Case Report
Copyright ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Otorhinolaryngol. Apr 27, 2019; 8(1): 4-11
Published online Apr 27, 2019. doi: 10.5319/wjo.v8.i1.4
Effect of intranasal stents (AlaxoLito, AlaxoLito Plus and AlaxoLito Xtreme) on the nasal airway: A case report
Henry Zhang, Bhik Kotecha
Henry Zhang, Bhik Kotecha, Otolaryngology, Royal National Throat Nose and Ear Hospital, London WC1X 8DA, United Kingdom
Author contributions: Zhang H and Kotecha B designed, investigated and wrote the manuscript.
Informed consent statement: The subject of this case report gave informed written consent for all procedures and investigations. He gave written consent for freedom of information for the publication.
Conflict-of-interest statement: There are no conflicts of interest declared by either author.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Corresponding author: Henry Zhang, MBBS, Doctor, Otolaryngology, Royal National Throat Nose and Ear Hospital, 330 Grays Inn Rd, London WC1X 8DA, United Kingdom.
Telephone: +44-20-7921265304
Received: September 30, 2018
Peer-review started: October 2, 2018
First decision: December 5, 2018
Revised: March 4, 2019
Accepted: March 24, 2019
Article in press: March 25, 2019
Published online: April 27, 2019

The study of intranasal stents on the nasal airway is limited in the medical literature. The authors aim to provide objective measurements on their effects on the nasal airway. The aim is to study the feasibility of three novel intranasal stenting devices, AlaxoLito, AlaxoLito Plus, and AlaxoLito Xtreme, as treatment for nasal obstruction.


A 58- year-old man, who had right sided nasal obstruction, used stents during sporting activities intermittently for four years and subsequently in addition to intermittent sports use regularly for sleep for another two years. Magnetic resonance imaging (MRI) of the nasal passages and rhinomanometric measurements were taken with and without stents in situ. The stents tested are all braided from thin nitinol wires. The AlaxoLito Nasal Stent has a length of 35 mm. The AlaxoLito Plus and AlaxoLito Xtreme Nasal Stents have a length of 60 mm. Both have a diameter of about 10 mm in unloaded state and comprise a widened, ball-shaped section (which is positioned at the nasal alar) of about 11 and 14 mm, respectively. Rhinomanometric nasal airflow after application of the stents improved 1.11, 1.23, and 1.38 fold, respectively, with application of the AlaxoLito, AlaxoLito Plus and AlaxoLito Xtreme stents. MRI showed that after application of the stents, the nasal passage increased in diameter.


Intranasal stenting shows improvement in nasal airflow. Intermittent and regular longterm use had been shown to be safe, with no discomfort and no side effects.

Keywords: Intranasal stent, Airway, Obstructive sleep apnoea, Rhinomanometry, Magnetic resonance imaging

Core tip: Intranasal stents have a number of applications in the clinical setting, but no current study existed to determine objective measurements. This case shows objective data on rhinomanometry and imaging measurements, to determine long term effects of three types of intranasal stents on the nasal airway.