, Alessio L, Gualdieri L, Pisaturo M, Sagnelli C, Minichini C, Di Caprio G, Starace M, Onorato L, Signoriello G, Macera M, Angelillo IF, Pasquale G, Sagnelli E. Hepatitis B virus infection in undocumented immigrants and refugees in Southern Italy: demographic, virological, and clinical features. Infect Dis Poverty. 2017;6:33.  [PubMed]  [DOI]
28.  Sagnelli E, Alessio L, Sagnelli C. Hepatitis B Virus Genotypes, Epidemiological Characteristics, and Clinical Presentation of HBV Chronic Infection in Immigrant Populations Living in Southern Italy. Hepat Mon. 2017;17:e13260.  [PubMed]  [DOI]
29.  Coppola N, Alessio L, Pisaturo M, Macera M, Sagnelli C, Zampino R, Sagnelli E. Hepatitis B virus infection in immigrant populations. World J Hepatol. 2015;7:2955-2961.  [PubMed]  [DOI]
30.  Zampino R, Capoluongo N, Boemio A, Macera M, Vitrone M, Adinolfi LE, Filippini P, Sagnelli E, Sagnelli C, Durante-Mangoni E, Coppola N. Effect of a Cooperation Strategy between Primary Care Physicians and Hospital Liver Units on HBV Care in Campania, Italy. Can J Gastroenterol Hepatol. 2018;2018:5670374.  [PubMed]  [DOI]
31.  Sagnelli C, Ciccozzi M, Pisaturo M, Zehender G, Lo Presti A, Alessio L, Starace M, Lovero D, Sagnelli E, Coppola N. Molecular epidemiology of hepatitis B virus genotypes circulating in acute hepatitis B patients in the Campania region. J Med Virol. 2014;86:1683-1693.  [PubMed]  [DOI]
32.  Sagnelli E, Starnini G, Sagnelli C, Monarca R, Zumbo G, Pontali E, Gabbuti A, Carbonara S, Iardino R, Armignacco O, Babudieri S; Simspe Group. Blood born viral infections, sexually transmitted diseases and latent tuberculosis in italian prisons: a preliminary report of a large multicenter study. Eur Rev Med Pharmacol Sci. 2012;16:2142-2146.  [PubMed]  [DOI]
33.  Tosti ME, Alfonsi V, Lacorte E, Mele A, Galli C, Zanetti AR, Romanò L; SEIEVA Collaborating Group. Acute Hepatitis B After the Implementation of Universal Vaccination in Italy: Results From 22 Years of Surveillance (1993-2014). Clin Infect Dis. 2016;62:1412-1418.  [PubMed]  [DOI]
34.  Daniels D, Grytdal S, Wasley A; Centers for Disease Control and Prevention (CDC). Surveillance for acute viral hepatitis - United States, 2007. MMWR Surveill Summ. 2009;58:1.  [PubMed]  [DOI]
35.  Chen A, Ho YS, Tu YC, Shieh SD, Cheng TC. Hepatitis B virus-associated membranous glomerulonephropathy. J Clin Gastroenterol. 1988;10:243-246.  [PubMed]  [DOI]
36.  Trepo C, Guillevin L. Polyarteritis nodosa and extrahepatic manifestations of HBV infection: the case against autoimmune intervention in pathogenesis. J Autoimmun. 2001;16:269-274.  [PubMed]  [DOI]
37.  Berk PD, Popper H. Fulminant hepatic failure. Am J Gastroenterol. 1978;69:349-400.  [PubMed]  [DOI]
38.  Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol. 2005;34 Suppl 1:S1-S3.  [PubMed]  [DOI]
39.  Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, Tseng HT, Wu D, Lu X, Wang HY, Chen PJ, Chen DS. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A. 2015;112:2175-2180.  [PubMed]  [DOI]
40.  Taylor BC, Yuan JM, Shamliyan TA, Shaukat A, Kane RL, Wilt TJ. Clinical outcomes in adults with chronic hepatitis B in association with patient and viral characteristics: A systematic review of evidence. Hepatology. 2009;49:S85-S95.  [PubMed]  [DOI]
41.  Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49:S13-S21.  [PubMed]  [DOI]
42.  Liaw YF, Chu CM. Hepatitis B virus infection. Lancet. 2009;373:582-592.  [PubMed]  [DOI]
43.  Garfein RS, Bower WA, Loney CM, Hutin YJ, Xia GL, Jawanda J, Groom AV, Nainan OV, Murphy JS, Bell BP. Factors associated with fulminant liver failure during an outbreak among injection drug users with acute hepatitis B. Hepatology. 2004;40:865-873.  [PubMed]  [DOI]
44.  Aoki M. [Maintenance of the posture and synergic reflex]. Nihon Rinsho. 1975;33:2978-2984.  [PubMed]  [DOI]
45.  Stroffolini T, Sagnelli E, Sagnelli C, Morisco F, Babudieri S, Furlan C, Pirisi M, Russello M, Smedile A, Pisaturo M, Almasio PL. Characteristics and Changes over Time of Alcohol-Related Chronic Liver Diseases in Italy. Can J Gastroenterol Hepatol. 2018;2018:9151820.  [PubMed]  [DOI]
46.  Stroffolini T, Sagnelli E, Andriulli A, Colloredo G, Furlan C, Gaeta GB, Morisco F, Pirisi M, Rosina F, Sagnelli C, Smedile A, Almasio PL; EPACRON study group. Sex difference in the interaction of alcohol intake, hepatitis B virus, and hepatitis C virus on the risk of cirrhosis. PLoS One. 2017;12:e0185710.  [PubMed]  [DOI]
47.  Sagnelli E, Sagnelli C, Macera M, Pisaturo M, Coppola N. An update on the treatment options for HBV/HCV coinfection. Expert Opin Pharmacother. 2017;18:1691-1702.  [PubMed]  [DOI]
48.  Sagnelli C, Ciccozzi M, Alessio L, Cella E, Gualdieri L, Pisaturo M, Minichini C, Di Caprio G, Starace M, Onorato L, Capoprese M, Occhiello L, Angeletti S, Scotto G, Macera M, Sagnelli E, Coppola N. HBV molecular epidemiology and clinical condition of immigrants living in Italy. Infection. 2018;46:523-531.  [PubMed]  [DOI]
49.  Ciccozzi M, Lai A, Zehender G, Borsetti A, Cella E, Ciotti M, Sagnelli E, Sagnelli C, Angeletti S. The phylogenetic approach for viral infectious disease evolution and epidemiology: an updating review. J Med Virol. 2019;.  [PubMed]  [DOI]
50.  Stroffolini T, Sagnelli E, Sagnelli C, Smedile A, Furlan C, Morisco F, Coppola N, Andriulli A, Almasio PL. The burden of HBV infection in HCV patients in Italy and the risk of reactivation under DAA therapy. Dig Liver Dis. 2019;51:434-437.  [PubMed]  [DOI]
51.  Stroffolini T, Sagnelli E, Sagnelli C, Russello M, De Luca M, Rosina F, Cacopardo B, Brancaccio G, Furlan C, Gaeta GB, Licata A, Almasio PL; behalf of EPACRON study group. Hepatitis delta infection in Italian patients: towards the end of the story? Infection. 2017;45:277-281.  [PubMed]  [DOI]
52.  Aragri M, Alteri C, Battisti A, Di Carlo D, Minichini C, Sagnelli C, Bellocchi MC, Pisaturo MA, Starace M, Armenia D, Carioti L, Pollicita M, Salpini R, Sagnelli E, Perno CF, Coppola N, Svicher V. Multiple Hepatitis B Virus (HBV) Quasispecies and Immune-Escape Mutations Are Present in HBV Surface Antigen and Reverse Transcriptase of Patients With Acute Hepatitis B. J Infect Dis. 2016;213:1897-1905.  [PubMed]  [DOI]
53.  Coppola N, Onorato L, Minichini C, Di Caprio G, Starace M, Sagnelli C, Sagnelli E. Clinical significance of hepatitis B surface antigen mutants. World J Hepatol. 2015;7:2729-2739.  [PubMed]  [DOI]
54.  Pollicino T, Raimondo G. Occult hepatitis B infection. J Hepatol. 2014;61:688-689.  [PubMed]  [DOI]
55.  Sagnelli C, Macera M, Pisaturo M, Zampino R, Coppola M, Sagnelli E. Occult HBV infection in the oncohematological setting. Infection. 2016;44:575-582.  [PubMed]  [DOI]
56.  Coppola N, Onorato L, Pisaturo M, Macera M, Sagnelli C, Martini S, Sagnelli E. Role of occult hepatitis B virus infection in chronic hepatitis C. World J Gastroenterol. 2015;21:11931-11940.  [PubMed]  [DOI]
57.  Squadrito G, Spinella R, Raimondo G. The clinical significance of occult HBV infection. Ann Gastroenterol. 2014;27:15-19.  [PubMed]  [DOI]
58.  Raimondo G, Caccamo G, Filomia R, Pollicino T. Occult HBV infection. Semin Immunopathol. 2013;35:39-52.  [PubMed]  [DOI]
59.  Sagnelli E, Pisaturo M, Martini S, Filippini P, Sagnelli C, Coppola N. Clinical impact of occult hepatitis B virus infection in immunosuppressed patients. World J Hepatol. 2014;6:384-393.  [PubMed]  [DOI]
60.  Tonziello G, Pisaturo M, Sica A, Ferrara MG, Sagnelli C, Pasquale G, Sagnelli E, Guastafierro S, Coppola N. Transient reactivation of occult hepatitis B virus infection despite lamivudine prophylaxis in a patient treated for non-Hodgkin lymphoma. Infection. 2013;41:225-229.  [PubMed]  [DOI]
61.  Coppola N, Tonziello G, Pisaturo M, Messina V, Guastafierro S, Fiore M, Iodice V, Sagnelli C, Stanzione M, Capoluongo N, Pasquale G, Sagnelli E. Reactivation of overt and occult hepatitis B infection in various immunosuppressive settings. J Med Virol. 2011;83:1909-1916.  [PubMed]  [DOI]
62.  Sagnelli E, Imparato M, Coppola N, Pisapia R, Sagnelli C, Messina V, Piai G, Stanzione M, Bruno M, Moggio G, Caprio N, Pasquale G, Del Vecchio Blanco C. Diagnosis and clinical impact of occult hepatitis B infection in patients with biopsy proven chronic hepatitis C: a multicenter study. J Med Virol. 2008;80:1547-1553.  [PubMed]  [DOI]
63.  Filippini P, Coppola N, Pisapia R, Scolastico C, Marrocco C, Zaccariello A, Nacca C, Sagnelli C, De Stefano G, Ferraro T, De Stefano C, Sagnelli E. Impact of occult hepatitis B virus infection in HIV patients naive for antiretroviral therapy. AIDS. 2006;20:1253-1260.  [PubMed]  [DOI]
64.  McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology. 2009;49:S45-S55.  [PubMed]  [DOI]
65.  Iloeje UH, Yang HI, Su J, Jen CL, You SL, Chen CJ; Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer-In HBV (the REVEAL-HBV) Study Group. Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology. 2006;130:678-686.  [PubMed]  [DOI]
66.  El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264-1273.e1.  [PubMed]  [DOI]
67.  Sagnelli E, Potenza N, Onorato L, Sagnelli C, Coppola N, Russo A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol. 2018;10:558-570.  [PubMed]  [DOI]
68.  Mosca N, Castiello F, Coppola N, Trotta MC, Sagnelli C, Pisaturo M, Sagnelli E, Russo A, Potenza N. Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochem Biophys Res Commun. 2014;449:141-145.  [PubMed]  [DOI]
69.  Coppola N, Potenza N, Pisaturo M, Mosca N, Tonziello G, Signoriello G, Messina V, Sagnelli C, Russo A, Sagnelli E. Liver microRNA hsa-miR-125a-5p in HBV chronic infection: correlation with HBV replication and disease progression. PLoS One. 2013;8:e65336.  [PubMed]  [DOI]
70.  Coppola N, Onorato L, Sagnelli C, Sagnelli E, Angelillo IF. Association between anti-HBc positivity and hepatocellular carcinoma in HBsAg-negative subjects with chronic liver disease: A meta-analysis. Medicine (Baltimore). 2016;95:e4311.  [PubMed]  [DOI]
71.  Mast EE, Weinbaum CM, Fiore AE, Alter MJ, Bell BP, Finelli L, Rodewald LE, Douglas JM, Janssen RS, Ward JW; Advisory Committee on Immunization Practices (ACIP) Centers for Disease Control and Prevention (CDC). A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: immunization of adults. MMWR Recomm Rep. 2006;55:1-33; quiz CE1-4.  [PubMed]  [DOI]
72.  Kim DK, Riley LE, Harriman KH, Hunter P, Bridges CB; Advisory Committee on Immunization Practices. Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2017. Ann Intern Med. 2017;166:209-219.  [PubMed]  [DOI]
73.  Centers for Disease Control and Prevention (CDC). Use of hepatitis B vaccination for adults with diabetes mellitus: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep. 2011;60:1709-1711.  [PubMed]  [DOI]
74.  Centers for Disease Control and Prevention (CDC). Guidelines for Vaccinating Kidney Dialysis Patients and Patients with Chronic Kidney Disease 2015.  Available from: www.cdc.gov/vaccines/pubs/down loads/dialysis-guide-2012.pdf.  [PubMed]  [DOI]
75.  Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, Bousvaros A, Dhanireddy S, Sung L, Keyserling H, Kang I; Infectious Diseases Society of America. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58:e44-100.  [PubMed]  [DOI]
76.  Assad S, Francis A. Over a decade of experience with a yeast recombinant hepatitis B vaccine. Vaccine. 1999;18:57-67.  [PubMed]  [DOI]
77.  Venters C, Graham W, Cassidy W. Recombivax-HB: perspectives past, present and future. Expert Rev Vaccines. 2004;3:119-129.  [PubMed]  [DOI]
78.  McMahon BJ, Bulkow LR, Singleton RJ, Williams J, Snowball M, Homan C, Parkinson AJ. Elimination of hepatocellular carcinoma and acute hepatitis B in children 25 years after a hepatitis B newborn and catch-up immunization program. Hepatology. 2011;54:801-807.  [PubMed]  [DOI]
79.  Bruce MG, Bruden D, Hurlburt D, Zanis C, Thompson G, Rea L, Toomey M, Townshend-Bulson L, Rudolph K, Bulkow L, Spradling PR, Baum R, Hennessy T, McMahon BJ. Antibody Levels and Protection After Hepatitis B Vaccine: Results of a 30-Year Follow-up Study and Response to a Booster Dose. J Infect Dis. 2016;214:16-22.  [PubMed]  [DOI]
80.  Sagnelli E, Stroffolini T, Sagnelli C, Morisco F, Coppola N, Smedile A, Pisaturo M, Colloredo G, Babudieri S, Licata A, Brancaccio G, Andriulli A, Almasio PL, Gaeta GB; EPACRON study group. Influence of universal HBV vaccination on chronic HBV infection in Italy: Results of a cross-sectional multicenter study. J Med Virol. 2017;89:2138-2143.  [PubMed]  [DOI]
81.  Simons BC, Spradling PR, Bruden DJ, Zanis C, Case S, Choromanski TL, Apodaca M, Brogdon HD, Dwyer G, Snowball M, Negus S, Bruce MG, Morishima C, Knall C, McMahon BJ. A Longitudinal Hepatitis B Vaccine Cohort Demonstrates Long-lasting Hepatitis B Virus (HBV) Cellular Immunity Despite Loss of Antibody Against HBV Surface Antigen. J Infect Dis. 2016;214:273-280.  [PubMed]  [DOI]
82.  Grosso G, Mistretta A, Marventano S, Ferranti R, Mauro L, Cunsolo R, Proietti L, Malaguarnera M. Long-term persistence of seroprotection by hepatitis B vaccination in healthcare workers of southern Italy. Hepat Mon. 2012;12:e6025.  [PubMed]  [DOI]
83.  Morowatishaifabad MA, Zare Sakhvidi MJ, Gholianavval M, Masoudi Boroujeni D, Alavijeh MM. Predictors of Hepatitis B Preventive Behavioral Intentions in Healthcare Workers. Saf Health Work. 2015;6:139-142.  [PubMed]  [DOI]
84.  Maltezou HC, Gargalianos P, Nikolaidis P, Katerelos P, Tedoma N, Maltezos E, Lazanas M. Attitudes towards mandatory vaccination and vaccination coverage against vaccine-preventable diseases among health-care workers in tertiary-care hospitals. J Infect. 2012;64:319-324.  [PubMed]  [DOI]
85.  Singhal V, Bora D, Singh S. Prevalence of Hepatitis B virus infection in healthcare workers of a tertiary care centre in India and their vaccination status. J Vaccines Vaccin. 2011;2:2.  [PubMed]  [DOI]
86.  Galanakis E, D'Ancona F, Jansen A, Lopalco PL; VENICE (Vaccine European New Integrated Collaboration Effort) National Gatekeepers, Contact Points. The issue of mandatory vaccination for healthcare workers in Europe. Expert Rev Vaccines. 2014;13:277-283.  [PubMed]  [DOI]
87.  Abiola AO, Omoyeni OE, Akodu BA. Knowledge, attitude and practice of hepatitis B vaccination among health workers at the Lagos State accident and emergency centre, Toll-Gate, Alausa, Lagos State. West Afr J Med. 2013;32:257-262.  [PubMed]  [DOI]
88.  Doebbeling BN, Ferguson KJ, Kohout FJ. Predictors of hepatitis B vaccine acceptance in health care workers. Med Care. 1996;34:58-72.  [PubMed]  [DOI]
89.  Cohen C, Holmberg SD, McMahon BJ, Block JM, Brosgart CL, Gish RG, London WT, Block TM. Is chronic hepatitis B being undertreated in the United States? J Viral Hepat. 2011;18:377-383.  [PubMed]  [DOI]
90.  Weinbaum CM, Williams I, Mast EE, Wang SA, Finelli L, Wasley A, Neitzel SM, Ward JW; Centers for Disease Control and Prevention (CDC). Recommendations for identification and public health management of persons with chronic hepatitis B virus infection. MMWR Recomm Rep. 2008;57:1-20.  [PubMed]  [DOI]
91.  Williams WW, Lu PJ, O'Halloran A, Kim DK, Grohskopf LA, Pilishvili T, Skoff TH, Nelson NP, Harpaz R, Markowitz LE, Rodriguez-Lainz A, Fiebelkorn AP. Surveillance of Vaccination Coverage among Adult Populations - United States, 2015. MMWR Surveill Summ. 2017;66:1-28.  [PubMed]  [DOI]
92.  Gust ID. Immunisation against hepatitis B in Taiwan. Gut. 1996;38 Suppl 2:S67-S68.  [PubMed]  [DOI]
93.  Sung JL. Hepatitis B virus infection and its sequelae in Taiwan. Gastroenterol Jpn. 1984;19:363-366.  [PubMed]  [DOI]
94.  Ni YH, Chang MH, Huang LM, Chen HL, Hsu HY, Chiu TY, Tsai KS, Chen DS. Hepatitis B virus infection in children and adolescents in a hyperendemic area: 15 years after mass hepatitis B vaccination. Ann Intern Med. 2001;135:796-800.  [PubMed]  [DOI]
95.  Ni YH, Chang MH, Wu JF, Hsu HY, Chen HL, Chen DS. Minimization of hepatitis B infection by a 25-year universal vaccination program. J Hepatol. 2012;57:730-735.  [PubMed]  [DOI]
96.  Ni YH, Chang MH, Jan CF, Hsu HY, Chen HL, Wu JF, Chen DS. Continuing Decrease in Hepatitis B Virus Infection 30 Years After Initiation of Infant Vaccination Program in Taiwan. Clin Gastroenterol Hepatol. 2016;14:1324-1330.  [PubMed]  [DOI]
97.  Tsen YJ, Chang MH, Hsu HY, Lee CY, Sung JL, Chen DS. Seroprevalence of hepatitis B virus infection in children in Taipei, 1989: five years after a mass hepatitis B vaccination program. J Med Virol. 1991;34:96-99.  [PubMed]  [DOI]
98.  Su FH, Cheng SH, Li CY, Chen JD, Hsiao CY, Chien CC, Yang YC, Hung HH, Chu FY. Hepatitis B seroprevalence and anamnestic response amongst Taiwanese young adults with full vaccination in infancy, 20 years subsequent to national hepatitis B vaccination. Vaccine. 2007;25:8085-8090.  [PubMed]  [DOI]
99.  Hu YC, Yeh CC, Chen RY, Su CT, Wang WC, Bai CH, Chan CF, Su FH. Seroprevalence of hepatitis B virus in Taiwan 30 years after the commencement of the national vaccination program. PeerJ. 2018;6:e4297.  [PubMed]  [DOI]
100.  Al-Faleh FZ, Al-Jeffri M, Ramia S, Al-Rashed R, Arif M, Rezeig M, Al-Toraif I, Bakhsh M, Mishkkhas A, Makki O, Al-Freihi H, Mirdad S, AlJuma A, Yasin T, Al-Swailem A, Ayoola A. Seroepidemiology of hepatitis B virus infection in Saudi children 8 years after a mass hepatitis B vaccination programme. J Infect. 1999;38:167-170.  [PubMed]  [DOI]
101.  Whittle H, Jaffar S, Wansbrough M, Mendy M, Dumpis U, Collinson A, Hall A. Observational study of vaccine efficacy 14 years after trial of hepatitis B vaccination in Gambian children. BMJ. 2002;325:569.  [PubMed]  [DOI]
102.  Harpaz R, McMahon BJ, Margolis HS, Shapiro CN, Havron D, Carpenter G, Bulkow LR, Wainwright RB. Elimination of new chronic hepatitis B virus infections: results of the Alaska immunization program. J Infect Dis. 2000;181:413-418.  [PubMed]  [DOI]
103.  Rossi C, Schwartzman K, Oxlade O, Klein MB, Greenaway C. Hepatitis B screening and vaccination strategies for newly arrived adult Canadian immigrants and refugees: a cost-effectiveness analysis. PLoS One. 2013;8:e78548.  [PubMed]  [DOI]
104.  Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, Tanwandee T, Tao QM, Shue K, Keene ON, Dixon JS, Gray DF, Sabbat J; Cirrhosis Asian Lamivudine Multicentre Study Group. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med. 2004;351:1521-1531.  [PubMed]  [DOI]
105.  Lau GK, Piratvisuth T, Luo KX, Marcellin P, Thongsawat S, Cooksley G, Gane E, Fried MW, Chow WC, Paik SW, Chang WY, Berg T, Flisiak R, McCloud P, Pluck N; Peginterferon Alfa-2a HBeAg-Positive Chronic Hepatitis B Study Group. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005;352:2682-2695.  [PubMed]  [DOI]
106.  Janssen HL, van Zonneveld M, Senturk H, Zeuzem S, Akarca US, Cakaloglu Y, Simon C, So TM, Gerken G, de Man RA, Niesters HG, Zondervan P, Hansen B, Schalm SW; HBV 99-01 Study Group; Rotterdam Foundation for Liver Research. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial. Lancet. 2005;365:123-129.  [PubMed]  [DOI]
107.  Marcellin P, Lau GK, Bonino F, Farci P, Hadziyannis S, Jin R, Lu ZM, Piratvisuth T, Germanidis G, Yurdaydin C, Diago M, Gurel S, Lai MY, Button P, Pluck N; Peginterferon Alfa-2a HBeAg-Negative Chronic Hepatitis B Study Group. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004;351:1206-1217.  [PubMed]  [DOI]
108.  Seto WK, Lau EH, Wu JT, Hung IF, Leung WK, Cheung KS, Fung J, Lai CL, Yuen MF. Effects of nucleoside analogue prescription for hepatitis B on the incidence of liver cancer in Hong Kong: a territory-wide ecological study. Aliment Pharmacol Ther. 2017;45:501-509.  [PubMed]  [DOI]
109.  Buti M, Tsai N, Petersen J, Flisiak R, Gurel S, Krastev Z, Aguilar Schall R, Flaherty JF, Martins EB, Charuworn P, Kitrinos KM, Subramanian GM, Gane E, Marcellin P. Seven-year efficacy and safety of treatment with tenofovir disoproxil fumarate for chronic hepatitis B virus infection. Dig Dis Sci. 2015;60:1457-1464.  [PubMed]  [DOI]
110.  Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, Washington MK, Germanidis G, Flaherty JF, Aguilar Schall R, Bornstein JD, Kitrinos KM, Subramanian GM, McHutchison JG, Heathcote EJ. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381:468-475.  [PubMed]  [DOI]
111.  Maier M, Liebert UG, Wittekind C, Kaiser T, Berg T, Wiegand J. Clinical Relevance of Minimal Residual Viremia during Long-Term Therapy with Nucleos(t)ide Analogues in Patients with Chronic Hepatitis B. PLoS One. 2013;8:e67481.  [PubMed]  [DOI]
112.  Hosaka T, Suzuki F, Kobayashi M, Seko Y, Kawamura Y, Sezaki H, Akuta N, Suzuki Y, Saitoh S, Arase Y, Ikeda K, Kobayashi M, Kumada H. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology. 2013;58:98-107.  [PubMed]  [DOI]
113.  Singal AK, Salameh H, Kuo YF, Fontana RJ. Meta-analysis: the impact of oral anti-viral agents on the incidence of hepatocellular carcinoma in chronic hepatitis B. Aliment Pharmacol Ther. 2013;38:98-106.  [PubMed]  [DOI]
114.  Coffin CS, Rezaeeaval M, Pang JX, Alcantara L, Klein P, Burak KW, Myers RP. The incidence of hepatocellular carcinoma is reduced in patients with chronic hepatitis B on long-term nucleos(t)ide analogue therapy. Aliment Pharmacol Ther. 2014;40:1262-1269.  [PubMed]  [DOI]
115.  Wang X, Liu X, Dang Z, Yu L, Jiang Y, Wang X, Yang Z. Nucleos(t)ide Analogues for Reducing Hepatocellular Carcinoma in Chronic Hepatitis B Patients: A Systematic Review and Meta-Analysis. Gut Liver. 2019;.  [PubMed]  [DOI]
116.  Wong GL, Chan HL, Mak CW, Lee SK, Ip ZM, Lam AT, Iu HW, Leung JM, Lai JW, Lo AO, Chan HY, Wong VW. Entecavir treatment reduces hepatic events and deaths in chronic hepatitis B patients with liver cirrhosis. Hepatology. 2013;58:1537-1547.  [PubMed]  [DOI]
117.  Ono A, Suzuki F, Kawamura Y, Sezaki H, Hosaka T, Akuta N, Kobayashi M, Suzuki Y, Saitou S, Arase Y, Ikeda K, Kobayashi M, Watahiki S, Mineta R, Kumada H. Long-term continuous entecavir therapy in nucleos(t)ide-naïve chronic hepatitis B patients. J Hepatol. 2012;57:508-514.  [PubMed]  [DOI]
118.  Chang TT, Gish RG, de Man R, Gadano A, Sollano J, Chao YC, Lok AS, Han KH, Goodman Z, Zhu J, Cross A, DeHertogh D, Wilber R, Colonno R, Apelian D; BEHoLD AI463022 Study Group. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med. 2006;354:1001-1010.  [PubMed]  [DOI]
119.  Marcellin P, Heathcote EJ, Buti M, Gane E, de Man RA, Krastev Z, Germanidis G, Lee SS, Flisiak R, Kaita K, Manns M, Kotzev I, Tchernev K, Buggisch P, Weilert F, Kurdas OO, Shiffman ML, Trinh H, Washington MK, Sorbel J, Anderson J, Snow-Lampart A, Mondou E, Quinn J, Rousseau F. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2008;359:2442-2455.  [PubMed]  [DOI]
120.  Chi H, Hansen BE, Yim C, Arends P, Abu-Amara M, van der Eijk AA, Feld JJ, de Knegt RJ, Wong DK, Janssen HL. Reduced risk of relapse after long-term nucleos(t)ide analogue consolidation therapy for chronic hepatitis B. Aliment Pharmacol Ther. 2015;41:867-876.  [PubMed]  [DOI]
121.  Bam RA, Birkus G, Babusis D, Cihlar T, Yant SR. Metabolism and antiretroviral activity of tenofovir alafenamide in CD4+ T-cells and macrophages from demographically diverse donors. Antivir Ther. 2014;19:669-677.  [PubMed]  [DOI]
122.  Bam RA, Yant SR, Cihlar T. Tenofovir alafenamide is not a substrate for renal organic anion transporters (OATs) and does not exhibit OAT-dependent cytotoxicity. Antivir Ther. 2014;19:687-692.  [PubMed]  [DOI]
123.  Sax PE, Zolopa A, Brar I, Elion R, Ortiz R, Post F, Wang H, Callebaut C, Martin H, Fordyce MW, McCallister S. Tenofovir alafenamide vs. tenofovir disoproxil fumarate in single tablet regimens for initial HIV-1 therapy: a randomized phase 2 study. J Acquir Immune Defic Syndr. 2014;67:52-58.  [PubMed]  [DOI]
124.  Buti M, Gane E, Seto WK, Chan HL, Chuang WL, Stepanova T, Hui AJ, Lim YS, Mehta R, Janssen HL, Acharya SK, Flaherty JF, Massetto B, Cathcart AL, Kim K, Gaggar A, Subramanian GM, McHutchison JG, Pan CQ, Brunetto M, Izumi N, Marcellin P; GS-US-320-0108 Investigators. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of patients with HBeAg-negative chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol Hepatol. 2016;1:196-206.  [PubMed]  [DOI]
125.  Chan HL, Fung S, Seto WK, Chuang WL, Chen CY, Kim HJ, Hui AJ, Janssen HL, Chowdhury A, Tsang TY, Mehta R, Gane E, Flaherty JF, Massetto B, Gaggar A, Kitrinos KM, Lin L, Subramanian GM, McHutchison JG, Lim YS, Acharya SK, Agarwal K; GS-US-320-0110 Investigators. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of HBeAg-positive chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol Hepatol. 2016;1:185-195.  [PubMed]  [DOI]
126.  Chan HLY, Fung S, Seto WK, Chuang WL, Chen CY, Kim HJ, Hui AJ, Janssen HL, Chowdhury A, Tsang TY, Mehta R, Gane E, Flaherty JF, Massetto B, Gaggar A, Kitrinos KM, Lin L, Subramanian GM, McHutchison JG, Lim YS, Acharya SK, Agarwal K; GS-US-320-0110 Investigators. A phase 3 study of tenofovir alafenamide compared with tenofovir disoproxil fumarate in patients with HBeAg positive chronic HBV: week 48 efficacy and safety results. J Hepatol. 2016;64:S161.  [PubMed]  [DOI]
127.  Buti M, Gane E, Seto WK, Chan LY, Chuang WL, Hui AJ, Lim YS, Mehta R, Janssen HL, Acharya SK, Flaherty JF, Massetto B, Cathcart A, Dinh P, Subramanian GM, McHutchison JG, Pan C, Brunetto M, Izumi N, Marcellin P. A phase 3 study of tenofovir alafenamide compared with tenofovir disoproxil fumarate in patients with HBeAg negative, chronic hepatitis B: week 48 efficacy and safety results. J Hepatol. 2016;64:S135.  [PubMed]  [DOI]
128.  Berke JM, Dehertogh P, Vergauwen K, Van Damme E, Mostmans W, Vandyck K, Pauwels F. Capsid Assembly Modulators Have a Dual Mechanism of Action in Primary Human Hepatocytes Infected with Hepatitis B Virus. Antimicrob Agents Chemother. 2017;61.  [PubMed]  [DOI]
129.  Bogomolov P, Alexandrov A, Voronkova N, Macievich M, Kokina K, Petrachenkova M, Lehr T, Lempp FA, Wedemeyer H, Haag M, Schwab M, Haefeli WE, Blank A, Urban S. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study. J Hepatol. 2016;65:490-498.  [PubMed]  [DOI]
130.  Ivacik D, Ely A, Ferry N, Arbuthnot P. Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther. 2015;22:163-171.  [PubMed]  [DOI]
131.  Lai CL, Ahn SH, Lee KS, Um SH, Cho M, Yoon SK, Lee JW, Park NH, Kweon YO, Sohn JH, Lee J, Kim JA, Han KH, Yuen MF. Phase IIb multicentred randomised trial of besifovir (LB80380) versus entecavir in Asian patients with chronic hepatitis B. Gut. 2014;63:996-1004.  [PubMed]  [DOI]
132.  Lee AC. Exploring combination therapy for curing HBV: Preclinical studies with capsid inhibitor AB-423 and a siRNA Agent, ARB-1740. Hepatology. 2016;63:122A.  [PubMed]  [DOI]
133.  Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. E. eLife. 2012;1:e00049.  [PubMed]  [DOI]
134.  Vivekanandan P, Thomas D, Torbenson M. Methylation regulates hepatitis B viral protein expression. J Infect Dis. 2009;199:1286-1291.  [PubMed]  [DOI]
135.  Kim JW, Lee SH, Park YS, Hwang JH, Jeong SH, Kim N, Lee DH. Replicative activity of hepatitis B virus is negatively associated with methylation of covalently closed circular DNA in advanced hepatitis B virus infection. Intervirology. 2011;54:316-325.  [PubMed]  [DOI]
136.  Guo Y, Li Y, Mu S, Zhang J, Yan Z. Evidence that methylation of hepatitis B virus covalently closed circular DNA in liver tissues of patients with chronic hepatitis B modulates HBV replication. J Med Virol. 2009;81:1177-1183.  [PubMed]  [DOI]
137.  Pollicino T, Belloni L, Raffa G, Pediconi N, Squadrito G, Raimondo G, Levrero M. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology. 2006;130:823-837.  [PubMed]  [DOI]
138.  Yamamoto M, Hayashi N, Takehara T, Ueda K, Mita E, Tatsumi T, Sasaki Y, Kasahara A, Hori M. Intracellular single-chain antibody against hepatitis B virus core protein inhibits the replication of hepatitis B virus in cultured cells. Hepatology. 1999;30:300-307.  [PubMed]  [DOI]
139.  Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G, Halcomb RL, Tumas DB. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144:1508-1517, 1517.e1-1517.10.  [PubMed]  [DOI]
140.  Ding Y, Zhang H, Niu J, Chen H, Liu C, Li X, Wang F. PS-046-Multiple dose study of GLS4JHS, interfering with the assembly of hepatitis B virus core particles, in patients infected with hepatitis B virus. J Hepatol. 2017;66:S27-S28.  [PubMed]  [DOI]
141.  King TH, Kemmler CB, Guo Z, Mann D, Lu Y, Coeshott C, Gehring AJ, Bertoletti A, Ho ZZ, Delaney W, Gaggar A, Subramanian GM, McHutchison JG, Shrivastava S, Lee YJ, Kottilil S, Bellgrau D, Rodell T, Apelian D. A whole recombinant yeast-based therapeutic vaccine elicits HBV X, S and Core specific T cells in mice and activates human T cells recognizing epitopes linked to viral clearance. PLoS One. 2014;9:e101904.  [PubMed]  [DOI]
142.  Lam AM, Ren S, Espiritu C, Kelly M, Lau V, Zheng L, Hartman GD, Flores OA, Klumpp K. Hepatitis B Virus Capsid Assembly Modulators, but Not Nucleoside Analogs, Inhibit the Production of Extracellular Pregenomic RNA and Spliced RNA Variants. Antimicrob Agents Chemother. 2017;61.  [PubMed]  [DOI]
143.  Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Mol Ther Nucleic Acids. 2014;3:e186.  [PubMed]  [DOI]
144.  Liu J, Zhang E, Ma Z, Wu W, Kosinska A, Zhang X, Möller I, Seiz P, Glebe D, Wang B, Yang D, Lu M, Roggendorf M. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathog. 2014;10:e1003856.  [PubMed]  [DOI]
145.  Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343:1221-1228.  [PubMed]  [DOI]
146.  Mowa MB, Crowther C, Ely A, Arbuthnot P. Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter. Biomed Res Int. 2014;2014:718743.  [PubMed]  [DOI]
147.  Schiffer JT, Swan DA, Stone D, Jerome KR. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach. PLoS Comput Biol. 2013;9:e1003131.  [PubMed]  [DOI]
148.  Sebestyén MG, Wong SC, Trubetskoy V, Lewis DL, Wooddell CI. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes. Methods Mol Biol. 2015;1218:163-186.  [PubMed]  [DOI]
149.  Seeger C, Sohn JA. Targeting Hepatitis B Virus With CRISPR/Cas9. Mol Ther Nucleic Acids. 2014;3:e216.  [PubMed]  [DOI]
150.  Seto WK, Yuen MF. New pharmacological approaches to a functional cure of hepatitis B. Clin Liver Dis (Hoboken). 2016;8:83-88.  [PubMed]  [DOI]