Basic Study
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jun 26, 2021; 13(6): 645-658
Published online Jun 26, 2021. doi: 10.4252/wjsc.v13.i6.645
Chondrogenic potential of mesenchymal stem cells from horses using a magnetic 3D cell culture system
Joice Fülber, Fernanda R Agreste, Sarah R T Seidel, Eric D P Sotelo, Ângela P Barbosa, Yara M Michelacci, Raquel Y A Baccarin
Joice Fülber, Fernanda R Agreste, Sarah R T Seidel, Eric D P Sotelo, Ângela P Barbosa, Raquel Y A Baccarin, Departamento de Clínica Médica, Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05506-270, Brazil
Yara M Michelacci, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
Author contributions: Fülber J, Michelacci YM, and Baccarin RYA designed the study and wrote the manuscript; Baccarin RYA was responsible for obtaining funds; Fülber J, Agreste FR, Seidel SRT, Sotelo EDP, Barbosa AP collected tissue samples; Fülber J, Michelacci YM, and Baccarin RYA conducted the experimental analysis; Fülber J performed cell culture, chondrogenic differentiation of mesenchymal stem cells and all laboratory tests; all authors read and approved the final manuscript.
Supported by Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, No. 001.
Institutional review board statement: The study was reviewed and approved by Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP).
Institutional animal care and use committee statement: The present work was approved by the Committee for Ethics in Research of the University of São Paulo (CEUA/USP, 1143080617), and it was carried out in accordance with USP guidelines, ARRIVE guidelines, and the EC Directive 2010/63/EU for animal experiments (http://ec.europa.eu/environment/chemicals/Lab_animals/Legislation_en.htm).
Conflict-of-interest statement: Authors of this manuscript have no conflicts of interest to disclose.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Joice Fülber, PhD, Postdoc, Departamento de Clínica Médica, Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87 Cidade Universitária, São Paulo 05506-270, Brazil. jfulber@usp.br
Received: February 5, 2021
Peer-review started: February 5, 2021
First decision: March 17, 2021
Revised: March 29, 2021
Accepted: June 4, 2021
Article in press: June 4, 2021
Published online: June 26, 2021
Core Tip

Core Tip: As a method no yet studied in equine chondrocytes, chondrogenic differentiation was performed in three-dimensional plate culture, using technology with biocompatible nanoparticles consisting of gold, iron oxide and poly-L-lysine, forming microspheroids. It has been shown that this technique is advantageous, as it allows for aggregation and a lower number of cells, ensuring high cell density, providing an adequate microenvironment for the differentiation and phenotypic expression of chondrocytes.