Topic Highlight Open Access
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Pathophysiol. Nov 15, 2014; 5(4): 450-456
Published online Nov 15, 2014. doi: 10.4291/wjgp.v5.i4.450
Biomarkers of Barrett's esophagus
Yasser Mahrous Fouad, Ibrahim Mostafa, Reem Yehia, Hisham El-Khayat
Yasser Mahrous Fouad, Reem Yehia, Gastroenterology and Hepatology Unit, Tropical Medicine Department, Minia University, Minia 11432, Egypt
Ibrahim Mostafa, Hisham El-Khayat, Gastroenterology and Hepatology Department, Theodore Research Institute, Cairo 11435, Egypt
Author contributions: All authors contributed to the manuscript; Fouad YM and Yehia R collected the data; Mostafa I and El-Khayat H revised the whole manuscript.
Correspondence to: Yasser Mahrous Fouad, MD, Professor of Gastroenterology and Hepatology Unit, Tropical Medicine Departement, Minia University, Main Road, Minia 11432, Egypt.
Telephone: +20-1-114721500 Fax: +20-1-114721500
Received: December 28, 2013
Revised: July 2, 2014
Accepted: July 17, 2014
Published online: November 15, 2014


Barrett’s esophagus is the strongest risk for esophageal adenocarcinoma (EAC). Metaplasia in patients with BE may progress to dysplasia and then invasive carcinoma. Well-defined diagnostic, progressive, predictive, and prognostic biomarkers are needed to identify the presence of the disease, estimate the risk of malignant transformation, and predict the therapeutic outcome and survival of EAC patients. There are many predictive and prognostic markers that lack substantial validation, and do not allow stratification of patients with gastroesophageal reflux disease in clinical practice for outcome and effectiveness of therapy. In this short review we summarize the current knowledge regarding possible biomarkers, focusing on the pathophysiologic mechanisms to improve prognostic and therapeutic approaches.

Key Words: Barrett’s esophagus, Esophageal adenocarcinoma, Biomarkers

Core tip: The importance of biomarkers of Barrett’s esophagus is to provide identification of the disease, estimate the risk of malignant transformation, predict the response to therapy, and indicate the overall survival-prognosis for esophageal adenocarcinoma patients. Proposed predictive and prognostic markers do not allow stratification of gastroesophageal reflux disease patients for progression, outcome, and effectiveness of therapy in clinical practice. The aim of this short review is to discuss the current knowledge regarding proposed biomarkers to improve prognostic and predictive therapeutic approaches, with a focus on the pathophysiologic mechanisms.


Barrett’s esophagus (BE) is characterized by the replacement of squamous epithelium in the esophagus by metaplastic columnar epithelium with goblet cells[1]. BE is a well-known risk factor for esophageal adenocarcinoma (EAC), a malignancy with the most rapid increase in incidence (approximately 500%) over the past 3 decades in the Western world, and with persistently poor outcomes when diagnosed after the onset of symptoms (survival less than 20% at 5 years)[2]. An important problem in treating the patients with BE is the absence of satisfactory surveillance programs in spite of the known stages of carcinogenesis from BE to adenocarcinoma. Over the past two decades, there have been many studies attempting to identify patients with BE and predict patients with a high risk of progression to adenocarcinoma[3-6].

In this review, the definition, mechanisms of production, and types of biomarker in patients with BE will be summarized.

The biomarker

A biological marker affords an indication of the condition or disease, whether normal or abnormal. It is found in the blood, body fluids, and tissues. Moreover, a biomarker may be used for assessment of the response of the body to treatment of a disease or condition[7].

Phases of biomarker identification and validation

Biomarker discovery has to pass through 5 to 6 phases before clinical application (Table 1). Phases 4, 5 and 6 present a significant challenge because of the required large sample sizes, long follow-up and high costs[8].

Table 1 Phases of biomarker production.
Phases of biomarker validation and development
Phase 1: Biomarkers of promise are identified based on application in other cancers and elucidation of novel pathways
Phase 2: Cross-sectional studies validate the biomarker of interest to be sufficiently discriminatory and biomarker assays are standardized
Phase 3: Case-control studies with a retrospective but longitudinal design confirm the biomarker is expressed before the development of cancer
Phase 4: Prospective longitudinal studies avoid biases associated with case-control studies
Phase 5: Population-based studies show the impact of biomarker detection on disease burden and cancer control
Genomic instability

The similarity of the genetic patterns of BE and EAC demonstrated by DNA microarray studies supported the hypothesis that BE is a step preceding EAC. The genomic instability has been shown to be a poor prognostic marker in BE patients. Chromosomal alterations, deletions, point mutations, methylation abnormalities, and loss of heterozygosity (LOH) are the main indications of genomic instability in patients with BE[9-11].

DNA abnormalities

DNA abnormalities, e.g., aneuploidy or tetraploidy, assessed by flow cytometry, can be used as predictive markers in patients with BE with no or low grade dysplasia[12,13]. LOH represents the loss of normal function of one allele of a gene in which the other allele was already inactivated. In a long-term follow-up study of BE patients, a panel combining 9p LOH, 17p LOH in addition to aneuploidy and tetraploidy was a strong predictor of EAC[14].

Abnormalities of tumor loci

An important predictor of risk of dysplasia and EAC in patients with BE is LOH for p53. LOH for p53 was shown to be associated with a 16-fold increase in the risk of progression to cancer[15]. However, in another study, in patients with non-dysplastic BE, only 32.4% of patients with progression showed overexpression of p53 in their initial biopsy[16]. Furthermore, alteration of APC, a regulator of the WNT pathway, by methylation[17] and LOH[18] were found in patients with BE with a positive predictive value.


Epigenetics entails post-transcriptional silencing of specific genes without a change in the DNA sequence. A variety of mechanisms are involved, including methylation and acetylation. It has been shown that hypermethylation and loss of p16, are independently associated with an increased risk of progression from intestinal metaplasia (IM) to high-grade dysplasia (HGD)[19,20].

The p16 methylation was shown to be highly prevalent in patients with BE (34%-66%)[17,19,21]. Moreover, in a multicenter study, a panel of 8 genes (p16, RUNX3, HPP1, NELL1, TAC1, SST, AKAP12, and CDH13), was used to predict the risk of progression in patients with BE. In this study, 195 patients were included and sensitivities for prediction of progression approached 50%[22].

Cell cycle predictors

A dysregulated cell cycle may lead to accumulation of genetic aberrations in most cancer cells. Cyclins are cell cycle regulator proteins, and potentially useful biomarkers for progression. In patients with BE, cyclin D1 overexpression was shown to be associated with progression to EAC[23-26]. Further research in large groups of patients is needed to confirm the predictive values of cyclins.

Proliferation abnormalities

The association between increasing proliferation and worsening of dysplasia in BE was shown in many studies[26-28], while other studies found no association[29,30]. Researchers explained the discrepancies between there results by the use different techniques, the different histological pattern between columnar and squamous epithelium, and the use of different proliferative indices. One of the important markers of cellular proliferation is Ki67. However, in a long follow-up study, Ki67-positive proliferative fractions were not associated with risk of progression[31]. Further larger studies with standardized techniques are needed to measure proliferation.

Clonal diversity in BE

Genetic instabilities may lead to multiple distinct clones. The coexistence of multiple distinct clones is called clonal diversity. In patients with BE, clonal diversity measures were strong predictors of progression[32]. However, the complicated methodology limited the use of clonal diversity as a predictive marker.

Mitochondrial DNA

Mitochondrial DNA (mtDNA) has been implicated in the process of carcinogenesis[33]. mtDNA mutations were found in 53% of patients with BE without dysplasia[32]. In patients with BE, deletion of the mitochondrial genome (4977 bp) was found in 15.4% in IM, 40% in low-grade dysplasia, 69.2% in HGD, and 90% in paratumoral tissue[34].


Fluorescence in situ hybridization (FISH) is a technique which detects DNA content and loci abnormalities in the cells by fluorescent-tagged DNA probes. FISH can detect aneusomy (abnormalities of chromosome copy number), deletion, duplication, amplification and translocation at tumor suppressor loci and protooncogene loci.

In patients with BE, FISH was used to detect genetic abnormalities by investigators in different studies from multiple centers[35-39]. Detection of dysplasia in BE and identification of HGD and EAC using the FISH 4-probe set has been shown to have a reasonable sensitivity (84%-93%) and specificity (93%)[39]. In another multicenter study, polysomy detected by FISH has been shown to predict risk of progression to HGD/EAC[40].


Biomarkers of BE can be classified into 4 groups: (1) diagnostic biomarkers; (2) biomarkers of progression; (3) predictive biomarkers; and (4) prognostic biomarkers. This classification is based on the previous intensive research, and review articles[6,41-43] (Table 2).

Table 2 Types of biomarkers in Barrett’s esophagus.
DiagnosticTFF3IHCTo screen asymptomatic patients for BE[49,50]
Chromosome 7 and 17 changesIDKA and FISHEarly stages of BE[52]
8q24 (C-MYC), 17q12 (HER2), and 20q13 changesFISHEarly stages of BE[53]
17q11.2 (ERBB2)Microarray analysisEAC[54]
Serum proteomic analysisMass spectrometryEAC[55]
PredictiveP16 allelic lossFISHResponse to therapy[56]
DNA ploidy abnormalitiesICDACovariate value for recurrence[57]
HSP27IHCNo response to therapy[58]
Ephrin B receptorMicroarrayResponse to therapy in EAC[59]
Genetic polymorphismqRT-PCRAssociated with clinical outcome[60]
P21IHCCorrelated with better CTX response[61]
P53IHCCorrelated with better CTX response[62]
Progression markersERCC1IHCPredicts CTX resistance[16]
P53IHCLimited efficacy as a progression marker[13,63]
DNA abnormalitiesFlow cytometryHigh risk for progression to EAC[13]
LOH of 157p and 9pFlow cytometryPredict progression to EAC[14]
EGFRIHCOverexpression in HGD and EAC[64]
Cyclin AIHCPredicts progression to dysplasia[65]
Cyclin D1IHCRisk of Progression to EAC[19]
Hypermethylation of p16, RUNX2,HPP1RT-PCRRisk of progression to EAC/HGD[22]
8 gene methylation panelRT-PCRPredicts progression to EAC/HGD[66]
Prognostic biomarkersCathepsin D,AKR1D10,AKR1C2 mRNA levelsWestern blot, qRt-PCRDysregulation predicts progression to EAC/HGD[67]
DCK, PAPSS2, SIRT,TRIM44RT-PCR, IHC4 gene signature in EAC , predict 5 year survival[56]
P16 loss, C-MYC gainFISHAssociated with therapy response[68]
ASS expressionMicroarrayLow expression associated with metastases[69]
MicroRNA expression profileMicroarray, RT-PCRLow level associated with worse prognosis in EAC[70]
Cyclin D1IHC, FISHDecreased survival[71]
EGFRIHCDecreased expression associated with decreased survival[72]
TGF-αIHC, ISHHigh level indicates progression and metastases[73]
TGF-β1RT-PCR, ELISAHigh expression associated with decreased survival[73]
APCPCRHigh level associated with decreased survival[74]
COX-2IHCAssociated with metastases and recurrence[75]
TelomeraseSouthern-blot and PCRAssociated with decreased survival[76]
VEGFIHCAssociated with metastases and decreased survival[77]
CadherinIHCDecreased level associated with decreased survival[78]
TIMPIHC, PCRDecreased level associated with decreased survival[79]
Diagnostic biomarkers

Diagnostic biomarkers indicate the presence of disease. The histochemical analysis of biopsies of the gastro-esophageal junction remains the conventional approach for detection and diagnosis of BE. In patients with asymptomatic BE, trefoil factor 3 combined with a noninvasive diagnostic technique has been investigated with promising results in the screening of these patients[44,45]. Further validation and assessment are needed to confirm the results of these studies.

Progression biomarkers

The degree of dysplasia in obtained biopsies is the main marker of progression of BE, although there is much intra- and inter-observer errors[46-48]. The most promising biomarkers are minichromosome maintenance 2 (MCM2) expression pattern and LOH on distinct gene loci, especially at 17p. The cost and intensive laboratory time limit the use of these markers in clinical practice.

Predictive biomarkers

These biomarkers predict the response to therapy. A limited number of predictive biomarkers are available (Table 2) and this category is in need of further intensified research.

Prognostic biomarkers

These biomarkers indicate overall survival and prognosis of EAC. The majority of biomarkers are in this category. Prognostic biomarkers include growth signals, insensitivity to growth inhibitory signals, markers of evasion of programmed cell death, limitless replicative potential (telomerase), markers of sustained angiogenesis, markers of invasion and metastasis, marker of tumor differentiation, and cancer-related inflammation (Table 2).

Biomarkers in the clinical field: problems and obstacles

Much work is needed to set up clinical trials of biomarkers as this requires cooperation between clinical researchers and experts in molecular techniques. Moreover, the validation of a biomarker passes through 5 phases and requires multicenter studies, with prohibitive costs and long-term follow-up.

The method of specimen collection is another challenge. While microarray studies require special equipment and may not be easy to access by clinical scientists, molecular profiling using formalin-fixed paraffin-embedded specimens is interesting to researchers because of easy availability of specimens. In patients with hepatocellular carcinoma, the use of large scale (> 6000) gene profiling resulted in high quality data even from specimens archived for as long as 24 years[49].

The lack of prospective controlled trials is another important problem attributed to high costs and the need for large sample sizes. Moreover, the lack of reproducibility of assays between laboratories represent another obstacle for identification of clinically useful cancer biomarkers[50]. The reanalysis of DNA microarray studies showed that the selection of patients had an impact on the predictor role of genes in prognosis[51]. Careful interpretation of biomarker studies is needed by using large datasets such as DNA microarray repositories.


A biomarker for BE should help in population screening, improve the surveillance of patients with BE, and identify the prognostic groups and best therapy once EAC develops. Many biomarkers have been intensively studied and accurately predict the progress of BE to EAC. The MCM2 expression pattern, LOH on distinct gene loci, especially at 17p, hypermethylation of p16 and the expression pattern of P53 are promising markers especially for progression of the disease. Important prognostic biomarkers include cyclin D1, Ki-67, transforming growth factor-α, adenomatous polyposis coli, cyclooxygenase-2, telomerase and vascular endothelial growth factor. Till now, no biomarker has been able to replace the current gold standard of dysplasia in routine clinical practice. Panels of biomarkers seem to be better in predicting progression more accurately. The issue of costs and practicality of biomarkers should be considered before research is performed. A model incorporating clinical data and biomarkers will be promising and can accurately predict the risk of progression, prognosis or response to therapy. Similar models have been used in other cancers and diseases such as the Nottingham prognostic index for breast cancer and MELD score for liver disease. After generation and validation of such a model, it should then be rigorously validated in a large cohort of patients in a prospective fashion.


P- Reviewer: Hillman LC S- Editor: Wen LL L- Editor: Cant MR E- Editor: Wang CH

1.  Sharma P. Clinical practice. Barrett’s esophagus. N Engl J Med. 2009;361:2548-2556.  [PubMed]  [DOI]
2.  Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97:142-146.  [PubMed]  [DOI]
3.  Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol. 2007;17:2-9.  [PubMed]  [DOI]
4.  Brown LM, Devesa SS. Epidemiologic trends in esophageal and gastric cancer in the United States. Surg Oncol Clin N Am. 2002;11:235-256.  [PubMed]  [DOI]
5.  Kerkhof M, van Dekken H, Steyerberg EW, Meijer GA, Mulder AH, de Bruïne A, Driessen A, ten Kate FJ, Kusters JG, Kuipers EJ. Grading of dysplasia in Barrett’s oesophagus: substantial interobserver variation between general and gastrointestinal pathologists. Histopathology. 2007;50:920-927.  [PubMed]  [DOI]
6.  Illig R, Klieser E, Kiesslich T, Neureiter D. GERD-Barrett-Adenocarcinoma: Do We Have Suitable Prognostic and Predictive Molecular Markers? Gastroenterol Res Pract. 2013;2013:643084.  [PubMed]  [DOI]
7.  National cancer institute  Available from:  [PubMed]  [DOI]
8.  Jankowski JA, Odze RD. Biomarkers in gastroenterology: between hope and hype comes histopathology. Am J Gastroenterol. 2009;104:1093-1096.  [PubMed]  [DOI]
9.  Paulson TG, Maley CC, Li X, Li H, Sanchez CA, Chao DL, Odze RD, Vaughan TL, Blount PL, Reid BJ. Chromosomal instability and copy number alterations in Barrett’s esophagus and esophageal adenocarcinoma. Clin Cancer Res. 2009;15:3305-3314.  [PubMed]  [DOI]
10.  Li X, Galipeau PC, Sanchez CA, Blount PL, Maley CC, Arnaudo J, Peiffer DA, Pokholok D, Gunderson KL, Reid BJ. Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett’s esophagus neoplastic progression. Cancer Prev Res (Phila). 2008;1:413-423.  [PubMed]  [DOI]
11.  Selaru FM, Zou T, Xu Y, Shustova V, Yin J, Mori Y, Sato F, Wang S, Olaru A, Shibata D. Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene. 2002;21:475-478.  [PubMed]  [DOI]
12.  Reid BJ, Levine DS, Longton G, Blount PL, Rabinovitch PS. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol. 2000;95:1669-1676.  [PubMed]  [DOI]
13.  Rabinovitch PS, Longton G, Blount PL, Levine DS, Reid BJ. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am J Gastroenterol. 2001;96:3071-3083.  [PubMed]  [DOI]
14.  Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 2007;4:e67.  [PubMed]  [DOI]
15.  Reid BJ, Prevo LJ, Galipeau PC, Sanchez CA, Longton G, Levine DS, Blount PL, Rabinovitch PS. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol. 2001;96:2839-2848.  [PubMed]  [DOI]
16.  Murray L, Sedo A, Scott M, McManus D, Sloan JM, Hardie LJ, Forman D, Wild CP. TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut. 2006;55:1390-1397.  [PubMed]  [DOI]
17.  Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology. 2002;122:1113-1121.  [PubMed]  [DOI]
18.  Zhuang Z, Vortmeyer AO, Mark EJ, Odze R, Emmert-Buck MR, Merino MJ, Moon H, Liotta LA, Duray PH. Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res. 1996;56:1961-1964.  [PubMed]  [DOI]
19.  Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, Olaru A, Wang S, Mori Y, Deacu E. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene. 2005;24:4138-4148.  [PubMed]  [DOI]
20.  Mokrowiecka A, Wierzchniewska-Ławska A, Smolarz B, Romanowicz-Makowska H, Małecka-Panas E. p16 gene mutations in Barrett’s esophagus in gastric metaplasia - intestinal metaplasia - dysplasia - adenocarcinoma sequence. Adv Med Sci. 2012;57:71-76.  [PubMed]  [DOI]
21.  Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Blount PL, Reid BJ. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 2004;64:7629-7633.  [PubMed]  [DOI]
22.  Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, Olaru AV, Paun BC, Yang J, Kan T. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 2009;69:4112-4115.  [PubMed]  [DOI]
23.  Shi XY, Bhagwandeen B, Leong AS. p16, cyclin D1, Ki-67, and AMACR as markers for dysplasia in Barrett esophagus. Appl Immunohistochem Mol Morphol. 2008;16:447-452.  [PubMed]  [DOI]
24.  van Dekken H, Hop WC, Tilanus HW, Haringsma J, van der Valk H, Wink JC, Vissers KJ. Immunohistochemical evaluation of a panel of tumor cell markers during malignant progression in Barrett esophagus. Am J Clin Pathol. 2008;130:745-753.  [PubMed]  [DOI]
25.  Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D, Wild CP. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst. 2000;92:1316-1321.  [PubMed]  [DOI]
26.  Lao-Sirieix P, Brais R, Lovat L, Coleman N, Fitzgerald RC. Cell cycle phase abnormalities do not account for disordered proliferation in Barrett’s carcinogenesis. Neoplasia. 2008;6:751-760.  [PubMed]  [DOI]
27.  Going JJ, Keith WN, Neilson L, Stoeber K, Stuart RC, Williams GH. Aberrant expression of minichromosome maintenance proteins 2 and 5, and Ki-67 in dysplastic squamous oesophageal epithelium and Barrett’s mucosa. Gut. 2002;50:373-377.  [PubMed]  [DOI]
28.  Hong MK, Laskin WB, Herman BE, Johnston MH, Vargo JJ, Steinberg SM, Allegra CJ, Johnston PG. Expansion of the Ki-67 proliferative compartment correlates with degree of dysplasia in Barrett’s esophagus. Cancer. 1995;75:423-429.  [PubMed]  [DOI]
29.  Pellish LJ, Hermos JA, Eastwood GL. Cell proliferation in three types of Barrett’s epithelium. Gut. 1980;21:26-31.  [PubMed]  [DOI]
30.  Reid BJ, Sanchez CA, Blount PL, Levine DS. Barrett’s esophagus: cell cycle abnormalities in advancing stages of neoplastic progression. Gastroenterology. 1993;105:119-129.  [PubMed]  [DOI]
31.  Chao DL, Sanchez CA, Galipeau PC, Blount PL, Paulson TG, Cowan DS, Ayub K, Odze RD, Rabinovitch PS, Reid BJ. Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett’s esophagus: a long-term prospective study. Clin Cancer Res. 2008;14:6988-6995.  [PubMed]  [DOI]
32.  Merlo LM, Shah NA, Li X, Blount PL, Vaughan TL, Reid BJ, Maley CC. A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev Res (Phila). 2010;3:1388-1397.  [PubMed]  [DOI]
33.  Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661-664.  [PubMed]  [DOI]
34.  Lee S, Han MJ, Lee KS, Back SC, Hwang D, Kim HY, Shin JH, Suh SP, Ryang DW, Kim HR. Frequent occurrence of mitochondrial DNA mutations in Barrett’s metaplasia without the presence of dysplasia. PLoS One. 2012;7:e37571.  [PubMed]  [DOI]
35.  Tan BH, Skipworth RJ, Stephens NA, Wheelhouse NM, Gilmour H, de Beaux AC, Paterson-Brown S, Fearon KC, Ross JA. Frequency of the mitochondrial DNA 4977bp deletion in oesophageal mucosa during the progression of Barrett’s oesophagus. Eur J Cancer. 2009;45:736-740.  [PubMed]  [DOI]
36.  Rossi E, Grisanti S, Villanacci V, Della Casa D, Cengia P, Missale G, Minelli L, Buglione M, Cestari R, Bassotti G. HER-2 overexpression/amplification in Barrett’s oesophagus predicts early transition from dysplasia to adenocarcinoma: a clinico-pathologic study. J Cell Mol Med. 2009;13:3826-3833.  [PubMed]  [DOI]
37.  Rygiel AM, Milano F, Ten Kate FJ, Schaap A, Wang KK, Peppelenbosch MP, Bergman JJ, Krishnadath KK. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 2008;17:1380-1385.  [PubMed]  [DOI]
38.  Falk GW, Skacel M, Gramlich TL, Casey G, Goldblum JR, Tubbs RR. Fluorescence in situ hybridization of cytologic specimens from Barrett’s esophagus: a pilot feasibility study. Gastrointest Endosc. 2004;60:280-284.  [PubMed]  [DOI]
39.  Brankley SM, Wang KK, Harwood AR, Miller DV, Legator MS, Lutzke LS, Kipp BR, Morrison LE, Halling KC. The development of a fluorescence in situ hybridization assay for the detection of dysplasia and adenocarcinoma in Barrett’s esophagus. J Mol Diagn. 2006;8:260-267.  [PubMed]  [DOI]
40.  Wang KK, Barr Fritcher E, Halling KC. The use of FISH in a multicenter blinded study to predict development of neoplasia in Barrett’s esophagus. Gastroenterology. 2009;136:A 157.  [PubMed]  [DOI]
41.  Ong CA, Lao-Sirieix P, Fitzgerald RC. Biomarkers in Barrett’s esophagus and esophageal adenocarcinoma: predictors of progression and prognosis. World J Gastroenterol. 2010;16:5669-5681.  [PubMed]  [DOI]
42.  Fang D, Das KM, Cao W, Malhotra U, Triadafilopoulos G, Najarian RM, Hardie LJ, Lightdale CJ, Beales IL, Felix VN. Barrett’s esophagus: progression to adenocarcinoma and markers. Ann N Y Acad Sci. 2011;1232:210-229.  [PubMed]  [DOI]
43.  Huang Q, Hardie LJ. Biomarkers in Barrett’s oesophagus. Biochem Soc Trans. 2010;38:343-347.  [PubMed]  [DOI]
44.  Lao-Sirieix P, Boussioutas A, Kadri SR, O’Donovan M, Debiram I, Das M, Harihar L, Fitzgerald RC. Non-endoscopic screening biomarkers for Barrett’s oesophagus: from microarray analysis to the clinic. Gut. 2009;58:1451-1459.  [PubMed]  [DOI]
45.  Kadri SR, Lao-Sirieix P, O’Donovan M, Debiram I, Das M, Blazeby JM, Emery J, Boussioutas A, Morris H, Walter FM. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ. 2010;341:c4372.  [PubMed]  [DOI]
46.  Reid BJ, Haggitt RC, Rubin CE, Roth G, Surawicz CM, Van Belle G, Lewin K, Weinstein WM, Antonioli DA, Goldman H. Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol. 1988;19:166-178.  [PubMed]  [DOI]
47.  Montgomery E, Bronner MP, Goldblum JR, Greenson JK, Haber MM, Hart J, Lamps LW, Lauwers GY, Lazenby AJ, Lewin DN. Reproducibility of the diagnosis of dysplasia in Barrett esophagus: a reaffirmation. Hum Pathol. 2001;32:368-378.  [PubMed]  [DOI]
48.  Reid BJ, Li X, Galipeau PC, Vaughan TL. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 2010;10:87-101.  [PubMed]  [DOI]
49.  Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995-2004.  [PubMed]  [DOI]
50.  Wilson JF. The rocky road to useful cancer biomarkers. Ann Intern Med. 2006;144:945-948.  [PubMed]  [DOI]
51.  Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet. 2005;365:488-492.  [PubMed]  [DOI]
52.  Rygiel AM, Milano F, Ten Kate FJ, de Groot JG, Peppelenbosch MP, Bergman JJ, Krishnadath KK. Assessment of chromosomal gains as compared to DNA content changes is more useful to detect dysplasia in Barrett’s esophagus brush cytology specimens. Genes Chromosomes Cancer. 2008;47:396-404.  [PubMed]  [DOI]
53.  Fritcher EG, Brankley SM, Kipp BR, Voss JS, Campion MB, Morrison LE, Legator MS, Lutzke LS, Wang KK, Sebo TJ. A comparison of conventional cytology, DNA ploidy analysis, and fluorescence in situ hybridization for the detection of dysplasia and adenocarcinoma in patients with Barrett’s esophagus. Hum Pathol. 2008;39:1128-1135.  [PubMed]  [DOI]
54.  Dahlberg PS, Jacobson BA, Dahal G, Fink JM, Kratzke RA, Maddaus MA, Ferrin LJ. ERBB2 amplifications in esophageal adenocarcinoma. Ann Thorac Surg. 2004;78:1790-1800.  [PubMed]  [DOI]
55.  Hammoud ZT, Dobrolecki L, Kesler KA, Rahmani E, Rieger K, Malkas LH, Hickey RJ. Diagnosis of esophageal adenocarcinoma by serum proteomic pattern. Ann Thorac Surg. 2007;84:384-392; discussion 392.  [PubMed]  [DOI]
56.  Prasad GA, Wang KK, Halling KC, Buttar NS, Wongkeesong LM, Zinsmeister AR, Brankley SM, Westra WM, Lutzke LS, Borkenhagen LS. Correlation of histology with biomarker status after photodynamic therapy in Barrett esophagus. Cancer. 2008;113:470-476.  [PubMed]  [DOI]
57.  Dunn JM, Mackenzie GD, Oukrif D, Mosse CA, Banks MR, Thorpe S, Sasieni P, Bown SG, Novelli MR, Rabinovitch PS. Image cytometry accurately detects DNA ploidy abnormalities and predicts late relapse to high-grade dysplasia and adenocarcinoma in Barrett’s oesophagus following photodynamic therapy. Br J Cancer. 2010;102:1608-1617.  [PubMed]  [DOI]
58.  Langer R, Ott K, Specht K, Becker K, Lordick F, Burian M, Herrmann K, Schrattenholz A, Cahill MA, Schwaiger M. Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat-shock protein 27 expression and chemotherapy response. Clin Cancer Res. 2008;14:8279-8287.  [PubMed]  [DOI]
59.  Wu X, Gu J, Wu TT, Swisher SG, Liao Z, Correa AM, Liu J, Etzel CJ, Amos CI, Huang M. Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J Clin Oncol. 2006;24:3789-3798.  [PubMed]  [DOI]
60.  Heeren PA, Kloppenberg FW, Hollema H, Mulder NH, Nap RE, Plukker JT. Predictive effect of p53 and p21 alteration on chemotherapy response and survival in locally advanced adenocarcinoma of the esophagus. Anticancer Res. 2004;24:2579-2583.  [PubMed]  [DOI]
61.  Nakashima S, Natsugoe S, Matsumoto M, Kijima F, Takebayashi Y, Okumura H, Shimada M, Nakano S, Kusano C, Baba M. Expression of p53 and p21 is useful for the prediction of preoperative chemotherapeutic effects in esophageal carcinoma. Anticancer Res. 2000;20:1933-1937.  [PubMed]  [DOI]
62.  Kim MK, Cho KJ, Kwon GY, Park SI, Kim YH, Kim JH, Song HY, Shin JH, Jung HY, Lee GH. ERCC1 predicting chemoradiation resistance and poor outcome in oesophageal cancer. Eur J Cancer. 2008;44:54-60.  [PubMed]  [DOI]
63.  Weston AP, Banerjee SK, Sharma P, Tran TM, Richards R, Cherian R. p53 protein overexpression in low grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am J Gastroenterol. 2001;96:1355-1362.  [PubMed]  [DOI]
64.  Cronin J, McAdam E, Danikas A, Tselepis C, Griffiths P, Baxter J, Thomas L, Manson J, Jenkins G. Epidermal growth factor receptor (EGFR) is overexpressed in high-grade dysplasia and adenocarcinoma of the esophagus and may represent a biomarker of histological progression in Barrett’s esophagus (BE). Am J Gastroenterol. 2011;106:46-56.  [PubMed]  [DOI]
65.  Lao-Sirieix P, Lovat L, Fitzgerald RC. Cyclin A immunocytology as a risk stratification tool for Barrett’s esophagus surveillance. Clin Cancer Res. 2007;13:659-665.  [PubMed]  [DOI]
66.  Breton J, Gage MC, Hay AW, Keen JN, Wild CP, Donnellan C, Findlay JB, Hardie LJ. Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase 1C2 and 1B10 dysregulation in Barrett’s esophagus and esophageal adenocarcinoma. J Proteome Res. 2008;7:1953-1962.  [PubMed]  [DOI]
67.  Peters CJ, Rees JR, Hardwick RH, Hardwick JS, Vowler SL, Ong CA, Zhang C, Save V, O’Donovan M, Rassl D. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology. 2010;139:1995-2004.e15.  [PubMed]  [DOI]
68.  Lagarde SM, Ver Loren van Themaat PE, Moerland PD, Gilhuijs-Pederson LA, Ten Kate FJ, Reitsma PH, van Kampen AH, Zwinderman AH, Baas F, van Lanschot JJ. Analysis of gene expression identifies differentially expressed genes and pathways associated with lymphatic dissemination in patients with adenocarcinoma of the esophagus. Ann Surg Oncol. 2008;15:3459-3470.  [PubMed]  [DOI]
69.  Mathé EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, Schetter AJ, Braun R, Reimers M, Kumamoto K, Hughes D. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res. 2009;15:6192-6200.  [PubMed]  [DOI]
70.  Izzo JG, Wu TT, Wu X, Ensor J, Luthra R, Pan J, Correa A, Swisher SG, Chao CK, Hittelman WN. Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol. 2007;25:698-707.  [PubMed]  [DOI]
71.  Langer R, Von Rahden BH, Nahrig J, Von Weyhern C, Reiter R, Feith M, Stein HJ, Siewert JR, Höfler H, Sarbia M. Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol. 2006;59:631-634.  [PubMed]  [DOI]
72.  D’Errico A, Barozzi C, Fiorentino M, Carella R, Di Simone M, Ferruzzi L, Mattioli S, Grigioni WF. Role and new perspectives of transforming growth factor-alpha (TGF-alpha) in adenocarcinoma of the gastro-oesophageal junction. Br J Cancer. 2000;82:865-870.  [PubMed]  [DOI]
73.  von Rahden BH, Stein HJ, Feith M, Pühringer F, Theisen J, Siewert JR, Sarbia M. Overexpression of TGF-beta1 in esophageal (Barrett’s) adenocarcinoma is associated with advanced stage of disease and poor prognosis. Mol Carcinog. 2006;45:786-794.  [PubMed]  [DOI]
74.  Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst. 2000;92:1805-1811.  [PubMed]  [DOI]
75.  Buskens CJ, Van Rees BP, Sivula A, Reitsma JB, Haglund C, Bosma PJ, Offerhaus GJ, Van Lanschot JJ, Ristimäki A. Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology. 2002;122:1800-1807.  [PubMed]  [DOI]
76.  Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer. 2008;112:2173-2180.  [PubMed]  [DOI]
77.  Saad RS, El-Gohary Y, Memari E, Liu YL, Silverman JF. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in esophageal adenocarcinoma. Hum Pathol. 2005;36:955-961.  [PubMed]  [DOI]
78.  Falkenback D, Nilbert M, Oberg S, Johansson J. Prognostic value of cell adhesion in esophageal adenocarcinomas. Dis Esophagus. 2008;21:97-102.  [PubMed]  [DOI]
79.  Darnton SJ, Hardie LJ, Muc RS, Wild CP, Casson AG. Tissue inhibitor of metalloproteinase-3 (TIMP-3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis. Int J Cancer. 2005;115:351-358.  [PubMed]  [DOI]