Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.104172
Revised: January 20, 2025
Accepted: February 26, 2025
Published online: May 15, 2025
Processing time: 138 Days and 18.6 Hours
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours of the digestive system worldwide. The expression of Ki-67 is crucial for the diagnosis, treatment, and prognostic evaluation of HCC.
To construct a machine learning model for the preoperative evaluation of Ki-67 expression in HCC and to assist in clinical decision-making.
This study included 164 pathologically confirmed HCC patients. Radiomic features were extracted from the computed tomography images reconstructed by superresolution of the intratumoral and peritumoral regions. Features were selected via the intraclass correlation coefficient, t tests, Pearson correlation coefficients and least absolute shrinkage and selection operator regression methods, and models were constructed via various machine learning methods. The best model was selected, and the radiomics score (Radscore) was calculated. A nomogram incorporating the Radscore and clinical risk factors was constructed. The predictive performance of each model was evaluated via receiver operating characteristic (ROC) curves and calibration curves, and decision curve analysis was used to assess the clinical benefits.
In total, 164 HCC patients, namely, 104 patients with high Ki-67 expression and 60 with low Ki-67 expression, were included. Compared with the models in which only intratumoral or peritumoral features were used, the fusion model in which intratumoral and peritumoral features were combined demonstrated stronger predictive ability. Moreover, the clinical-radiomics model including the Radscore and clinical features had higher predictive performance than did the fusion model (area under the ROC curve = 0.848 vs 0.780 in the training group, area under the ROC curve = 0.830 vs 0.760 in the validation group). The calibration curve showed good consistency between the predicted probability and the actual probability, and the decision curve further confirmed its clinical benefit.
A machine learning model based on the radiomic features of the intratumoral and peritumoral regions on superresolution computed tomography in conjunction with clinical factors can accurately evaluate Ki-67 expression. The model provides valuable assistance in selecting treatment strategies for HCC patients and contributes to research on neoadjuvant therapy for liver cancer.
Core Tip: Ki-67 expression is significantly correlated with hepatocellular carcinoma prognosis, and preoperative prediction of Ki-67 expression is crucial. To date, scholars have used radiomic features of tumour regions to predict their expression but have overlooked the important role of the peritumoral region. The findings in this study indicate that machine learning models that fully utilize the features of radiomics, tumour surrounding areas, and clinical factors can more accurately predict Ki-67 expression in hepatocellular carcinoma, thereby helping to improve personalized treatment strategies for liver cancer patients.