1
|
Mivehchi H, Eskandari-Yaghbastlo A, Emrahoglu S, Saeidpour Masouleh S, Faghihinia F, Ayoubi S, Nabi Afjadi M. Tiny messengers, big Impact: Exosomes driving EMT in oral cancer. Pathol Res Pract 2025; 268:155873. [PMID: 40022766 DOI: 10.1016/j.prp.2025.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Exosomes are indispensable extracellular vesicles that facilitate intercellular communication and are crucial for both healthy and pathological conditions, including cancer. The capacity of exosomes to echo the molecular characteristics of their cells of origin, including malignant cells, makes them indispensable tools for diagnosing and tracking disease progression in the field of oncology. Oral squamous cell carcinoma (OSCC), which has been identified as the sixth most prevalent cancer worldwide, has been linked to numerous risk factors, including tobacco use, alcohol consumption, human papillomavirus (HPV) infection, and inadequate oral hygiene. Exosomes pointedly influence the advancement of oral cancer via promoting tumor cell growth, invasion, angiogenesis, and immune evasion through the alteration of the tumor microenvironment. A critical apparatus in cancer metastasis is the epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire improved migratory and invasive properties. EMT plays a role in metastasis, resistance to treatment, and evasion of the immune response. Exosomes facilitate EMT in oral cancer by delivering bioactive molecules that influence EMT signaling pathways. These exosomes inspire EMT in recipient cells, by this means enhancing tumor invasion and metastasis. This study aims to identify the specific exosomal components and signaling pathways that are tangled in EMT, in that way providing new avenues for targeted therapies designed to hinder the metastasis of oral cancer.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saminalsadat Ayoubi
- School of Dental Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Patel HV, Shah FD. Mapping the intricacies of GLI1 in hedgehog signaling: A combined bioinformatics and clinical analysis in Head & Neck cancer in Western India. Curr Probl Cancer 2024; 53:101146. [PMID: 39265246 DOI: 10.1016/j.currproblcancer.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Activation of various cancer stem cell pathways are thought to be responsible for treatment failure and loco-regional recurrence in Head and Neck cancer. Hedgehog signaling, a major cancer stem signaling pathway plays a major role in relapse of disease. GLI1, a transcription activator, plays an important role in canonical/non-canonical activation of Hedgehog signaling. METHODS Data for H&N cancer patients were collected from The Cancer Genome Atlas- H&N Cancer (TCGA-HNSC). GLI1 co-expressed genes in TCGA-HNSC were then identified using cBioPortal and subjected to KEGG pathway analysis by DAVID tool. Network Analyzer and GeneMania plugins from CytoScape were used to identify hub genes and predict a probable pathway from the identified hub genes respectively. To confirm the hypothesis, real-time gene expression was carried out in 75 patients of head and neck cancer. RESULTS Significantly higher GLI1 expression was observed in tumor tissues of H&N cancer and it also showed worst overall survival. Using cBioPortal tool, 2345 genes were identified that were significantly co-expressed with GLI1. From which, 15 hub genes were identified through the Network Analyzer plugin in CytoScape. A probable pathway prediction based on hub genes showed the interconnected molecular mechanism and its role in non-canonical activation of Hedgehog pathway by altering the GLI1 activity. The expressions of SHH, GLI1 and AKT1 were significant with each other and were found to be significantly associated with Age, Lymph-Node status and Keratin. CONCLUSION The study emphasizes the critical role of the Hh pathway's activation modes in H&N cancer, particularly highlighting the non-canonical activation through GLI1 and AKT1. The identification of SHH, GLI1 and AKT1 as potential diagnostic biomarkers and their association with clinic-pathological parameters underscores their relevance in prognostication and treatment planning. Hh pathway activation through GLI1 and its cross-talk with various pathways opens up the possibility of newer treatment strategies and developing a panel of therapeutic targets in H&N cancer patients.
Collapse
Affiliation(s)
- Hitarth V Patel
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
3
|
Zou J, Yang S, He C, Deng L, Xu B, Chen S. miR-630 as a therapeutic target in pancreatic cancer stem cells: modulation of the PRKCI-Hedgehog signaling axis. Biol Direct 2024; 19:109. [PMID: 39529141 PMCID: PMC11555831 DOI: 10.1186/s13062-024-00539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are critical regulators of cancer progression, prompting our investigation into the specific function of miR-630 in pancreatic cancer stem cells (PCSCs). Analysis of miRNA and mRNA expression data in PCSCs revealed downregulation of miR-630 and upregulation of PRKCI, implying a potential role for miR-630 in PCSC function and tumorigenicity. RESULTS Functional assays confirmed that miR-630 directly targets PRKCI, leading to the suppression of the Hedgehog signaling pathway and consequent inhibition of PCSC self-renewal and tumorigenicity in murine models. This study unveiled the modulation of the PRKCI-Hedgehog signaling axis by miR-630, highlighting its promising therapeutic potential for pancreatic cancer (PC) treatment. CONCLUSIONS MiR-630 emerges as a pivotal regulator in PCSC biology, opening up new avenues for targeted interventions in PC. The inhibitory effect of miR-630 on PCSC behavior underscores its potential as a valuable therapeutic target, offering insights into innovative treatment strategies for this challenging disease.
Collapse
Affiliation(s)
- Jun Zou
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Sha Yang
- Department of Nursing, Jiangxi College of Traditional Chinese Medicine, Fuzhou, Jiangxi Province, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Lei Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Bangran Xu
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Shuai Chen
- Department of General Surgery, The Affiliated Hospital of Jiaxing University, No. 1882, Southern Zhonghuan Road, Jiaxing, Zhejiang, 314001, China.
| |
Collapse
|
4
|
Espinosa-Bustos C, Bertrand J, Villegas-Menares A, Guerrero S, Di Marcotullio L, Navacci S, Schulte G, Kozielewicz P, Bloch N, Villela V, Paulino M, Kogan MJ, Cantero J, Salas CO. New Smoothened ligands based on the purine scaffold as potential agents for treating pancreatic cancer. Bioorg Chem 2024; 151:107681. [PMID: 39106711 DOI: 10.1016/j.bioorg.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 μM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 μM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Alondra Villegas-Menares
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Simón Guerrero
- Facultad de Medicina, Universidad de Atacama, 153601 Copiapó, Chile
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, 00161 Rome, Italy
| | - Shirin Navacci
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Nicolas Bloch
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Valentina Villela
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Margot Paulino
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380492 Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, 8380492 Santiago, Chile
| | - Jorge Cantero
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile.
| |
Collapse
|
5
|
Chen J, Chen W, Li X, Ye Y, Huang W, Gao L, Zhang M. CBC-1 as a Cynanbungeigenin C derivative inhibits the growth of colorectal cancer through targeting Hedgehog pathway component GLI 1. Steroids 2024; 206:109421. [PMID: 38614233 DOI: 10.1016/j.steroids.2024.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers that results in death in worldwide. The Hedgehog (HH) signalling pathway regulates the initiation and progression of CRC. Inhibiting the HH pathway has been presented as a potential treatment strategy in recent years. Cynanbungeigenin C (CBC) is a new type of C21 steroid that has been previously reported for the treatment of medulloblastoma. However, its further investigation was limited by its poor water solubility. In this study, six new CBC derivatives were synthesized through the structural modification of CBC, and four of them showed better water solubility than CBC. Moreover, their antiproliferative activities on CRC were evaluated. It was found that CBC-1 presented the best inhibitory effect on three types of CRC cell lines, and this effect was superior to that of CBC. Mechanistically, CBC-1 inhibited the proliferation of CRC cells through regulation of mRNA and proteins of the HH pathway according to qRT-PCR and Western blotting analysis. Furthermore, Cellular Thermal Shift Assay results indicated that CBC-1 regulated this signalling pathway by targeting glioma‑associated oncogene (GLI 1).In addition, cell apoptosis was induced increasingly by transfection with GLI 1 siRNA or treatment with CBC-1 to downregulate GLI 1. Last, the in vivo results demonstrated that CBC-1 significantly reduced tumour size and downregulated GLI 1 in CRC. Therefore, this study suggests that CBC-1, a new GLI 1 inhibitor derived from natural products, may be developed as a potential antitumour candidate for CRC treatment.
Collapse
Affiliation(s)
- Jinwen Chen
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, China
| | - Wei Chen
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, China
| | - Xiaoyu Li
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, China.
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenkang Huang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Meng Zhang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
7
|
Amrati FEZ, Elmadbouh OHM, Chebaibi M, Soufi B, Conte R, Slighoua M, Saleh A, Al Kamaly O, Drioiche A, Zair T, Edderkaoui M, Bousta D. Evaluation of the toxicity of Caralluma europaea ( C.E) extracts and their effects on apoptosis and chemoresistance in pancreatic cancer cells. J Biomol Struct Dyn 2023; 41:8517-8534. [PMID: 36271642 DOI: 10.1080/07391102.2022.2135595] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Pancreatic adenocarcinoma is a disease with no effective treatment. Chemo-resistance contributes to the dismal prognosis for patients diagnosed with the disease. This study aims to evaluate the toxicity and the effect of Caralluma europaea (C.E) extracts on cancer cell survival, apoptosis, chemo-resistance, and pro-cancer pathways, in pancreatic cancer. The acute and subacute toxicities of C.E extracts were evaluated. The cytotoxic effect on pancreatic cancer cell survival and apoptosis was determined by MTT assay and DNA fragmentation. The expression of cancer stemness markers was measured using Western blot. A molecular docking was used to test the possible effects of C.E compounds in inhibiting the Hedgehog and activating caspase-3. The hydroethanolic extract's DL50 was over 5000 mg/kg. During the subacute toxicity, only saponins extract showed some hepatic toxicity signs. Cells treated with C.E extracts combined with gemcitabine revealed an additive anti-survival activity. C.E extracts sensitized resistant MIA-PaCa-2 to gemcitabine treatment. Most of the C.E extracts downregulated the expression of cancer stemness-associated genes. Luteolin-7-O-glucoside presented the highest docking Gscore on human Smoothened. Isorhamnetin-3-O-rutinoside induced apoptosis via activation of caspase-3. C.E extracts can be considered safe in inhibiting pancreatic cancer cell survival, inducing apoptosis, and sensitizing cells to chemotherapy via Hedgehog inhibition and caspase-3 activation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Omer Hany Miligy Elmadbouh
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badr Soufi
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Naples, Italy
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources. Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Touria Zair
- Laboratory of Innovative Materials and Biotechnology of Natural Resources. Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dalila Bousta
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
8
|
Guo F, Kan K, Rückert F, Rückert W, Li L, Eberhard J, May T, Sticht C, Dirks WG, Reißfelder C, Pallavi P, Keese M. Comparison of Tumour-Specific Phenotypes in Human Primary and Expandable Pancreatic Cancer Cell Lines. Int J Mol Sci 2023; 24:13530. [PMID: 37686338 PMCID: PMC10488093 DOI: 10.3390/ijms241713530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
There is an ongoing need for patient-specific chemotherapy for pancreatic cancer. Tumour cells isolated from human tissues can be used to predict patients' response to chemotherapy. However, the isolation and maintenance of pancreatic cancer cells is challenging because these cells become highly vulnerable after losing the tumour microenvironment. Therefore, we investigated whether the cells retained their original characteristics after lentiviral transfection and expansion. Three human primary pancreatic cancer cell lines were lentivirally transduced to create expandable (Ex) cells which were then compared with primary (Pri) cells. No obvious differences in the morphology or epithelial-mesenchymal transition (EMT) were observed between the primary and expandable cell lines. The two expandable cell lines showed higher proliferation rates in the 2D and 3D models. All three expandable cell lines showed attenuated migratory ability. Differences in gene expression between primary and expandable cell lines were then compared using RNA-Seq data. Potential target drugs were predicted by differentially expressed genes (DEGs), and differentially expressed pathways (DEPs) related to tumour-specific characteristics such as proliferation, migration, EMT, drug resistance, and reactive oxygen species (ROS) were investigated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found that the two expandable cell lines expressed similar chemosensitivity and redox-regulatory capability to gemcitabine and oxaliplatin in the 2D model as compared to their counterparts. In conclusion, we successfully generated expandable primary pancreatic cancer cell lines using lentiviral transduction. These expandable cells not only retain some tumour-specific biological traits of primary cells but also show an ongoing proliferative capacity, thereby yielding sufficient material for drug response assays, which may provide a patient-specific platform for chemotherapy drug screening.
Collapse
Affiliation(s)
- Feng Guo
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Kejia Kan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Rückert
- Surgical Department, Diakonissen Krankenhaus Speyer, 67346 Speyer, Germany;
| | - Wolfgang Rückert
- Ingenieurbüro Dr. Ing. Rückert Data Analysis, Kirchweg 4, 57647 Nistertal, Germany;
| | - Lin Li
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany;
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany;
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Keese
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Vascular Surgery, Theresienkrankenhaus, 68165 Mannheim, Germany
| |
Collapse
|
9
|
Pospieszna J, Dams-Kozlowska H, Udomsak W, Murias M, Kucinska M. Unmasking the Deceptive Nature of Cancer Stem Cells: The Role of CD133 in Revealing Their Secrets. Int J Mol Sci 2023; 24:10910. [PMID: 37446085 DOI: 10.3390/ijms241310910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer remains a leading cause of death globally, and its complexity poses a significant challenge to effective treatment. Cancer stem cells and their markers have become key players in tumor growth and progression. CD133, a marker in various cancer types, is an active research area as a potential therapeutic target. This article explores the role of CD133 in cancer treatment, beginning with an overview of cancer statistics and an explanation of cancer stem cells and their markers. The rise of CD133 is discussed, including its structure, functions, and occurrence in different cancer types. Furthermore, the article covers CD133 as a therapeutic target, focusing on gene therapy, immunotherapy, and approaches to affect CD133 expression. Nanoparticles such as gold nanoparticles and nanoliposomes are also discussed in the context of CD133-targeted therapy. In conclusion, CD133 is a promising therapeutic target for cancer treatment. As research in this area progresses, it is hoped that CD133-targeted therapies will offer new and effective treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary Street, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Wachirawit Udomsak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10 Street, 61-614 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| |
Collapse
|
10
|
Agrawal R, Natarajan KN. Oncogenic signaling pathways in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:251-283. [PMID: 37268398 DOI: 10.1016/bs.acr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.
Collapse
Affiliation(s)
- Rahul Agrawal
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
11
|
Kafita D, Nkhoma P, Zulu M, Sinkala M. Proteogenomic analysis of pancreatic cancer subtypes. PLoS One 2021; 16:e0257084. [PMID: 34506537 PMCID: PMC8432812 DOI: 10.1371/journal.pone.0257084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer remains a significant public health problem with an ever-rising incidence of disease. Cancers of the pancreas are characterised by various molecular aberrations, including changes in the proteomics and genomics landscape of the tumour cells. Therefore, there is a need to identify the proteomic landscape of pancreatic cancer and the specific genomic and molecular alterations associated with disease subtypes. Here, we carry out an integrative bioinformatics analysis of The Cancer Genome Atlas dataset, including proteomics and whole-exome sequencing data collected from pancreatic cancer patients. We apply unsupervised clustering on the proteomics dataset to reveal the two distinct subtypes of pancreatic cancer. Using functional and pathway analysis based on the proteomics data, we demonstrate the different molecular processes and signalling aberrations of the pancreatic cancer subtypes. In addition, we explore the clinical characteristics of these subtypes to show differences in disease outcome. Using datasets of mutations and copy number alterations, we show that various signalling pathways previously associated with pancreatic cancer are altered among both subtypes of pancreatic tumours, including the Wnt pathway, Notch pathway and PI3K-mTOR pathways. Altogether, we reveal the proteogenomic landscape of pancreatic cancer subtypes and the altered molecular processes that can be leveraged to devise more effective treatments.
Collapse
Affiliation(s)
- Doris Kafita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Panji Nkhoma
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Mildred Zulu
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Musalula Sinkala
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- * E-mail:
| |
Collapse
|
12
|
Zhang LL, He QK, Lv YN, Zhang ZJ, Xiang YK. Expression pattern and prognostic value of circadian clock genes in pancreatic adenocarcinoma. Chronobiol Int 2021; 38:681-693. [PMID: 33691542 DOI: 10.1080/07420528.2021.1890760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Accumulating studies indicate that circadian clock genes are pivotal regulators of tumorigenesis and development of various cancers. Nevertheless, their implications in pancreatic adenocarcinoma (PAAD) remain poorly characterized. We investigated the expression pattern of circadian clock genes and evaluated their prognostic values in PAAD. Firstly, we systematically analyzed data from The Cancer Genome Atlas (TCGA) database pertaining to patient clinical information and gene expression data. We found that 19 of 20 circadian clock genes showed significantly different expression levels in comparisons between PAAD and normal tissues. In addition, 10 circadian clock genes with regression coefficients were selected to construct a new risk signature, which was then identified as an independent prognostic factor for PAAD. Mechanistically, circadian clock genes in PAAD may impact the basic state of cells and the composition of tumor-infiltrating immune cells, thus affecting disease prognosis. Finally, we construct a novel prognostic nomogram on the basis of histological nodes and risk score to precisely predict prognosis of patients with PAAD. In conclusion, our study uncovered the important role of circadian clock genes in PAAD and developed a risk signature as a promising prognostic biomarker for patients with PAAD.
Collapse
Affiliation(s)
- Le-Le Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qi-Kuan He
- Department of General Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yan-Ning Lv
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jing Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Kai Xiang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Li Z, Mao S, Zhang N. Inhibition of TGF-β1 on Gli2 expression was promoted by TNF-α in primary leukemia cells. J Recept Signal Transduct Res 2021; 42:169-172. [PMID: 33615977 DOI: 10.1080/10799893.2021.1881555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Hedgehog (Hh) signaling pathway regulates a variety of tumors-related diseases including leukemia. Whether inhibition of TGF-β1 on Gli2 expression is promoted by TNF-α in primary leukemia cells remains to be determined. METHODS Primary leukemia cells were treated with TGF-β1, TNF-α or SIS3 at different concentrations. Gli2 expression was detected by quantitative real-time PCR and western blot analyses. RESULTS We found that TGF-β significantly decreased Gli2 expression, and co-treatment with TNF-αfurther decreased Gli2 expression in primary leukemia cells. TNF-α can increased TGF-βRI and TGF-βRII protein expression in primary leukemia cells, while SIS3 inhibited the effect of TGF-β. CONCLUSION Our results suggest that Gli2 expression in primary leukemia cells is induced by TGF-β in a Smad3-dependent manner, and independent of Hh receptor signaling.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, P. R. China
| | - Shudan Mao
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, P. R. China
| | - Ning Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Liaoning, P. R. China
| |
Collapse
|
14
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
15
|
Lei D, Hu G, Chen Y, Hao T, Gao Y, Luo F. Forkhead Box S1 Inhibits the Progression of Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:11839-11848. [PMID: 33235470 PMCID: PMC7680191 DOI: 10.2147/ott.s272596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction Forkhead box (FOX) superfamily members were recently shown to play important roles in tumor development and progression. Forkhead box S1 (FOXS1), a member of the FOX family, has been reported to be closely associated with malignant neoplasms. However, its expression and effect on hepatocellular carcinoma remain unclear. The aim of this study was to determine the expression and role of FOXS1 in hepatocellular carcinoma (HCC). Methods Real-time PCR, Western blot and immunohistochemistry assays were carried out to determine FOXS1 expression in HCC tissues and cells. The biological roles of FOXS1 in HCC were investigated using CCK-8, colony formation, transwell and wound healing. Additionally, the effect of FOXS1 on epithelial-mesenchymal transition (EMT) was investigated by Western blotting. Xenograft model was carried out to evaluate the effect of FOXS1 in vivo. Results In our study, we confirmed lower FOXS1 expression in HCC samples than in normal liver tissues by performing Western blotting, immunohistochemistry and real-time PCR assays. In addition, FOXS1 expression is strongly associated with the prognosis of patients with HCC. Overexpression of FOXS1 suppressed cell proliferation, colony formation, the epithelial-mesenchymal transition (EMT) and the hedgehog (Hh) signaling pathway in vitro and in vivo. SAG, an activator of Hh signaling, partially reversed the effect of FOXS1 overexpression on HCC cells. Conclusion FOXS1 might suppress HCC cell proliferation, colony formation, and EMT by inhibiting the Hh signaling pathway, indicating that FOXS1 may be a promising biological target in HCC.
Collapse
Affiliation(s)
- Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Gangli Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yue Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tuantuan Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020; 9:cells9102316. [PMID: 33081032 PMCID: PMC7603200 DOI: 10.3390/cells9102316] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling and mTOR signaling, essential for embryonic development and cellular metabolism, are both coordinated by the primary cilium. Observations from cancer cells strongly indicate crosstalk between Hh and mTOR signaling. This hypothesis is supported by several studies: Evidence points to a TGFβ-mediated crosstalk; Increased PI3K/AKT/mTOR activity leads to increased Hh signaling through regulation of the GLI transcription factors; increased Hh signaling regulates mTORC1 activity positively by upregulating NKX2.2, leading to downregulation of negative mTOR regulators; GSK3 and AMPK are, as members of both signaling pathways, potentially important links between Hh and mTORC1 signaling; The kinase DYRK2 regulates Hh positively and mTORC1 signaling negatively. In contrast, both positive and negative regulation of Hh has been observed for DYRK1A and DYRK1B, which both regulate mTORC1 signaling positively. Based on crosstalk observed between cilia, Hh, and mTORC1, we suggest that the interaction between Hh and mTORC1 is more widespread than it appears from our current knowledge. Although many studies focusing on crosstalk have been carried out, contradictory observations appear and the interplay involving multiple partners is far from solved.
Collapse
|
17
|
Rupika Sunidhi C, Jeyaprakash MR, Rajeshkumar R. Sonic Hedgehog gene as a potential target for the early prophylactic detection of cancer. Med Hypotheses 2020; 137:109534. [PMID: 32001417 DOI: 10.1016/j.mehy.2019.109534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/22/2023]
Abstract
In the search for newer and advanced methods for the detection of cancer, quicker and non-invasive techniques are imperative. One such potential approach for detection is the detection of oncogenes in the suspected tumour tissues. This search has led to the identification of the oncogene SHh, which is a key influencer in the tumourigenic pathways. Therefore, a cancer detection method, which would target the identification of the oncogene SHh would therefore be a step forward in the advancement of cancer research.
Collapse
Affiliation(s)
- C Rupika Sunidhi
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| | - M R Jeyaprakash
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India.
| | - Raman Rajeshkumar
- Department of Biotechnology, JSS College of Pharmacy, Udhagamandalam, Tamil Nadu, India
| |
Collapse
|
18
|
Wu MY, Gao F, Yang XM, Qin X, Chen GZ, Li D, Dang BQ, Chen G. Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury. Brain Res 2020; 1727:146553. [DOI: 10.1016/j.brainres.2019.146553] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
|
19
|
Li N, Yu Y, Wang B. Downregulation of AAA-domain-containing protein 2 restrains cancer stem cell properties in esophageal squamous cell carcinoma via blockade of the Hedgehog signaling pathway. Am J Physiol Cell Physiol 2019; 319:C93-C104. [PMID: 31747529 DOI: 10.1152/ajpcell.00133.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) ranks among the five most common cancers in China and has a five-year survival rate of less than 15%. The transcription factor ATPase-family AAA-domain-containing protein 2 (ATAD2) has potential as a therapeutic target in various tumors, and microarray-based gene expression profiling reveals dysregulation of ATAD2 specifically in ESCC. Here we investigated whether ATAD2 could mediate a regulation of cancer stem cell (CSC) biological functions in ESCC. Immunohistochemical staining, reverse transcription quantitative polymerase chain reaction, and Western blot assays all revealed upregulation of ATAD2 in ESCC tissues and cell lines, which furthermore correlated with progression of ESCC. In loss-of-function experiments, silencing of ATAD2 inhibited activation of the Hedgehog signaling pathway, as indicated by reduced expression of glioma-associated oncogene family zinc finger 1 (Gli1), smoothened frizzled class receptor (SMO), and patched 1 (PTCH1). Investigations with 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, scratch test, flow cytometry, and colony formation assay showed that silencing of ATAD2 or inhibiting the Hedgehog signaling decreased the proliferation, invasion, and migration abilities along with colony formation, but elevated the apoptosis rate of CSCs. Furthermore, in vivo experiments validated the suppressive effect of siRNA-mediated ATAD2 silencing on tumor growth in nude mice. Thus, downregulation of ATAD2 can seemingly restrain the malignant phenotypes of ESCC cells through inhibition of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Nuo Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yang Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoming Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
20
|
Zhang YB, Fei HX, Guo J, Zhang XJ, Wu SL, Zhong LL. Dauricine suppresses the growth of pancreatic cancer in vivo by modulating the Hedgehog signaling pathway. Oncol Lett 2019; 18:4403-4414. [PMID: 31611949 PMCID: PMC6781764 DOI: 10.3892/ol.2019.10790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is a highly malignant cancer associated with high expression levels of sonic hedgehog signaling molecule (Shh), patched 1 (Ptch1), smoothened frizzled class receptor (Smo) and glioma-associated oncogene family zinc finger 1 (Gli1) in the hedgehog (Hh) signaling pathway. Inhibition of the Hh signaling pathway is a potential therapeutic target for pancreatic cancer. The aim of the present study was to investigate the effects of dauricine in a pancreatic cancer BxPC-3 ×enograft animal model and examine the underlying molecular mechanisms through Hh signaling pathway. High-and low-dose dauricine treatment significantly suppressed tumor growth with no concomitant effect on the spleen index. In addition, dauricine induced apoptosis and cell cycle arrest in pancreatic cancer BxPC-3 cells. The inhibitory effects of dauricine on pancreatic cancer may be mediated by the suppression of the Hh signaling pathway, as indicated by the decreases in the gene and protein expression levels of Shh, Ptch1, Smo and Gli1. The effects of dauricine were similar to those of 5-fluorouracil. Dauricine, a naturally occurring alkaloid, may be a potential anticancer agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ying-Bo Zhang
- Ultramicropathology Experimental Center, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hong-Xin Fei
- Department of Basic Medicine, School of Nursing and Rehabilitation, Xinyu University, Xinyu, Jiangxi 338004, P.R. China
| | - Jia Guo
- Pathogenic Biology and Immunology Experimental Teaching Center, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xiao-Jie Zhang
- Ultramicropathology Experimental Center, Pathology College, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shu-Liang Wu
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Li-Li Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
21
|
Lin X, Zhang Y, Pan Y, He S, Dai Y, Zhu B, Wei C, Xin L, Xu W, Xiang C, Zhang S. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2. Biol Reprod 2019; 98:480-490. [PMID: 29329377 DOI: 10.1093/biolre/ioy005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis, which ultimately leads to menstrual abnormalities, infertility, and recurrent miscarriages. The Shh/Gli2 pathway plays a critical role in tissue fibrogenesis and regeneration; Gli2 activation induces profibrogenic effects in various tissues, such as the liver and kidney. However, the role of Gli2 in endometrial fibrosis remains unknown. The purpose of this study was to test the hypothesis that activated Gli2 promotes endometrial fibrosis. Endometrial samples from moderate and severe IUA patients exhibited significantly enhanced expression of Gli2 compared with normal endometrial samples and mild IUA samples. Transfection with overactive Gli2 plasmids induced higher fibrosis-related protein expression, while blocking Gli2 signaling with cyclopamine caused the opposite effect in endometriotic stromal cells (ESCs), including inducing cell-cycle arrest. Menstrual-derived stem cell conditioned medium (MenSCs-CM) reduced endometrial fibrosis by reducing Gli2 protein levels and causing cell-cycle arrest in ESCs through granulocyte-colony stimulating factor (G-CSF). The effect was weakened after neutralization with a G-CSF antibody. Gli2 overexpression reduced the effects of MenSC-CM and G-CSF on fibrosis and cell-cycle progression in vitro. The antifibrotic effect of G-CSF was also observed in murine model. These findings demonstrate that Gli2 signaling promotes endometrial fibrosis, and the inhibition of Gli2 through MenSCs-secreted G-CSF may be of therapeutic value for managing endometrial fibrosis.
Collapse
Affiliation(s)
- Xiaona Lin
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yanling Zhang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yibin Pan
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Shilin He
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongdong Dai
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Bingqing Zhu
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Cheng Wei
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Liaobing Xin
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Wenzhi Xu
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chunsheng Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songying Zhang
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
22
|
Salaritabar A, Berindan-Neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA, Gulei D, Nabavi SF, Sureda A, Daglia M, Dehpour AR, Nabavi SM, Shirooie S. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res 2019; 141:466-480. [DOI: 10.1016/j.phrs.2019.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/24/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
|
23
|
Nanta R, Shrivastava A, Sharma J, Shankar S, Srivastava RK. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells. Mol Cell Biochem 2018; 454:11-23. [PMID: 30251117 DOI: 10.1007/s11010-018-3448-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022]
Abstract
Since PI3K/Akt/mTOR and sonic hedgehog (SHH) signaling pathways are highly activated in glioblastoma-initiating cells (GICs), we examined the effects of inhibiting these pathways on GIC characteristics and tumor growth in mice. NVP-LDE-225 (inhibitor of Smoothened) inhibited the expression of Gli1, Gli2, Smoothened, Patched1, and Patched2, and induced the expression of SuFu, whereas NVP-BEZ-235 (dual inhibitor of PI3K and mTOR) inhibited the expression of p-PI3K, p-Akt, p-mTOR, and p-p70S6K. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting the self-renewal capacity of GICs, expression of pluripotency maintaining factors (Nanog, c-Myc, Oct4, and Sox2), Musashi1, cyclin D1, and Bcl-2, and transcription and expression of Gli, and in inducing the expression of cleaved caspase-3, cleaved PARP and Bim. Additionally, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting epithelial-mesenchymal transition. Finally, the combination of NVP-LDE-225 and NVP-BEZ-235 was superior in inhibiting tumor growth, regulating the expression of pluripotency promoting factors, stem cell markers, cell cycle, and cell proliferation, and modulating EMT compared to single agent alone. In conclusion, the combined inhibition of PI3K/Akt/mTOR and SHH pathways was superior to single pathway inhibition in suppressing glioblastoma growth by targeting GICs.
Collapse
Affiliation(s)
- Rajesh Nanta
- Ingenious e-Brain Solutions, 208 Welldone Tech Park, Gurugram, Haryana, India.
| | | | - Jay Sharma
- Celprogen Inc., 3914 Del Amo Blvd. Suite 901, Torrance, CA, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, USA.,Department of Pathology, University of Missouri-School of Medicine, Kansas City, MO, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70119, USA.,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, USA. .,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
24
|
Shi G, Zhang H, Yu Q, Jin H, Hu C, Li S, Ji Y. Epigenetic silencing of sonic hedgehog elicits antitumor immune response and suppresses tumor growth by inhibiting the hedgehog signaling pathway in metastatic spine tumors in Sprague‐Dawley rats. J Cell Biochem 2018; 119:9591-9603. [PMID: 30191602 DOI: 10.1002/jcb.27277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Guang Shi
- Department of Hematology and Oncology The Second Hospital of Jilin University Changchun China
| | - Hong Zhang
- Department of Clinical Medicine Changchun Medical College Changchun China
| | - Qiong Yu
- Department of Hematology and Oncology The Second Hospital of Jilin University Changchun China
| | - Hui Jin
- Department of Orthopedic The Second Hospital of Jilin University Changchun China
| | - Chun‐Mei Hu
- Department of Hematology and Oncology The Second Hospital of Jilin University Changchun China
| | - Shu‐Chun Li
- Department of Orthopedic The Second Hospital of Jilin University Changchun China
| | - You‐Bo Ji
- Department of Orthopedic The Second Hospital of Jilin University Changchun China
| |
Collapse
|
25
|
Wang X, Yao Y, Zhu X. The influence of aberrant expression of GLI1/p-S6K on colorectal cancer. Biochem Biophys Res Commun 2018; 503:3198-3204. [PMID: 30143258 DOI: 10.1016/j.bbrc.2018.08.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Recent studies have reported that PI3K/AKT/mTOR pathway regulated the GLI1 expression level via SMO-independent pathway in a variety of tumor types. We detected the expression level of GLI1/p-S6K in CRC tissues. We found the expression of GLI1/p-S6K was apparently close with lymph node metastasis and TNM stage and patients with positive GLI1/p-S6K expression had shorter survival time and patients with both GLI1 and p-S6K positive expression had an even worse overall survival than those with single positive expression. Moreover, GLI1 and p-S6K expression was considered to be independent prognostic factors in CRC patient and the positive co-expression of GLI1/p-S6K had greater influence than single expression positive on the prognosis of postoperative patients with tumor size≥5 cm, well differentiation, positive lymph node metastasis, venous invasion, neural invasion and TNM III-IV. Meanwhile, the GLI1/p-S6K expression had impact on more clinicopathologic features in colon-side carcinoma than in rectum-side carcinoma and the mTOR/S6K/GLI1 axis played an important role in CRC especially in advanced stage. Hence, further studies are underway to explore the molecular mechanism between GLI1 and p-S6K in CRC, and in addition, it offers novel facilities for molecular targeting therapy for CRC.
Collapse
Affiliation(s)
- Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
26
|
Cong P, Yi C, Wang XY. Expression of Smo in pancreatic cancer CD44 +CD24 +cells and construction of a lentiviral expression vector to silence Smo. Oncol Lett 2018; 16:4855-4862. [PMID: 30250551 PMCID: PMC6144425 DOI: 10.3892/ol.2018.9315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
The present study focused on the roles of members of the Hedgehog (Hh) signaling pathway in the maintenance of malignant biological characteristics, such as tumorigenesis, similar to that of pancreatic tumor cells. Cluster of differentiation (CD)44+CD24+/CD44−CD24− cells were isolated from three different pancreatic cancer cell lines by flow cytometry. Among the three pancreatic cancer cell lines, the SW1990 cell line exhibited the highest percentage of CD44+CD24+ cells, which accounted for 39.9% of the total. The expression of members of the Hh signaling pathway in CD44+CD24+/CD44−CD24− cells was detected using reverse transcription-polymerase chain reaction and western blot analysis. The results demonstrated that members of the Hh signaling pathway were differentially expressed in CD44+CD24+ cells compared with CD44−CD24−, normal pancreatic duct cells and unsorted SW1990 cells. In addition, lentiviral expression vectors expressing Smoothened (Smo) small interfering RNA (siRNA) were constructed. Following transfection with the lentiviral expression vectors, Smo expression was markedly reduced in CD44+CD24+ cells. The present study represents a preliminary investigation into the biological characteristics of CD44+CD24+ pancreatic cancer cells.
Collapse
Affiliation(s)
- Peng Cong
- Department of Laparoscopic and Liver Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chao Yi
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Xi-Yan Wang
- Department of Hepato-Pancreato-Biliary Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
27
|
Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis 2018; 9:701. [PMID: 29899399 PMCID: PMC5999604 DOI: 10.1038/s41419-018-0647-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
The Hedgehog (Hh) signalling pathway is involved in cell differentiation, growth and tissue polarity. This pathway is also involved in the progression and invasion of various human cancers. Osteosarcoma, a subtype of bone cancer, is commonly seen in children and adolescents. Typically, pulmonary osteosarcoma metastases are especially difficult to control. In the present paper, we summarise recent studies on the regulation of osteosarcoma progression and metastasis by downregulating Hh signalling. We also summarise the crosstalk between the Hh pathway and other cancer-related pathways in the tumourigenesis of various cancers. We further summarise and highlight the therapeutic value of potential inhibitors of Hh signalling in the clinical therapy of human cancers.
Collapse
|
28
|
Huang S, Huang C, Chen W, Liu Y, Yin X, Lai J, Liang L, Wang Q, Wang A, Zheng C. WAVE3 promotes proliferation, migration and invasion via the AKT pathway in pancreatic cancer. Int J Oncol 2018; 53:672-684. [PMID: 29845225 PMCID: PMC6017243 DOI: 10.3892/ijo.2018.4421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Alterations in Wiskott-Aldrich syndrome protein family verprolinhomologous protein 3 (WAVE3) expression play various roles in certain types of cancer. However, the roles of WAVE3 expression in pancreatic cancer remain unknown. The present retrospective study demonstrated that WAVE3 expression was higher in cancerous pancreatic tissues than in non-neoplastic tissues. Moreover, WAVE3 overexpression was related to lymphatic metastasis, a poor differentiation and high pre-operative CA19-9 levels and was an adverse prognostic factor for patients with pancreatic cancer. In vitro, the knockdown of WAVE3 inhibited the proliferative, migratory and invasive potential of pancreatic cancer cells and promoted cell apoptosis. Western blot analysis demonstrated that WAVE3 influenced the protein kinase B (PBK/AKT) pathway by suppressing the expression of pyruvate dehydrogenase kinase isoform 2 (PDK2) and then negatively inhibiting the phosphorylation of Ser473 on AKT. Furthermore, the expression of AKT pathway downstream proteins [certain epithelial-mesenchymal transition (EMT)-related proteins, p53, Bcl-2 and cyclin D1] was accordingly altered. Taken together, our findings suggest that WAVE3 influences cell proliferation, migration and invasion via the AKT pathway, and targeting WAVE3 and/or the AKT pathway may potentially serve as a treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Shaobin Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chensong Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Chen
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifeng Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoyu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiaming Lai
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lijian Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qian Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chaoxu Zheng
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
29
|
Subramani R, Gonzalez E, Nandy SB, Arumugam A, Camacho F, Medel J, Alabi D, Lakshmanaswamy R. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget 2017; 8:10891-10904. [PMID: 26988754 PMCID: PMC5355232 DOI: 10.18632/oncotarget.8055] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/25/2016] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS Anti–proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti–metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. RESULTS Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti–metastatic effect through inhibition of sonic hedgehog signaling. The anti–cancer effect of gedunin was further validated using xenograft mouse model. CONCLUSION Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA
| | - Elizabeth Gonzalez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Sushmita Bose Nandy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA
| | - Arunkumar Arumugam
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA
| | - Fernando Camacho
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Joshua Medel
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Damilola Alabi
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas-79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas-79905, USA
| |
Collapse
|
30
|
Design, Synthesis and Biological Evaluation of novel Hedgehog Inhibitors for treating Pancreatic Cancer. Sci Rep 2017; 7:1665. [PMID: 28490735 PMCID: PMC5431907 DOI: 10.1038/s41598-017-01942-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) pathway is involved in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) maintenance resulting in tumor progression. GDC-0449, an inhibitor of Hh pathway component smoothened (Smo) has shown promise in the treatment of various cancers including pancreatic cancer. However, the emergence of resistance during GDC-0449 treatment with numerous side effects limits its use. Therefore, here we report the design, synthesis and evaluation of novel GDC-0449 analogs using N-[3-(2-pyridinyl) phenyl] benzamide scaffold. Cell-based screening followed by molecular simulation revealed 2-chloro-N1-[4-chloro-3-(2-pyridinyl)phenyl]-N4,N4-bis(2-pyridinylmethyl)-1,4-benzenedicarboxamide (MDB5) as most potent analog, binding with an extra interactions in seven-transmembrane (7-TM) domain of Smo due to an additional 2-pyridylmethyl group than GDC-0449. Moreover, MDB5 was more efficient in inhibiting Hh pathway components as measured by Gli-1 and Shh at transcriptional and translational levels. Additionally, a significant reduction of ALDH1, CD44 and Oct-3/4, key markers of pancreatic CSC was observed when MIA PaCa-2 cells were treated with MDB5 compared to GDC-0449. In a pancreatic tumor mouse model, MDB5 containing nanoparticles treated group showed significant inhibition of tumor growth without loss in body weight. These evidence highlight the enhanced Hh pathway inhibition and anticancer properties of MDB5 leaving a platform for mono and/or combination therapy.
Collapse
|
31
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
32
|
Lee HJ, Wu Q, Li H, Bae GU, Kim AK, Ryu JH. A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells. Oncol Lett 2016; 12:2912-2917. [PMID: 27698879 DOI: 10.3892/ol.2016.4994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is aggressive and therefore difficult to treat; however, continued efforts have been made with the aim of developing an effective therapy against the disease. The Hedgehog (Hh) signaling pathway is reportedly involved in the proliferation and survival of pancreatic cancer cells. The transcription factor glioma-associated oncogene (Gli) is a key component of the Hh signaling pathway and the primary effector of pancreatic cancer development. Inhibiting Gli is a proven therapeutic strategy for this disease. The present study examined the regulation of Gli and the expression of its target genes to identify an inhibitor of the Sonic Hh (Shh) pathway. A germacranolide sesquiterpene lactone (GSL) was isolated from Siegesbeckia glabrescens as an inhibitor of Gli-mediated transcription. The results demonstrated that GSL inhibited Shh-induced osteoblast differentiation and Gli homolog 1 (Gli1)-mediated transcriptional activity in mesenchymal C3H10T1/2 stem cells. Furthermore, GSL suppressed Gli-mediated transcriptional activity in human pancreatic cancer PANC-1 and AsPC-1 cells, which resulted in reduced cancer cell proliferation and downregulated expression of the Gli-target genes, Gli1 and cyclin D1. A sesquiterpene lactone from S. glabrescens may therefore serve as a candidate for the treatment of Hh/Gli-dependent pancreatic cancer.
Collapse
Affiliation(s)
- Hwa Jin Lee
- Department of Natural Medicine Resources, Semyung University, Jecheon, Chungcheongbuk-do 390-711, Republic of Korea
| | - Qian Wu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hua Li
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - An Keun Kim
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
33
|
Dilxat•Tunyaz, Ding W, Imammamat•Ablajan, Yi C, Su YT, Li HJ. Construction of a recombinant lentiviral vector carrying siRNA targeting SMO gene: Effect on SMO gene expression in pancreatic cancer cells. Shijie Huaren Xiaohua Zazhi 2016; 24:2974-2981. [DOI: 10.11569/wcjd.v24.i19.2974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a recombinant lentiviral vector carrying siRNA targeting the SMO gene, and to confirm its inhibitory effect on SMO gene expression in pancreatic cancer cells.
METHODS: Three SMO gene-targeted siRNA fragments were designed and synthesized, and recombinant DNA technology was used to introduce these three fragments into a lentiviral expression vector. After determination of the virus titer, the constructed lentiviral vector was tranfected into human pancreatic cancer cell line SW1990. RT-PCR was used to detect the expression of SMO gene and identify the best interference expression vector. SMO protein expression was detected by Western blot.
RESULTS: Gene sequencing and restriction endonuclease digestion results suggested successful synthesis of SMO-targeted siRNA fragments and correct insertion into the lentiviral vector. The virus titers were 5.31 × 108 TU/mL, 1.49 × 109 TU/mL and 8.50 × 108 TU/mL, respectively. After transfecting SW1990 cells, the SMO gene expression inhibition rates were 86.00%, 74.85% and 19.22%, respectively. The best interference expression vector can achieve an SMO protein inhibition rate > 80% in SW1990 cells.
CONCLUSION: We have successfully constructed an SMO gene-targeted siRNA lentiviral vector, and the vector can effectively inhibit the expression of SMO gene in pancreatic cancer cells, thus providing a good experimental tool for further research.
Collapse
|
34
|
Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer 2016; 15:24. [PMID: 26988232 PMCID: PMC4797362 DOI: 10.1186/s12943-016-0509-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Wallace Tumor Institute 320D, 1824 6th Avenue South, Birmingham, 35233, Alabama, USA.
| |
Collapse
|
35
|
Vidal MTA, Lourenço SV, Soares FA, Gurgel CA, Studart EJB, Valverde LDF, Araújo IBDO, Ramos EAG, Xavier FCDA, dos Santos JN. The sonic hedgehog signaling pathway contributes to the development of salivary gland neoplasms regardless of perineural infiltration. Tumour Biol 2016; 37:9587-601. [DOI: 10.1007/s13277-016-4841-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
|
36
|
Wang F, Ma L, Zhang Z, Liu X, Gao H, Zhuang Y, Yang P, Kornmann M, Tian X, Yang Y. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells. J Cancer 2016; 7:408-17. [PMID: 26918054 PMCID: PMC4749361 DOI: 10.7150/jca.13305] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/29/2015] [Indexed: 01/05/2023] Open
Abstract
Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs.
Collapse
Affiliation(s)
- Feng Wang
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Ling Ma
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhengkui Zhang
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xiaoran Liu
- 4. Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hongqiao Gao
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yan Zhuang
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Pei Yang
- 2. Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Marko Kornmann
- 3. Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm 89081, Germany
| | - Xiaodong Tian
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yinmo Yang
- 1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China
| |
Collapse
|
37
|
Luo HS, Zhan T, Huang XD. Relationship between Hedgehog signaling pathway and pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:75-80. [DOI: 10.11569/wcjd.v24.i1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling pathway consists of ligands such as Hh, receptor (patched), transmembrane protein Smo, nuclear transcription factor Gli, and downstream target genes. This pathway plays an important role in cell differentiation, tissue development and organ formation in the embryonic stage. In recent years, the Hh signaling pathway has been reported to play an important role in the development of pancreatic cancer. It can induce differentiation, proliferation and invasion of pancreatic cancer cells. Blocking the Hh signaling pathway in pancreatic cancer cells will provide a new and effective method for the treatment of pancreatic cancer. In this review, we will summarize the composition of the Hh signaling pathway and its relationship with the development of pancreatic cancer.
Collapse
|
38
|
Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, Zhou S, Liang Y, Huang D, Liang X, Yu H, Lin H, Cai X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett 2015; 367:1-11. [PMID: 26170167 DOI: 10.1016/j.canlet.2015.06.019] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Renan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghua Liu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Han Yan
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Diyu Huang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR, Jiang CL. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep 2015; 12:6702-10. [PMID: 26299938 PMCID: PMC4626128 DOI: 10.3892/mmr.2015.4229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/28/2015] [Indexed: 01/29/2023] Open
Abstract
Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N-terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase-2 (MMP-2) and MMP-9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP-2 and -9. Furthermore, it was found that MMP-2- and MMP-9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH-induced upregulation of MMP-2 and -9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP-2 and -9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hui-Bin Liu
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Qiu-Shi Wang
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chen-Long Li
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wen-Zhong Du
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hong-Jun Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xing Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhi-Ren Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chuan-Lu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
40
|
Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, Wongboonsin J, Ikeda Y, Heckl D, Chang SL, Rennke HG, Waikar SS, Humphreys BD. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 2015; 125:2935-51. [PMID: 26193634 PMCID: PMC4563736 DOI: 10.1172/jci74929] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease is characterized by interstitial fibrosis and proliferation of scar-secreting myofibroblasts, ultimately leading to end-stage renal disease. The hedgehog (Hh) pathway transcriptional effectors GLI1 and GLI2 are expressed in myofibroblast progenitors; however, the role of these effectors during fibrogenesis is poorly understood. Here, we demonstrated that GLI2, but not GLI1, drives myofibroblast cell-cycle progression in cultured mesenchymal stem cell-like progenitors. In animals exposed to unilateral ureteral obstruction, Hh pathway suppression by expression of the GLI3 repressor in GLI1+ myofibroblast progenitors limited kidney fibrosis. Myofibroblast-specific deletion of Gli2, but not Gli1, also limited kidney fibrosis, and induction of myofibroblast-specific cell-cycle arrest mediated this inhibition. Pharmacologic targeting of this pathway with darinaparsin, an arsenical in clinical trials, reduced fibrosis through reduction of GLI2 protein levels and subsequent cell-cycle arrest in myofibroblasts. GLI2 overexpression rescued the cell-cycle effect of darinaparsin in vitro. While darinaparsin ameliorated fibrosis in WT and Gli1-KO mice, it was not effective in conditional Gli2-KO mice, supporting GLI2 as a direct darinaparsin target. The GLI inhibitor GANT61 also reduced fibrosis in mice. Finally, GLI1 and GLI2 were upregulated in the kidneys of patients with high-grade fibrosis. Together, these data indicate that GLI inhibition has potential as a therapeutic strategy to limit myofibroblast proliferation in kidney fibrosis.
Collapse
Affiliation(s)
- Rafael Kramann
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Clinical Immunology, RWTH Aachen University Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne V. Fleig
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Rebekka K. Schneider
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven L. Fabian
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Derek P. DiRocco
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Omar Maarouf
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Janewit Wongboonsin
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoichiro Ikeda
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Dirk Heckl
- Division of Hematology, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Helmut G. Rennke
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin D. Humphreys
- Renal Division, Brigham and Women’s Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Yimamumaimaitijiang•Abula, Li DW, Yi C, Li HJ. Functional significance of expression of Hedgehog pathway components Shh, Ptch1, Smo and Gli1 in human pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:2894-2900. [DOI: 10.11569/wcjd.v23.i18.2894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of Hedgehog pathway components Sonic Hedgehog (Shh), Patched1 (Ptch1), Smoothened (Smo) and glioma-associated oncogene homolog 1 (Gli1) genes in pancreatic cancer, and to discuss their biological significance.
METHODS: Expression of Shh, Ptch1, Smo and Gli1 mRNAs was evaluated by RT-PCR in 48 cases of pancreatic cancer and matched tumor adjacent tissue.
RESULTS: The relative expression levels of Shh, Ptch1, Smo and Gli1 mRNAs in pancreatic cancer were 0.652 ± 0.036, 0.604 ± 0.063, 0.493 ± 0.011 and 0.512 ± 0.052, respectively, significantly higher than those in tumor adjacent tissue (0.312 ± 0.013, 0.319 ± 0.053, 0.214 ± 0.046 and 0.247 ± 0.059) (P < 0.05). Overexpression of these genes was associated with tumor differentiation (P < 0.05), but not with age, gender, tumorous size, TNM stage, lymph node metastasis, or CA19-9 (P > 0.05).
CONCLUSION: The expression of Shh, Ptch1, Smo and Gli1 is increased in human pancreatic cancer. The genesis and development of pancreatic cancer may be associated with the abnormal activation of Hedgehog signaling pathway.
Collapse
|
42
|
Tsang SW, Bian ZX. Anti-fibrotic and Anti-tumorigenic Effects of Rhein, a Natural Anthraquinone Derivative, in Mammalian Stellate and Carcinoma Cells. Phytother Res 2014; 29:407-14. [DOI: 10.1002/ptr.5266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/26/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Siu Wai Tsang
- Cancer and inflammation Center, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Hong Kong
| | - Zhao-Xiang Bian
- Cancer and inflammation Center, School of Chinese Medicine; Hong Kong Baptist University; Kowloon Hong Kong
| |
Collapse
|
43
|
Yuan QY, Gu YP, Wang CJ, Zhang H, Wang XP. Identification of dysregulated pathways associated with pancreatic cancer by survival analysis. Mol Med Rep 2014; 11:277-82. [PMID: 25333741 DOI: 10.3892/mmr.2014.2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
In order to identify the dysregulated pathways associated with pancreatic cancer, the fourth leading cause of cancer mortality in the United States, tumor and non-tumor samples were systematically analyzed in the present study. Initially, dysregulated genes in pancreatic cancer were identified using paired t-test. Subsequently, dysregulated biological pathways involved in the development of pancreatic cancer were identified by enrichment analysis. Finally, individual survival analysis of the significantly dysregulated functions was conducted at the pathway level. Our results indicated that the pathway named ̔Pathways in cancer was significantly correlated with survival time. In addition, the mean survival time of individual and genetic variation demonstrated a significantly negative correlation, that is, the lower the genetic variation, the longer the survival time. Furthermore, detailed analysis of genes on the pathway named ̔Pathways in cancer denoted that this pathway involved multiple cancer hallmark signals and several dysregulated cancer genes, including tumor protein p53, myelocytomatosis, Kirsten rat sarcoma, phosphatidylinositol 3-kinase, v-raf murine sarcoma viral oncogene homolog B1 and cyclin-dependent kinase inhibitor 2A. According to the DrugBank database, certain oncogenes have been validated to be the targets of drugs, including Sorafenib, Trastuzumab, Imatinib and Paclitaxel or were under investigation. An improved understanding of the pathophysiology of pancreatic cancer has been achieved based on our results and the present study aimed to provide guidance for the development of drugs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Qiong-Ying Yuan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Ping Gu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Cong-Jun Wang
- Department of Biliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Hui Zhang
- Department of Biliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Xing-Peng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
44
|
Tang SC, Chen YC. Novel therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20:10825-10844. [PMID: 25152585 PMCID: PMC4138462 DOI: 10.3748/wjg.v20.i31.10825] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16INK4A and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.
Collapse
|
45
|
Tanase CP, Neagu AI, Necula LG, Mambet C, Enciu AM, Calenic B, Cruceru ML, Albulescu R. Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol 2014; 20:10790-10801. [PMID: 25152582 PMCID: PMC4138459 DOI: 10.3748/wjg.v20.i31.10790] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/07/2014] [Accepted: 04/05/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.
Collapse
|
46
|
Huang M, Tang SN, Upadhyay G, Marsh JL, Jackman CP, Srivastava RK, Shankar S. Rottlerin suppresses growth of human pancreatic tumors in nude mice, and pancreatic cancer cells isolated from Kras(G12D) mice. Cancer Lett 2014; 353:32-40. [PMID: 25050737 DOI: 10.1016/j.canlet.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 06/09/2014] [Indexed: 01/29/2023]
Abstract
The purpose of the study was to examine the molecular mechanisms by which rottlerin inhibited growth of human pancreatic tumors in Balb C nude mice, and pancreatic cancer cells isolated from Kras(G12D) mice. AsPC-1 cells were injected subcutaneously into Balb c nude mice, and tumor-bearing mice were treated with rottlerin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of components of Akt, Notch, and Sonic Hedgehog (Shh) pathways were measured by the immunohistochemistry, Western blot analysis, and/or q-RT-PCR. The effects of rottlerin on pancreatic cancer cells isolated from Kras(G12D) mice were also examined. Rottlerin-treated mice showed a significant inhibition in tumor growth which was associated with suppression of cell proliferation, activation of capase-3 and cleavage of PARP. Rottlerin inhibited the expression of Bcl-2, cyclin D1, CDK2 and CDK6, and induced the expression of Bax in tumor tissues compared to untreated control. Rottlerin inhibited the markers of angiogenesis (Cox-2, VEGF, VEGFR, and IL-8), and metastasis (MMP-2 and MMP-9), thus blocking production of tumorigenic mediators in tumor microenvironment. Rottlerin also inhibited epithelial-mesenchymal transition by up-regulating E-cadherin and inhibiting the expression of Slug and Snail. Furthermore, rottlerin treatment of xenografted tumors or pancreatic cancer cells isolated from Kras(G12D) mice showed a significant inhibition in Akt, Shh and Notch pathways compared to control groups. These data suggest that rottlerin can inhibit pancreatic cancer growth by suppressing multiple signaling pathways which are constitutively active in pancreatic cancer. Taken together, our data show that the rottlerin induces apoptosis and inhibits pancreatic cancer growth by targeting Akt, Notch and Shh signaling pathways, and provide a new therapeutic approach with translational potential for humans.
Collapse
Affiliation(s)
- Minzhao Huang
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Su-Ni Tang
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Ghanshyam Upadhyay
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Justin L Marsh
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Christopher P Jackman
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Rakesh K Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA.
| |
Collapse
|
47
|
Li Z, Li B, Pan J, Jin J. TNF-α enhances the effect of TGF-β on Gli2 expression in the KG-1 leukemic cell line. Exp Ther Med 2014; 8:676-680. [PMID: 25009639 PMCID: PMC4079412 DOI: 10.3892/etm.2014.1743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/22/2014] [Indexed: 11/05/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway regulates a variety of tumor-related diseases, including leukemia. The present study aimed to determine whether there was an interaction between the Hh signaling pathway and transforming growth factor (TGF)-β in the KG-1 cell line. KG-1 cells were treated with TGF-β, tumor necrosis factor (TNF)-α and specific inhibitor of smad3 (SIS3). The expression level of Gli family zinc finger 2 (Gli2) was detected by quantitative polymerase chain reaction (qPCR) and western blot analyses. The results revealed that TGF-β significantly decreased the expression level of Gli2 in KG-1 cells, and that TNF-α and TGF-β together further reduced Gli2 expression in KG-1 cells. SIS3 inhibited the effect of TGF-β. These results suggest that Gli2 expression in KG-1 cells is suppressed by TGF-β in a Smad3-dependent manner, TNF-α can enhance the effect of TGF-β on Gli2 expression and that this occurs independently of Hh receptor signaling.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, First Affiliated Hospital of Liaoning Medical College, Jinzhou, Liaoning 121001, P.R.China
| | - Bin Li
- Department of Hematology, First Affiliated Hospital of Liaoning Medical College, Jinzhou, Liaoning 121001, P.R.China
| | - Jing Pan
- Department of Hematology, First Affiliated Hospital of Liaoning Medical College, Jinzhou, Liaoning 121001, P.R.China
| | - Jieping Jin
- Department of Hematology, First Affiliated Hospital of Liaoning Medical College, Jinzhou, Liaoning 121001, P.R.China
| |
Collapse
|
48
|
Huang M, Tang SN, Upadhyay G, Marsh JL, Jackman CP, Shankar S, Srivastava RK. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways. PLoS One 2014; 9:e92161. [PMID: 24694877 PMCID: PMC3973629 DOI: 10.1371/journal.pone.0092161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 02/19/2014] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh) and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2) and cell cycle (cyclin D1, CDK2, and CDK6), and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax). In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8), and metastasis (MMP-2 and MMP-9) in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT) by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and Shh pathways, and can be developed for the treatment and/or prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Minzhao Huang
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Su-Ni Tang
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ghanshyam Upadhyay
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Justin L. Marsh
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Christopher P. Jackman
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SS); (RKS)
| | - Rakesh K. Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: (SS); (RKS)
| |
Collapse
|
49
|
Brechbiel J, Miller-Moslin K, Adjei AA. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer. Cancer Treat Rev 2014; 40:750-9. [PMID: 24613036 DOI: 10.1016/j.ctrv.2014.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
The hedgehog (Hh) pathway is aberrantly activated in a number of tumors. In medulloblastoma, basal cell carcinoma, and rhabdomyosarcoma, mutations in Hh pathway genes lead to ligand-independent pathway activation. In many other tumor types, ligand-dependent activation of Hh signaling is potentiated through crosstalk with other critical molecular signaling pathways. Among such pathways, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch are of particular interest because agents that selectively inhibit these pathways are available and can be readily combined with agents such as vismodegib, sonidegib (LDE225), and BMS-833923, which target smoothened-a key Hh pathway regulator. Numerous preclinical studies have revealed the ways in which Hh intersects with each of these pathways, and combination therapies have resulted in improved antitumor efficacy and survival in animal models. Hh also plays an important role in hematopoiesis and in the maintenance of BCR-ABL-driven leukemic stem cells. Thus, combined inhibition of the Hh pathway and BCR-ABL has emerged as a promising potential therapeutic strategy in chronic myeloid leukemia (CML). A number of clinical trials evaluating combinations of Hh inhibitors with other targeted agents are now underway in CML and a variety of solid tumors. This review highlights these trials and summarizes preclinical evidence of crosstalk between Hh and four other actionable pathways-RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch-as well as the role of Hh in the maintenance of BCR-ABL-driven leukemic stem cells.
Collapse
Affiliation(s)
- Jillian Brechbiel
- Articulate Science, 300 American Metro Boulevard, Suite 132, Hamilton, NJ 08619, USA.
| | - Karen Miller-Moslin
- Articulate Science, 300 American Metro Boulevard, Suite 132, Hamilton, NJ 08619, USA.
| | - Alex A Adjei
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
50
|
Quan M, Wang P, Cui J, Gao Y, Xie K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 2013; 12:159. [PMID: 24325450 PMCID: PMC3924162 DOI: 10.1186/1476-4598-12-159] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|