Basic Study
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Oncol. Feb 24, 2024; 15(2): 302-316
Published online Feb 24, 2024. doi: 10.5306/wjco.v15.i2.302
TM9SF1 promotes bladder cancer cell growth and infiltration
Long Wei, Shi-Shuo Wang, Zhi-Guang Huang, Rong-Quan He, Jia-Yuan Luo, Bin Li, Ji-Wen Cheng, Kun-Jun Wu, Yu-Hong Zhou, Shi Liu, Sheng-Hua Li, Gang Chen
Long Wei, Ji-Wen Cheng, Kun-Jun Wu, Yu-Hong Zhou, Shi Liu, Sheng-Hua Li, Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
Shi-Shuo Wang, Zhi-Guang Huang, Jia-Yuan Luo, Bin Li, Gang Chen, Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
Rong-Quan He, Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
Author contributions: Wang SS, He RQ, Cheng JW, Li SH, and Chen G conceived and designed the study; Wei L, Wang SS, Luo JY, Li B, Wu KJ, Zhou YH, and Liu S performed the experiments, and acquired and analyzed the data; Wei L, Wang SS, and Huang ZG wrote the manuscript; He RQ, Luo JY, Li B, Cheng JW, Li SH, and Chen G revised and corrected the draft; all authors approved the final version of the article.
Supported by National Natural Science Foundation of China, No. 82260785.
Institutional review board statement: The study did not involve human or animal subjects.
Institutional animal care and use committee statement: The study did not involve animal experiments.
Conflict-of-interest statement: All authors declare no conflict of interest for this article.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Gang Chen, MD, PhD, Full Professor, Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China. chengang@gxmu.edu.cn
Received: September 15, 2023
Peer-review started: September 15, 2023
First decision: October 17, 2023
Revised: October 20, 2023
Accepted: November 27, 2023
Article in press: November 27, 2023
Published online: February 24, 2024
Core Tip

Core Tip: This study was the first to attempt to construct a stable bladder cancer (BC) cell line to investigate the overexpression and silencing of transmembrane 9 superfamily member 1 (TM9SF1) using in vitro experiments for the purpose of exploring the pro-cancer effect of TM9SF1 in BC. We verified that overexpression of TM9SF1 could enhance the growth, migration, and invasion of BC cells and promote their entry into G2/M phase of the cell cycle. This information not only provides a new target in developing treatments for BC but is also a source of hope for BC patients.