Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Orthop. Jul 18, 2021; 12(7): 467-484
Published online Jul 18, 2021. doi: 10.5312/wjo.v12.i7.467
Technological advancements in the analysis of human motion and posture management through digital devices
Federico Roggio, Silvia Ravalli, Grazia Maugeri, Antonino Bianco, Antonio Palma, Michelino Di Rosa, Giuseppe Musumeci
Federico Roggio, Antonino Bianco, Antonio Palma, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo 90144, Italy
Silvia Ravalli, Grazia Maugeri, Michelino Di Rosa, Giuseppe Musumeci, Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania 95123, Italy
Giuseppe Musumeci, Research Center on Motor Activities, University of Catania, Catania 95123, Italy
Giuseppe Musumeci, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, United States
Author contributions: Roggio F manuscript writing and preparation, figure preparation; Ravalli S and Maugeri G contributed to the manuscript writing; Bianco A and Palma A provided inputs into the manuscript writing; Di Rosa M suggested form advice; Musumeci G designed the aim of the review and supervised the manuscript writing.
Supported by University Research Project Grant, No. PIACERI Found – NATURE-OA - 2020-2022.
Conflict-of-interest statement: All other authors have no competing interests to declare.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Corresponding author: Giuseppe Musumeci, PhD, Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, Catania 95125, Italy.
Received: February 15, 2021
Peer-review started: February 15, 2021
First decision: March 31, 2021
Revised: April 15, 2021
Accepted: July 12, 2021
Article in press: July 12, 2021
Published online: July 18, 2021

Technological development of motion and posture analyses is rapidly progressing, especially in rehabilitation settings and sport biomechanics. Consequently, clear discrimination among different measurement systems is required to diversify their use as needed. This review aims to resume the currently used motion and posture analysis systems, clarify and suggest the appropriate approaches suitable for specific cases or contexts. The currently gold standard systems of motion analysis, widely used in clinical settings, present several limitations related to marker placement or long procedure time. Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies, especially outside laboratories. Similarly, new posture analysis techniques are emerging, often driven by the need for fast and non-invasive methods to obtain high-precision results. These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies. The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient. Herein, these devices and their uses are described, providing researchers, clinicians, orthopedics, physical therapists, and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis, therapy, and prevention.

Keywords: Motion capture, Gait analysis, Inertial measurement unit, Wearable devices, Rasterstereography, Posture

Core Tip: Movement, gait, and posture analysis are increasingly crucial in the clinical setting and everyday life. Researchers have different tools at their disposal, such as markerless systems or lightweight wearable devices that allow human movement to be analyzed in biomechanical laboratories and sports fields. This review aims to compare the most sophisticated analysis systems with the most current digital devices to highlight specific characteristics and suggest their applications in the fields of surgery, rehabilitation, posture, and sport.