Review
Copyright ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Sep 15, 2018; 9(9): 141-148
Published online Sep 15, 2018. doi: 10.4239/wjd.v9.i9.141
Effects of antidiabetic drugs on epicardial fat
Eleni Xourgia, Athanasia Papazafiropoulou, Andreas Melidonis
Eleni Xourgia, Athanasia Papazafiropoulou, Andreas Melidonis, 1st Department of Internal Medicine and Diabetes Center, Tzaneio General Hospital of Piraeus, Athens 18536, Greece
Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.
Conflict-of-interest statement: No potential conflicts of interest. No financial support.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Athanasia Papazafiropoulou, MD, MSc, PhD, Attending Doctor, Research Scientist, 1st Department of Internal Medicine and Diabetes Center, Tzaneio General Hospital of Piraeus, 1 Zanni and Afentouli Street, Athens 18536, Greece. pathan@ath.forthnet.gr
Telephone: +30-697-996483
Received: April 20, 2018
Peer-review started: April 21, 2018
First decision: June 8, 2018
Revised: June 19, 2018
Accepted: June 28, 2018
Article in press: June 28, 2018
Published online: September 15, 2018
Abstract

Epicardial adipose tissue is defined as a deposit of adipocytes with pathophysiological properties similar to those of visceral fat, located in the space between the myocardial muscle and the pericardial sac. When compared with subcutaneous adipose tissue, visceral adipocytes show higher metabolic activity, lipolysis rates, increased insulin resistance along with more steroid hormone receptors. The epicardial adipose tissue interacts with numerous cardiovascular pathways via vasocrine and paracrine signalling comprised of pro- and anti-inflammatory cytokines excretion. Both the physiological differences between the two tissue types, as well as the fact that fat distribution and phenotype, rather than quantity, affect cardiovascular function and metabolic processes, establish epicardial fat as a biomarker for cardiovascular and metabolic syndrome. Numerous studies have underlined an association of altered epicardial fat morphology, type 2 diabetes mellitus (T2DM) and adverse cardiovascular events. In this review, we explore the prospect of using the epicardial adipose tissue as a therapeutic target in T2DM and describe the underlying mechanisms by which the antidiabetic drugs affect the pathophysiological processes induced from adipose tissue accumulation and possibly allow for more favourable cardiovascular outcomes though epicardial fat manipulation.

Keywords: Epicardial fat, Adipose tissue, Type 2 diabetes mellitus, Antidiabetic drugs

Core tip: In this review, we aim to create a concise overview of the pathophysiology concerning the epicardial fat deposits on a type 2 diabetic individual, while, delving into the intricacies of each antidiabetic drug and exploring the manner by which it interacts with visceral fat accumulation in the sub-pericardial space.