Frontier
Copyright ©2013 Baishideng. All rights reserved.
World J Stomatol. Feb 20, 2013; 2(1): 1-11
Published online Feb 20, 2013. doi: 10.5321/wjs.v2.i1.1
Risk aspects of dental restoratives: From amalgam to tooth-colored materials
Roland Frankenberger, Franklin Garcia-Godoy, Peter E Murray, Albert J Feilzer, Norbert Krämer
Roland Frankenberger, Department of Operative Dentistry and Endodontics, Dental School, University of Marburg and University Medical Center Giessen and Marburg, Campus Marburg, D-35039 Marburg, Germany
Franklin Garcia-Godoy, College of Dentistry, University of Tennessee, Knoxville, TN 38163, United States
Peter E Murray, Department of Endodontics, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
Albert J Feilzer, Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, NL-1066 EA Amsterdam, The Netherlands
Norbert Krämer, Department of Pediatric Dentistry, Dental School, University of Giessen and University Medical Center Giessen and Marburg, Campus Giessen, D-35392 Giessen, Germany
Author contributions: All the authors contributed to this article.
Correspondence to: Roland Frankenberger, DMD, PhD, FICD, FADM, Professor and Chair, Department of Operative Dentistry and Endodontics, Dental School, University of Marburg and University Medical Center Giessen and Marburg, Campus Marburg, Georg-Voigt-Strasse 3, D-35039 Marburg, Germany. frankbg@med.uni-marburg.de
Telephone: +49-6421-5863240 Fax: +49-6421-5863745
Received: August 22, 2012
Revised: January 28, 2013
Accepted: February 5, 2013
Published online: February 20, 2013
Abstract

Dental materials’ choice of patients has considerably changed. Whereas cast gold and amalgam have been the predominant biomaterials for decades, today tooth-colored materials like resin-based composites and ceramics are more and more successful. However, are we going to replace a good but biologically questionable material (amalgam) with an equal material (resin composite) being more esthetic but also biologically questionable For amalgam, long-term clinical studies reported some significant hints that in single cases amalgam may be a health hazard for patients, finally Norway banned amalgam completely. The main advantage of a resin-based composite over amalgam is its tooth-like appearance and more or less absence of extensive preparation rules. For many years it was believed that resin-based composites may cause pulpal injury. However, pulpal injury associated with the use of resin-based composites is not correlated with their cytotoxic properties. Nevertheless, resin-based composites and other dental materials require rigorous safety evaluation and continuous monitoring to prevent adverse events similar like with amalgam. Because of non-biocompatible pulp responses to resin-based composites and amalgam, they should not be placed in direct contact with the dental pulp. The less dentin remaining in the floor of preparations between resin-based composites or other dental materials is more likely to cause pulpitis. Percentage of patients and dental practitioners who display allergic reactions is between 0.7% and 2%. The release of cytotoxic monomers from resin-based materials is highest after polymerization and much lower after 1 wk. Substances released from resin-based composites have been shown to be toxic in cytotoxicity tests. Nevertheless, in vitro cytotoxicity assays have shown that amalgam has greater toxic effects than resin-based composites, sometime 100-700-fold higher. Altogether, the risk of side-effects is low, but not zero, especially for dental personnel.

Keywords: Exposures, Restoratives, Amalgam, Resin-based composites, Adhesives