Review
Copyright ©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Radiol. Jan 28, 2016; 8(1): 59-72
Published online Jan 28, 2016. doi: 10.4329/wjr.v8.i1.59
General review of magnetic resonance elastography
Gavin Low, Scott A Kruse, David J Lomas
Gavin Low, Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, Edmonton AB T6G 2B7, Canada
Scott A Kruse, Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
David J Lomas, Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, United Kingdom
Author contributions: All authors contributed to the manuscript with collection of data and images, critical revision and editing, and approval of the final version.
Supported by National Institutes of Health, No. R01 EB001981; and National Institute of Health Research Cambridge Biomedical Research Centre.
Conflict-of-interest statement: The authors declare no conflict-of-interests for this article.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Gavin Low, MBChB, MPhil, MRCS, FRCR, Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, 2A2.41 WMC, 8440-112 Street, Edmonton AB T6G 2B7, Canada. timgy@yahoo.com
Telephone: +1-780-4076907 Fax: +1-780-4073853
Received: August 28, 2015
Peer-review started: September 1, 2015
First decision: November 6, 2015
Revised: November 14, 2015
Accepted: December 3, 2015
Article in press: December 4, 2015
Published online: January 28, 2016
Core Tip

Core tip: Magnetic resonance elastography (MRE) is a non-invasive technique for probing the mechanical properties of biologic tissues. The three main steps involved in the MRE technique include the production of mechanical waves in soft tissues, the adoption of a modified phase-contrast MR sequence to image wave motion, and the application of an inversion algorithm to convert the wave image into an elastogram. MRE has received validation for the non-invasive assessment and grading of fibrosis in chronic liver disease patients. MRE also has potential diagnostic applications in other organ systems and may help further the understanding of disease processes.