Review Open Access
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jun 14, 2017; 23(22): 3978-3998
Published online Jun 14, 2017. doi: 10.3748/wjg.v23.i22.3978
Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update
Aarti Sharma, Kiran Lata Sharma, Annapurna Gupta, Alka Yadav, Ashok Kumar
Aarti Sharma, Annapurna Gupta, Alka Yadav, Ashok Kumar, Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
Kiran Lata Sharma, Department of Biochemistry and Medical Genetics, John Buhler Research Centre, University of Manitoba, Winnipeg MB R3E 3P4, Canada
Author contributions: Sharma A, Sharma KL and Kumar A have written the manuscript; Sharma A, Sharma KL and Gupta A has contributed in literature search; Sharma A, Sharma KL, Gupta A and Yadav A have contributed in designing tables as well as referencing; Kumar A is senior Corresponding author; Sharma KL is co-corresponding author; all the authors have approved the final version of the manuscript.
Conflict-of-interest statement: We declare that we have no conflict of interest.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Correspondence to: Dr. Ashok Kumar, Professor, Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India.
Telephone: +91-522-2494423 Fax: +91-522-2668017
Received: December 24, 2016
Peer-review started: December 29, 2016
First decision: January 19, 2017
Revised: February 1, 2017
Accepted: June 1, 2017
Article in press: June 1, 2017
Published online: June 14, 2017


Gallbladder cancer is a malignancy of biliary tract which is infrequent in developed countries but common in some specific geographical regions of developing countries. Late diagnosis and deprived prognosis are major problems for treatment of gallbladder carcinoma. The dramatic associations of this orphan cancer with various genetic and environmental factors are responsible for its poorly defined pathogenesis. An understanding to the relationship between epidemiology, molecular genetics and pathogenesis of gallbladder cancer can add new insights to its undetermined pathophysiology. Present review article provides a recent update regarding epidemiology, pathogenesis, and molecular genetics of gallbladder cancer. We systematically reviewed published literature on gallbladder cancer from online search engine PubMed ( Various keywords used for retrieval of articles were Gallbladder, cancer Epidemiology, molecular genetics and bullion operators like AND, OR, NOT. Cross references were manually searched from various online search engines (,, Most of the articles published from 1982 to 2015 in peer reviewed journals have been included in this review.

Key Words: Gallbladder cancer, Epidemiology, Molecular genetics, Pathogenesis

Core tip: The Gallbladder cancer is a fatal malignancy which displays considerable differences in certain ethnicities and geographic regions. Indo-Gangetic plains of India, Mapuche Indians in Chile and South America are most affected regions with this cancer. Because of this cancer is largely unstudied as compare to other cancers Present review provides a comprehensive summery of the studies conducted regarding its Epidemiology, Pathogenesis and molecular genetics. This will be helpful for the researchers to understand the current scenario of research work and how much success we have gained till now. Based on which future research work can be planned in appropriate directions.


Gallbladder cancer (GBC) is a rare biliary tract malignancy in most western countries, but is much widespread in some other regions of the world. Moreover, this carcinoma is infrequent in developed countries but more common in some developing countries, characterized by its lack of symptoms at initial stage leading to difficulties in treatment.

The extensive variation in geography, ethnicity, and cultural differences in the incidence of gallbladder cancer suggests the role of key genetic and environmental factors associated with the development and progression of the disease[1,2]. The lack of a serosal layer of gallbladder adjacent to the liver thus enabling hepatic invasion and metastatic progression is one of the major cause of its miserable prognosis[3]. The present review provides a recent update of studies regarding epidemiology, pathogenesis and molecular genetics of gallbladder cancer as available in literature.


Gallbladder cancer shows an unusual geographic distribution worldwide with substantial geographic variation. Data from Mapuche Indians from Valdivia, Chile, South America shows the rate of gallbladder cancer as: 12.3/100000 for males and 27.3/100000 for females[3]. The native people is these countries exceed for gallbladder cancer mortality rates from cervical (8.0/100000), breast (8.7/100000), pancreatic (7.4/100000), and ovarian cancers (7.3/100000)[3]. American Indians in New Mexico, USA, have also very high average annual rate of GBC (8.9/100000)[4], [Surveillance, Epidemiology End-Results Program (SEER) The Four Most Common Cancers for Different Ethnic Populations 2013. Bethesda, MD: National Cancer Institute; 2013].

Although the worldwide occurrence of gallbladder cancer is less than 2/100000 individuals, but this has been recorded with extensive variance[5]. The residents of Indo-Gangetic belt particularly females of northern India (21.5/100000) and south Karachi Pakistan (13.8/100000) have been reported as one of the highest affected regions[4]. Gallbladder cancer is also found in high frequency in Eastern Europe include Poland (14/100000 in Poland), Czech Republic, and Slovakia and Asia whereas south Americans of Indian descent (3.7 to 9.1 per 100000), Israel (5/100000) and Japan (7/100000) have shown intermediate prevalence of gallbladder cancer[4,6]. The residents of Andean-area, North American Indians and Mexican-Americans are specially predisposed of GBC[6]. The majority of the world has decreasing mortality trends in gallbladder cancer but GBC frequency is constantly rising in Shanghai, China which is substantial cause of mortality[7]. Although Gallbladder cancer is more common in females still in some countries like Korea, Iceland and Costa Rica, higher mortality rate has been reported for males as compare to females[8]. The data from National Cancer Institute; SEER Program ( has revealed only little turn down in incidence over the past few decades.


The development of gallbladder cancer has been linked to various genetic and environmental factors. Chronic infection of gallbladder or/and environmental exposure to specific chemicals, heavy metals, and even many dietary factors, have been found to be associated with GBC formation. The dramatic association of GBC with female gender and certain geographical regions (mostly developing countries) has been proposed to be influenced by various female hormones, cholesterol cycling and salmonella infections in existing literature[9,10]. Worldwide GBC affects females 2-3 times more commonly than males, but bias varies greatly in different parts of the world mostly in high prevalent regions of GBC[4,6]. To some extent, the female hormone estrogen causes increased cholesterol super saturation in bile and hence involved in gallstone mediated GBC pathogenesis[11]. Although the female gender GBC can be linked with the role of female hormones. However an article published previously has questioned the association of hormone receptor expression to tumor differentiation[12]. So the extent of female hormones contribution in Gallbladder cancer is still not certain and requires more investigation.

Other well-known GBC associated risk factors such as porcelain gallbladder, Mirizzi’s syndrome and bile reflux has also been playing a major role as a predisposing factors of this disease[9]. Family history of gallstones, tobacco consumption, chemical exposure, residence in Gangetic belt and high concentrations of secondary bile acids, excessive intake of fried foods (reused oil), increases the risk for GBC[13]. Present data suggest that gallstones are a major risk factor for GBC but their role as a cause for gallbladder cancer is still not certain. A review article by Shrikhande et al[14] has also supported the fact that the populations reporting high incidence of gallbladder cancer with associated gallstones, prophylactic cholecystectomy should be done only after correlating with the epidemiological profile of the place. Convincing evidence also exists for the presence of gallstones as strongly associated factor for gallbladder cancer etiology[7]. Most of the etiological factors are summarized in Table 1[6,7,10,13,15-50].

Table 1 Etiological factors for gallbladder cancer pathogenesis.
Major Independent Etiological factorsDependent Etiological factors
Age[6]Tobacco consumption[15]
Sex[6], BMI[16]Mustard oil[17] Argemone oil (AO) and butter yellow (BY)[18]
Family history[7,19]Early age at first pregnancy[20]
Cholelithiasis[6,22-24]Use of Oral contraceptives[15,25,26]
Chronic cholecystitis, porcelain gallbladder[27,28]Red Chili pepper[29,30]
Chronic infection by Salmonella species, S. paratyphi or S. typhican[6,10,31-34]Occupational exposure, Benzene[17,35]
Helocobacter pylori[36,37]Secondary bile acids[13,38-40]
High parity[20,21,24,26]Xanthogranulomatous cholecystitis[41]
Anomalous pancreatobiliary duct junction[42,43]Heavy metals[44,45]
Porcelain gallbladder[46]Genetic factors[48]
Gallbladder polyp[47]
Obesity[49]Free radical oxidation products[50]
Familial and linkage studies

Swedish family-cancer database and Utah cancer registry has reported the first ever data for familial clustering of GBC[51]. This study has provided the first data on familial clustering of gallbladder cancer based on medically confirmed records, in which it was estimated that 26% of gallbladder cancers are familial. The significant risk in 3rd degree relatives and the disease manifestation in several high risk pedigrees as reported in previous studies gives a strong indication for genetic susceptibility to GBC[51]. The high risk heritable factors are likely to contribute to a large extent to this cancer further modulated by environmental factors. The nationwide Swedish Family-Cancer Data base from the Swedish Cancer Registry (10.2 million individuals from the year 1961-1998), has reported maternal transmission favoring over paternal in familial gallbladder cancers[52]. Furthermore, the clustering of gallbladder cancer within families is suggestive of a critical role of genetics in its development[19]. Carcinoma gallbladder was detected in two siblings from Brazil as reported by Trajber et al[53]. Role of allele specific mutations in pathogenesis of carcinoma gallbladder has also been reported[54]. Another report by Pandey et al[55] has shown higher frequency of carcinoma gallbladder in patients with A+ and AB+ blood groups to which the reason is still unknown.


The present existing information regarding genetic and molecular alterations in GBC is still very much limited. Like other neoplasms, GBC is a multifactorial disorder involving multiple genetic alterations[56-58]. Abnormality in tumor suppressor genes, oncogenes, and DNA repair genes, presence of microsatellite instability (MSI) and epigenetic alterations mainly caused by aberrant promoter methylation of gene areas are some of the various well known factors reported till now. The serious of genetic alteration leading to gallbladder cancer formation is still not established clearly. Some of the molecular alterations reported so far are enumerated in Tables 2, 3 and 4.

Table 2 Mutations detected in gallbladder cancer by low throughput methods.
Studied geneType of studyMethods usedStudied populationRef.
KRASMutation at codon-12 (8%)PCR-RFLPIndia[64]
Mutation at codon-12 (29%-30%)PCR-RFLPChile[76,77]
Mutation at codon-12 (0%-59%)PCR-RFLP, Direct sequencingJapan[60,78,79]
Mutation at codon-12 (50%-80%)ELMA, SAB, PCR-SSCP, Direct sequencingJapan[63,80]
INK4A (p16)Mutation, deletionPCR-RFLP, direct sequencing, IHCJapan, Chile[54,79,81,82]
D310 mtDNAMutation (Displacement loop)PCR-based assay, direct sequencingChile[83]
TP53Mutation, overexpression, LOHPCR-RFLP, direct sequencing, IHCGreece, Japan, Chile[84-86]
Table 3 Mutations studies in gallbladder cancer by high throughput methods.
PlatformNumber of samplesStudy populationResearch plannedKey findingsRef.
Sequenom Mass ARRAY technology49 FFPEIndia390 mutations in 30 genesPIK3CA (4%), KRAS (2%), CTNNB1 (4%), TP53 (18%)[95]
Mass spectroscopy-based57 FFPEMD Anderson Centre159 mutations in 33 genes14 hotspot mutations in 9 cases including (KRAS, NRAS, PIK3CA, IDH1, ALK, MET)[94]
26 mutations in 15cases
Next-generation sequencing (NGS)15 FFPENGS of 182 cancer-related genes(P53, STK11, RICTOR,TSC2, FGF3-TACC fusion, FGF10 amplification)[94]
Preponderance of mutations involving the PI3 kinase pathway
Whole Exome and transcriptome Sequencing29 Fresh FrozenJapan64 non silent mutations signaturesEGFR, ERBB3, PTEN, ARID2, MLL2,[96]
APOBEC-associated mutation signature were observed in GBC
Exome sequencing and targeted gene sequencing57 Fresh FrozenChinaWhole exome sequencingTP53 (47.1%), KRAS (7.8%) and[93]
ERBB3 (11.8%)
ERBB pathway genes mostly mutated
Table 4 Summary of global gene expression studies in gallbladder cancer.
Biological sample usedPlatform/studies key findingsRef.
17 gallbladder tissue specimens (6 advanced GBC , 6 early GBC cancers and 5 normal controlOligonucleotide Microarray platform[97]
Unregulated genes: 2270
Downregulated genes: 2412
5-Normal biliary epithelial scrapings, 11- surgically resected biliary carcinomas, 9-biliary cancer cell linesOligonucleotide Microarray platform[98]
Unregulated genes : 282 genes
Downregulated genes: 513
37 biliary tract carcinomascDNA array platform[99]
(15 bile duct, 11 gallbladder, 11 of ampulla of Vater)118 genes were identified with a prognostic value
12 advanced gallbladder carcinoma tissue 3 samples of normal control gallbladder epitheliumOligonucleotide Array platform[100]
Upregulated: (TOPO II-alpha, cyclin B2, CDC28, ubiquitin-conjugating enzyme E2C), and one metabolism-related: (gamma-glutamyl hydrolase)[101]
34 biliary tract cancers includingOligonucleotide Array platform
13 intrahepatic (IHC), 12extrahepatic (EHC), 9 (GBC)1281 genes with deregulated expression pattern

KRAS act as initial key player in numerous signal transduction mechanisms and associated pathways. Many pathogenic mutations have been reported in KRAS oncogene in Gallbladder cancer tissue[58-63]. KRAS gene mutations identified in GBC mostly affects codons 12, 13 and 61. In north India KRAS codon 13 mutation is more common (about one third) than codon 12 and 61[64]. However many other studies have not detected any mutations in this gene[65,66]. Any activating point mutations in KRAS oncogene can give rise to abnormal growth signals which is one of the hallmarks of cancer. The previous reports have co-related a condition called anomalous arrangement of the pancreatico-biliary duct with presence of gallbladder cancer as patients harboring this condition have a higher frequency of KRAS gene mutation as compare to normal condition[65,67,68]. However mutation of KRAS gene has never been detected in GBC having adenoma carcinoma sequence of development[69] (Table 2).


TP53 is a well-known tumor suppressor gene and has various mechanisms of anticancer function and plays significant role in maintenance of genome integrity, apoptosis, genomic stability, and inhibition of angiogenesis etc. Loss of TP53 function allows deregulated survival of genetically impaired abnormal cells which can lead to neoplastic conversion of later on[70]. TP53 mutations are relatively more common in later stages of the disease[63,66,71-73]. Most of the TP53 mutations associated with GBC are missense mutations that produce a non-functional protein with an increased half-life. The existing literature has reported mutations of the TP53 gene in between approximately 27% to 70% of gallbladder carcinomas[74]. Many codons of the TP53 codons are affected by pathogenic mutations of this gene. Functional molecular studies have discovered that mutations in exons 5 and 8 of TP53 gene causes deregulation of this gene[75]. Details are shown in various existing literature is shown in Table 2[54,60,63,64,76-86].


The oncogene c-erb-B2 is a homologue for epidermal growth receptor, encoding a protein with tyrosine kinase activity. The immunohistochemical expression of c-erb-B2 has been found positive between 10%-46% of gallbladder cases. However its expression has been found to be absent in dysplasia or adenomas as shown by previous reports[87,88]. Animal model studies in transgenic mice have shown that erbB2 overexpression in the basal layer of the biliary tract epithelium led to the development of GBC in all (100%) of mice. Moreover, the expression of HER2⁄neu was positively observed in 28% of GBCs which was directly correlated with advanced stage of cancer[89]. Therefore, it can be hypothesized that some oncogene is associated with in Gallbladder cancer progression. In a study from India, C-erbB2 was frequently expressed in well differentiated and stage II to stage IV in about 9.4% of GBC cases[90]. A recent report showed HER2/neu overexpression occurred in 14% of the advanced gallbladder cancer cases, and this subgroup was expected to be benefited from HER2/neu pathway inhibitors[91]. Therapeutic targeting of EGFR/HER2 pathways boosts the anti-proliferative effect of gemcitabine in biliary tract and gallbladder carcinomas as shown by a previous study[92]. Based on facts it can be concluded that C-ERB-B2 expression can become a marker for a poor prognosis.


High throughput research has made large scale repetition of experiments feasible as it automates the experiments thus it has now become possible to study how all 21000 genes potentially contribute to cell function or disease. But in case of gallbladder cancer there are very limited high throughput studies. One of the pioneer studies published in nature genetics using high throughput approach by Chinese population has found recurrent mutations in ErbB pathway[93]. Javle et al[94] has found 26 missense mutations with more common TP53 and PIK3CA mutations in GBC tumor using NGS technology. Mutation profiling of gallbladder cancer tissue in Indian population has found PIK3CA and KRAS mutations as most common among this ethnicity[95]. The variability in the results is an indicator of intra-tumoral heterogeneity of cancer, which describes the observation of different tumor cells showing distinct morphological and molecular profiles including variable gene expression but ultimately leading to a common phenotype. The high throughput mutation studies in GBC are presented in Table 3[93-96].


In order to identify potential biomarkers for GBC progression, many studies have been performed to find out the differential gene expression profiles between normal and tumor cells. Existing data various greatly, despite of same grade and stage of the included study subjects. Table 4[97-101] and Table 5[54,66,75,84,86,90,102-180] are summarizing global and single gene expression studies reported in GBC respectively.

Table 5 Summary of single gene expression studied reported in gallbladder cancer.
Studied single genesExpression patternStudied populationRef.
TP53Expression (20%-70%)India, Slovenia, Greece, Taiwan, Japan, Chile[75,84-86,102-106]
p16OverexpressionSouth Korea[107]
FHITExpression loss (45%-75%)Japan, Chile[108,109]
ERBB2Overexpression (25%-64%)India, Japan, China, South Korea[66,103,110,111]
Expressed in 9.4%cases of well differentiated and stage II to stage IV tumorsIndia[90]
RB20% cases allelic lossJapan[54,112]
4%-14%- loss of expression
CDKN1AReduced expression 49% casesJapan[113]
Cyclin D1, Cyclin EOverexpression (41%-49%)Japan[114,115]
COX2Over-expressedSlovenia, Japan, Chile[104,116,117]
CKITExpression 45%Japan[119]
Chemokine (C-X-C motif) ligand 12Increased expressionSouth Korea[121]
CXCR4, CXCR7Increased expressionChina[122]
hedgehog pathway components (Shh, Ptch1 and Gli1)Shh: 81.7% of cases expressedChina[123]
Ptch1: 75.3% of cases
Gli1: 70.0% of cases
CD56, CD99Altered expressionSouth Korea[124]
CD97, CD55CD97: 69.6% of cases expressedChina[125]
CD55: 65.2% of cases
HMGA2 and CD9HMGA2 positive expressionChina[126]
CD9 negative expression
cholecystokinin type-A44.1% of cases expressedIndia[127]
vascular endothelial growth factor-A53.6% of cases expressedChina[128]
VEGF-C, VEGF-DVEGF-C: 64.0% of casesChina[129]
VEGF-D: 62.0% of cases
Tumor endothelial marker 8 proteinIncreased expressionIndia[130]
L1 cell adhesion moleculeIncreased expressionSouth Korea[131]
Tissue factor pathway inhibitor-2Down-regulatedChina[132]
HIF-1αIncreased expressionChina[133]
VHLReduces expression
ERCC1(excision repair cross-complementing 1)High expression in best differentiated tumorsChile[134]
NF-E2-related factor 2 (Nrf2)Increased expressionChina[135]
CD34 , CA15-3Highly expressed in stroma and in epitheliumItaly[136]
Cdx2Aberrant expressionJapan[138]
TLR4Expressed in glandular and luminal epitheliumChina[139]
MiRNALoss of Dicer and Drosha expressionChina[140]
Inducible Nitric Oxide Synthase iNOSExpressedChina[141]
Prostate stem cell antigen (PSCA)Down-regulatedJapan, China[142]
hTERT/TelomeraseExpressed in 56.66% casesIndia[144]
Aquaporins (AQPs)Positive expressionJapan[145]
Ornithine decarboxylase (ODC) and glutamate decarboxylase 65 (GAD65)OverexpressionChina[146]
Alpha-methylacyl coenzyme A (racemase) AMACROverexpressionTaiwan[147]
Sonic Hh (Shh)Elevated expressionJapan[148]
TGF-β induced miR-182OverexpressionChina[149]
TMPRSS4Higher expressionChina[151]
zinc finger X-chromosomal proteinSuppressedChina[152]
multidrug resistance-associated protein 2 (MRP2)OverexpressionSouth Korea[153]
p27, P21p21 (75% cases) and p27 (25% cases)Jordan[157]
Thymidylate synthase (TS)Low expressionJapan[158]
CD146Elevated expressionChina[159]
AEG-1Highly expressed (63.4%)China[160]
CCKARExpression increased (76.6%)India[127]
Nemo-like kinase (NLK)Overexpression of NLKChina[161]
C-erbB2Overexpression (9.4%)India[90]
Phospho-mTOR expressionPositive expression (64.1%)Chile[162]
human telomerase reverse transcriptase (hTERT)Expression increasedIndia[163]
Phosphoglycerate kinase 1 (PGK1)Decreased expression (54.7%)China[164]
Notch 1 and Notch 3Positive expressionChina[165]
CCK-ADecreased expressionIndia[166]
3-phosphoinositide-dependent protein kinase 1 (PDK1)Positively expressedChina[167]
Zinc finger X-chromosomal protein (ZFX)OverexpressionChina[151]
miR-138Over expressionChina[168]
HSP gp96Expression (90.7%)China[169]
Long non-coding RNA-LETOverexpressionChina[170]
Survivinhigher expression (2.9- fold)India[171]
Long non-coding RNA CCAT1OverexpressedChina[172]
TEM8Expression increasedIndia[130]
Fhit,MIh1, P53Reduced expression of Fhit and Mlh1 protein and Overexpression of P53Japan[108]
NDRG2, CD24NDRG2 down-regulation, CD24 up-regulationChina[173]
BCL6, p19(ARF)BCL6 overexpression , p19 (ARF) Low ExpressionTaiwan[175]
VEGF-AHigh expression of VEGF-AChile[176]
MALAT1Upregulation of MALAT1China[177]
miR-182Upregulation of miR-182China[149]
miR-155High expression level of miR-155Japan[155]
p53, S100A4, p27, p16, RB, Smad4, FHIT, E-cadherin and PMLp53 and S100A4 overexpressed,South Korea[178]
Loss of p27, p16, RB, Smad4, FHIT, E-cadherin and PML expression
PEG10, TSG101PEG10 and TSG101 overexpressedChina[179]
CK7, CK20CK7 (69.05%), CK20 (28.57%) expressedGreece[180]

Loss of heterozygosity (LOH) is a common genetic alteration in cancer genome. The events like heterozygous deletion of one of the two alleles, or duplication of a maternal or paternal chromosome or chromosomal region and concurrent loss of the other allele gives rise to LOH. The studies focused to detect loss of heterozygosity (LOH) in GBCs have shown frequent heterozygous allelic loss which spans in 18 different chromosomal regions[57]. Cytogenetic locations involved in frequent loss of heterozygosity i.e., 3p, 8p, 9p, and 22q regions have also been identified in GBC from different populations; which have also been reported in several other cancers like Retinoblastoma, melanoma, Squamous cell carcinoma of larynx[181-183]. In particular, gallbladder tumor shows numerous site of allelic loss in the short arm of chromosome 3, which harbors several known or putative tumor suppressor genes[109,181]. High degree of microsatellite instability (MSI) in 10% of GBC cases was observed as reported in research article published by Goldin et al[184]. A different pattern of allelic loss has also been detected in Japanese population. In this report the allelotype analysis of gallbladder carcinoma revealed an interesting associated with anomalous junction of pancreatico-biliary duct[68]. Table 6[54,57,66,68,109,112,185-193] enlists various studies conducted in GBC regarding LOH and MSI.

Table 6 Loss of heterozygosity and microsatellite instability studies reported in gallbladder cancer.
Studied reported in respective populationLOH/MSIRef.
ChileanLOH reported in : 3p, 6q, 7q, 8p, 9p, 9q, 11q, 12q, 17p, 18q, 19p, 22q, and Xq[57]
JapanLOH reported in : 2p, 4p, 4q, 8q,9q, 10p,14p,14q,16p, 19p, 21p and Xp [Maximum deletion- 2p24, 14q22 and 21q22][68]
Chilean, Japanp53, 9p.8p, DCC, KRAS, p16, 16q24, 3p,9q, 22q and p161NK4[54,66,109,112,185]
Chile, JapanMSI reported (20%-33%)[187,188]
IndiaE-cadherin (CDH1) 2p, 2q, 6q, 7q,17p[189]
IndiaFragile histidine triad (FHIT) MSI-H 17.5% LOH :27.5%[190]
JapanHigh incidences of LOH at 1p36 (19/36:53%), 9p21 (12/32:38%), 13q14 (20/36: 56%), 16q24 (31/54: 61%), and 17p13 (15/36: 42%)[191]
ChileFHIT gene locus (3p14.2)[109]
IndiaLOH at 8 loci, that is 3p12, 3p14.2, 5q21, 9p21, 9q, 13q, 17p13, and 18q for tumor suppressor genes (DUTT1, FHIT, APC, p16, FCMD, RB1, p53, and DCC genes)[192]
Indiagenomic instability at 2p, 2q, 6q, 7q, and 17p loci[189]
ChileDUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3)[193]

Understanding of DNA methylation patterns of gallbladder tumors can prove to be important biomarkers to refine the diagnosis and prognostic information which ultimately helps in appropriate therapeutic selection. Hypermethylation in gene promoter regions is a common epigenetic mechanism for the inactivation of tumor suppressor genes. One of the important research article published previously has found an important link between methylation and survival. In this study methylation of genes p73, MGMT, and DCL1 was significantly associated with survival of gallbladder cancer patients[194,195]. The study was conducted in a series of 109 advanced gallbladder cancer cases. However genes like CDH13 and FHIT did not show any significant tendency with respect to gallbladder cancer patient’s survival[194,195]. Multivariate analysis found MGMT gene to be an independent prognostic factor for survival found, representing the important role of epigenetic process in gallbladder carcinogenesis[195]. The recent report showed that promoter methylation of specific genes like CDH1, CDKN2A-p16, REPRIMO (tumor suppressor gene family) and UCHL1 (also known as PGP9.5) have important role in gallbladder carcinogenesis[196]. Other studies conducted on GBC have shown variable methylation pattern of a number of genes Table 7[81,82,193-208].

Table 7 Aberrant promoter methylation gene studies summary in gallbladder cancer.
GeneFull nameFunctionMeth FreqPopulationRef.
CDH1Cadherin 1, type 1,Tissue invasion (cell-cell adhesion)11%-65%Japan, Chile[194-200]
E-cadherin (epithelial)
FHITFragile histidine triad geneRegulation of DNA Replication, and apoptosis30%-57%Chile[81,193-195,199]
APCAdenomatous polyposis coliTumor suppressor gene (Cell migration, adhesion and apoptosis)26%-35%Chile, United States[81,194,195,198,199]
hMLH1Human homologs ofMismatch repair0%-14%Chile, United States[81,193-195,199]
MutL gene of bacteria
p16Cyclin-dependent kinaseCell cycle regulation15%-60%Chile, United States, Germany[81,82,195,197-199,201,202]
inhibitor 2A
p15Cyclin-dependent kinase inhibitor 2BCell cycle regulation22%-44%Chile[81,198]
DAPK1Death-associated protein kinase 1Serine-threonine kinase8%-61%Japan, Chile[81,197,198]
DLC1Deleted in liver cancer 1GTPase-activating protein39%Chile[81]
RASSF1RAS association domain family protein 1ASignal transduction0%-36%Japan, Chile South Korea[81,193,197,198,203]
MGMTO-6-methylguanine-DNAmethyltransferaseMethyltransferase13%-30%Chile, United States[81,195]
CDH13CDH13 Cadherin 13, H-cadherin(heart)Tissue invasion (cell-cell adhesion)44%-70%Chile[81,198]
TIMP3Metallopeptidase inhibitor 3Degradation of extracellular matrix0%-39%Chile[81,198]
GSTP1Glutathione S-transferase pi 1Conjugation of hydrophobic and electrophilic compounds13%Chile[198]
RARβ2Retinoic acid receptor, betaEncodes retinoic acid receptor beta4%-44%Chile, United States[81,198]
REPRIMOTP53 dependent G2 arrest mediator candidateCell cycle regulation (p53 mediator)62%Chile[204]
SHP1Protein tyrosine phosphatase,Regulate cell growth,80%Chile[198]
non-receptor type 6differentiation, mitotic cycle
3-OST-2Heparan sulfate (glucosamine)Osulfotransferase72%Chile[198]
3-O-sulfotransferase 2
RUNX3Runt-related transcription factor 3TGF-beta signal pathway22%-32%Chile[197,198]
RIZ1PR domain containing 2, with ZNF domainHistone/protein methyltransferase26%Chile[198]
HPP1Transmembrane protein with EGF-like and two follistatin-like domains 2TGF-beta signal pathway20%[198]
P73Tumor protein p73Induction of apoptosis and cell cycle regulation14%-28%Chile, United States[81,198]
SOCS-1Suppressor of cytokine signaling 1JAK-STAT pathway12%Chile[198]
DCR2Tumor necrosis factor receptor superfamily, member 10dTNF-receptor superfamily6%Chile[198]
SEMA3BSema domain, immunoglobulin domain (Ig), short basic domain, secreted,(semaphorin) 3BInduction of apoptosis92%Chile[193]
DUTT1Human homolog ofCell migration and metastasis22%Chile[193]
Drosophila Roundabout
BLUZinc finger, MYND-type containing 10Cell cycle regulation26%Chile[193]
p14Ribonuclease P/MRP 14 kDa subunitCell cycle regulation40%Germany[201]
MASPINMammary serine protease inhibitorTumor suppressor gene70%India[205]
THBS1Thrombospondin 1Platelet aggregation, angiogenesis, and tumorigenesis52%
HLTFHelicase-like transcription factorRegulate transcription16%
MYCV-Myc Avian Myelocytomatosis Viral Oncogene Homolog transcription factorCell cycle progression, apoptosis and cellular transformation80%Brazil[206]
APCAdenomatous polyposis coliTumor suppressor gene71%-95%Chile[207]
CDKN2ACyclin-dependent kinase inhibitor 2ACell cycle
ESR1Estrogen receptor 1Transcription factor
PGP9.5Protein gene product 9.5Neural and/or nerve sheath differentiation
SSBP2Single-stranded DNA-binding protein 2Microsatellite instability
PGP9.5Protein gene product 9.5Neural and/or nerve sheath differentiation27.2%South Korea[208]
MLH1, CDKN2AMutL homolog 1Mismatch repair5%Chile[194]
Cyclin-dependent kinase inhibitor 2ACell cycle35%
FHITFragile histidine triad proteinPurine metabolism21%
APCAdenomatous polyposis coliTumor suppressor genes25%
CDH1Cadherin-1Cell cycle66%

In addition, with the help of advanced technologies like high resolution allele stratification (allelotyping analysis) investigated very high frequencies of 3p (100%), 8p (100%), 9q (88%), 22q (92%) sites in gallbladder cancer that lead to positional identification of tumor suppressor genes associated with GBC malignancies and pathogenesis[57,58,109,209]. Moreover, some well-known tumor suppressor genes that are present in chromosomes like 3p, 5q, 8p,13q and 18q can also influence the gallbladder cancer formation[57,58,109,209].

Candidate genes for gallbladder cancer susceptibility

The merely successful mechanism for identifying low or moderate penetrance cancer genes, is the analysis of genes involved in candidate loci. Therefore, these genes are also termed as candidate genes. The candidate gene analysis is done via case-control study, in which allele frequencies in cancer patients and healthy controls are compared and obtained results are analyzed statistically. Candidate modifier genes are selected on the basis of biological plausibility. Most studies are based on genes that encode proteins, thought to be involved in carcinogenesis, such as those involved in apoptosis, cell-cycle control, DNA repair, xenobiotic metabolism, hormonal and inflammatory pathway or other risk factors. Moreover, known genes account for a small proportion of the heritability of gallbladder cancer, and it is likely that many genes with modest effects are yet to be found.

A study by Wang et al[210] from china suggested about CCK-induced impaired gallbladder emptying in patients having gallstones. Most of the candidate genes identified so far are related to the classical rate limiting enzymes and proteins of lipid metabolism, steroidogenesis, lipid transport, bile acid synthesis, bile canalicular transport, gallbladder contractility, cell cycle, DNA repair and Inflammatory pathway[211-233]. Till now there are very limited studies in GBC which are independently replicated which includes OGG1rs1052133, TP53rs1042522, GSTM1 null polymorphism and CYP1A1rs1048943 polymorphism[48]. No definitive conclusions can be drawn due to limited number of studies. Hence there is a great need to explore genes related to GBC susceptibility. Table 8[30,214-273] shows an overview of candidate gene studies reported in GBC.

Table 8 Candidate gene studies (low susceptibility genes) in gallbladder cancer.
Pathway involvedGenePolymorphismPopulationRef.
DNA repair pathway genesXPC(rs2228000) Ala499ValChina[236]
(rs2228001) Lys939GlnChina
ERCC2(rs1799793) Asp312AsnNorth Indian[232]
(rs13181) Lys751GlnNorth Indian
MSH2(rs2303426) IVS1+9G>C
(rs2303425) -118T>C
OGG1(rs2072668) 748-15C>G
TP53(rs1042522) Pro72ArgChilean, Hungary, Japanese[237-239]
XRCC1(rs1799782) Arg194TrpNorth Indian Shanghai, China[222,231]
(rs25487) Arg399Gln
APEX1(rs3136820) Asp148GluShanghai, China[222]
RAD23B(rs1805335) IVS5-15A>G[223]
(rs1805329) EX7+65C>T
FEN1FEN1-69G>A and haplotypesChina[240]
Hormonal pathway genesCCKAR(rs1800857) IVS1-5T>CNorth Indian[227]
CCK and CCKAR(rs2071011G>C, rs915889C/T, rs3822222C/T, rs1800855T/AShanghai, China,[241]
ESR1(rs2234693) IVS1-397T>CShanghai, China, North India[241-243]
(rs3841686) IVS5-34->T
(rs2228480) Ex8+229G>A
(rs1801132) Ex4-122G>C
(rs9340799) IVS1-351A>G
ESR2(rs1256049) Val328ValShanghai, China
PGRIns/DelNorth India
AR(CAG)nShanghai, China[244]
(rs4633) His62HisShanghai, China[224]
COMT(rs4818) Leu136Leu
CYP1A1(rs2606345) IVS1+606G>T
(rs1065778) IVS4-76A>GShanghai, China[224]
CYP19A1(rs700518) Val80Val
(rs2304463) IVS7-106T>G
(rs700519) Arg264Cys
(rs1065779) IVS9-53G>T
(rs4646) Ex11+410G>T
HSD3B2(rs1819698) Ex4-133C>TShanghai, China[224]
(rs1361530) Ex4-88C>G
HSD17B3(rs2066479) Gly289Arg
HSD17B1(rs2830) Ex1-486G>A
SHBG(rs6259) Ex8+6G>A
SRD5A2(rs523349) Ex1-17G>C
RXR-a(rs1536475) IVS6+70A>GShanghai, China[245]
(rs1805343) IVS1-27A>G
RXR-b(rs2744537) G392T
(rs2076310) C51T
INS(rs689) A-6TShanghai, China[245]
PPARD(rs2016520) Ex4+15C>TShanghai, China
PPARG(rs3856806) His477HisShanghai, China
Inflammatory pathway genesCR1(rs2274567) His1208ArgNorth Indian[230]
( rs12144461) Intron 27, HindIII
IL1RN86-bp VNTRNorth Indian[220]
(rs689466) -1195G>A[233]
PTGS2(rs20417) -765G>C
(rs5275) +8473T>CNorth Indian Shanghai, China[233,246]
IL1B(rs16944) -1060T>CShanghai, China north Indian[220,247]
IL10rs1800871)- 7334T>CShanghai[247]
(rs1800872) -6653A>CShanghai
IL-8(rs10805066) IL8 -13985C>GChina[248]
EGF(rs4444903) +61A>GNorth Indian[221]
TGFb1(rs1800469)-509C>TShanghai, north Indian[219,221,247]
TNF-α(rs1800629) -308G>A
IL6(rs1800795) 236C>G)
IL8(rs10805066) -13985C>GChina[248]
MMP-2(rs2285053) -735 C>TNorth Indian[249]
(rs9340799) -1306 C>T
MMP-7(rs11568818) -181 A>G
(rs2250889) P574R
MMP9(rs 17576) R279Q
(rs 17577) R668Q
TIMP2(rs8179090) -418 G>C
Metabolic pathway genesMTHFR(rs1801133) Ala222ValIndian[228]
APOB(rs17240441) 35_43del9Indian[217]
NAT2(rs1799929) NAT2*5AIndian[216]
(rs1799930) NAT2*6B
rs1799931, NAT2*7A
GSTT1Null polymorphismIndian[215]
GSTP1(rs1695) Ile105Val
CYP17(rs743572) Ex1+27T>CShanghai Indian (265)[250,251]
GSTM1Null polymorphismIndian, Chilean Hungary Japanese[215,237,238]
CYP1A1(rs4646903) CYP1A1*2AIndian, Chilean Hungary Japanese[218,237,239]
(rs1048943) Ile462Val (*2C)China, Chilean, Hungary Japanese[224,237-239]
Cyp1a1 cyp1b1CYP1A1-MspI, CYP1A1-Ile462Val, and CYP1B1-Val432LeuIndia[252]
(rs5930) EX10+55G>AShanghai[253]
LDLR(rs6413504) IVS17_42A>GShanghai
(rs14158) EX18+88G>A
LPL(rs263) IVS5-540C>T
ALOX5(rs2029253) IVS3+100G>A
ApoBrs693) Thr2515ThrIndian Chilean[30,217]
ABCG8(rs11887534) Asp19HisNorth Indian Shanghai China[229,254]
CETP(rs708272) TaqIBChilean Shanghai China[30,254]
(rs1800775) -629C>AShanghai China[254]
LRPAP1(rs11267919)752_177_752_176 I 37North Indian Shanghai China[214,254]
CYP7A1(rs3808607) -204 A>CNorth Indian[255]
CYP7A1(rs3824260) -469 T>CNorth Indian
CYP17(rs743572)A/GNorth Indian[250,251]
ApoB(rs676210) Pro2739LeuShanghai[253]
(rs673548) IVS23-79T>C
rs520354) IVS6+360C > T
(rs1367117) Thr98Ile
(rs440446) IVS1+69C>G
CYP2C19(rs4244285) CYP2C19*2,Japanese[256]
(rs4986893) CYP2C19*3
ADRB3(rs4994)A/GNorth Indian[257]
Apoptosis pathwayCASP8(rs3834129) -652 6N ins/delNorth Indian[258]
(rs1045485) Asp302His
(rs3769818 A) IVS12-19 G>A
Nuclear ReceptorsLxr-alpha, BetaLXR-α (rs7120118) and LXR-β (rs35463555 and rs2695121)North Indian[259]
Cancer Stem cell geneCD44CD44 (rs13347) C>T, CD44 (rs353639)A>C, CD44 (rs187116) G>A, CD44 (rs187115) T>CNorth Indian[260]
NANOG, ALCAM, EpCAM, SOX-2, OCT-4, NANOGNANOG (rs11055786)T>C,North Indian[261]
ALCAM (rs1157)G>A
EpCAM (rs1126497)T>C,
OCT-4 (rs3130932)T>G,
NANOG (rs11055786)T>C
Prostate stem cell antigenPSCA(rs2294008) T/C and rs2978974)India, Japan[262,263]
miRNAhsa-miR-146a(rs2910164) G>CNorth Indian[264]
hsa-mir-196a2(rs11614913) C>T
miR-27,miR-570,miR-181miR-27a (rs895819)A>G,North Indian population[265]
GWAS-associated genesDCC(rs7504990)C>TJapan[234]
( rs2229080) C>GNorth Indian[235]
(rs4078288) A>G
(rs7504990) C>T
(rs714) A>G
Wnt signaling pathwaySFRP4, DKK2, DKK3, APC, AXIN-2, Β-CATENIN, GLI-1SFRP4 (rs1802073) G>T,North Indian[266]
DKK2 (rs17037102) C>T
DKK3 (rs3206824) C>T,
APC (rs4595552)A/T
APC ( rs11954856) G>T,
AXIN-2 (rs4791171)C>T
β-CATENIN (rs4135385) A>G,
GLI-1(rs222826) C>G
Other genesKRAScodon 25 Gln25HisEastern India[267]
ACE I/D(rs4646994) 289 bp delNorth Indian[268]
DNMT3B(rs1569686) -579 G>TNorth Indian[269]
TLR2-196-174delNorth Indian[270]
TLR4(rs4986791) Thr399IleNorth Indian
Adrenergic receptors (ADRA)ADRA2A C-1291G, ADRβ3 T190C or Trp64Arg, and ADRβ1 C1165G or Arg389GlyNorth Indian[271]
Death Receptors and their ligands (DR4)DR4 (rs20575, rs20576 and rs6557634), FAS (rs2234767) FASL (rs763110)North Indian
PlCE1(rs2274223) A>G and. (rs7922612) T>CNorth Indian[272]
Vitamin D receptor (VDR)FokI C>TChina[273]

The only one genome-wide association study conducted in gallbladder cancer identified a SNP (rs7504990) in DCC gene which was associated with six times gallbladder cancer risk in the Japanese population. It has also been reported that reduced expression of DCC gene (deleted in colorectal cancer, 18q21.3) was designated to be associated with the greater aggressiveness of the disease which include increased proliferation, poorly differentiated histology, and metastasis through loss of adhesiveness[234]. However genome wide association study (GWAS) identified SNPs was replicated in Indian population and the study found no individual association of DCCrs7504990 but haplotype analysis of DCC gene found the cumulative effect of Grs2229080-Ars4078288-Crs7504990 Ars714 haplotypes in Gallbladder Cancer predisposition[235].

Molecular pathogenesis of GBC

Gallbladder carcinoma develops through a serious of events before converting in to invasive malignancy. Any exposure to carcinogens may convert normal gallbladder epithelium to condition called metaplasia which subsequently forms dysplasia to carcinoma in situ (CIS), and finally proceeding to invasive carcinoma in about 15 years[274,275]. The multistage pathogenesis of gallbladder carcinoma begins with gallstones giving rise to a condition called chronic cholecystitis, which increases to risk to gallbladder cancer formation. More than 90% of patients with gallbladder carcinoma show dysplasia and CIS[274,275]. There is an unusual asymmetric thickening of the gallbladder wall with infiltration to surrounding structures in gallbladder cancer. Maximum cases reported in carcinomas of gallbladder are adenocarcinomas (80%-95%). Adenocarconomas can further be of papillary, tubular, mucinous, or signet cell type. Some other types which are present in very low frequency include: squamous cell carcinoma (16%), undifferentiated or anaplastic carcinoma (2%-7%), and adeno-squamous carcinoma (1%-4%)[276]. Most of GBCs (60%) are found in the fundus, near about 30% in the body, and 10% in the neck region.

Tumor markers in GBC

Till date there is no reliable tumor marker developed which can be employed in diagnosis of gallbladder cancer. The only two markers i.e., carcino-embryonic antigen (CEA) and carbohydrate antigen 19-9 are most often elevated in advanced stages with a low specificity. So most often they are not used in stand-alone diagnosis of GBC[277]. However, there are other tumor markers like CA125, CA199, CEA (carcino-embryonic antigen), cancer antigens (CA) and CA242, which are for diagnosis of different other types of cancer (e.g., gastric, liver, pancreatic), have also been researched in diagnosis of gallbladder cancer but the obtained results are highly inconsistent[278-280]. In addition some previous reports have shown CA 242, RCAS1 (receptor binding cancer antigen expressed on SiSo cells) CA15-3, Mac-2BP (macrophage galactose-specific lectin-2 binding protein), Fragments of cytokeratin-19 (CYFRA 21-1) are frequently present in blood of cancer patients and shown to be associated with GBC with variable sensitivity and specificity[277,281,282].


Various lines of evidence suggest role for various environmental risk factors in Gallbladder carcinoma. Despite of many articles regarding genetic predisposition of gallbladder cancer there is no established genetic marker. Also, very limited Genome wide association studies (GWAS) have been conducted in gallbladder cancer till now.

The evidence-based model of gallbladder carcinogenesis and its dissemination by Barreto et al[283] serves as a basic platform for elucidation of molecular mechanisms involved in cancer development which based on recent data can be improved by discovery of other signature mutations using high throughput studies. Technological advancement can be helpful more understanding of pathogenic mechanisms underlying neoplastic conversion of gallbladder cancer muscosa. The tumor markers available for diagnosis GBC has also not of very high specificity and not discovered until advanced stage of the disease leading to complexity of the treatment. Exome sequencing of gallbladder cancer tissue has found ERBB pathway as most dysregulated pathway in this disease. Although the studies have been published in highly distinguished journals but they need to be validated before clinical implication. Moreover, limited studies with small sample size are not robust enough to conclude anything. Regardless of improvement in technologies in research field there is no accountable betterment in the prognosis of GBC patients. The future therefore should be engaged towards good quality research focused on early diagnosis and refinement of prognostic information to ultimately improve the management strategies of gallbladder cancer. Present review provides a comprehensive summery of the studies conducted regarding its Epidemiology, Pathogenesis and molecular genetics under a single umbrella. This will be helpful for the researchers to understand the current scenario of research work and how much success we have gained till now. Based on that future research work can be planned in appropriate directions.


Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country of origin: India

Peer-review report classification

Grade A (Excellent): 0

Grade B (Very good): B, B

Grade C (Good): 0

Grade D (Fair): D

Grade E (Poor): 0

P- Reviewer: Barreto S, Lee KT, Suzuki H S- Editor: Gong ZM L- Editor: A E- Editor: Wang CH

1.  Misra S, Chaturvedi A, Misra NC, Sharma ID. Carcinoma of the gallbladder. Lancet Oncol. 2003;4:167-176.  [PubMed]  [DOI]
2.  Andia ME, Hsing AW, Andreotti G, Ferreccio C. Geographic variation of gallbladder cancer mortality and risk factors in Chile: a population-based ecologic study. Int J Cancer. 2008;123:1411-1416.  [PubMed]  [DOI]
3.  Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome. Clin Epidemiol. 2014;6:99-109.  [PubMed]  [DOI]
4.  Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;118:1591-1602.  [PubMed]  [DOI]
5.  Shaffer EA. Gallbladder cancer: the basics. Gastroenterol Hepatol (N Y). 2008;4:737-741.  [PubMed]  [DOI]
6.  Lazcano-Ponce EC, Miquel JF, Muñoz N, Herrero R, Ferrecio C, Wistuba II, Alonso de Ruiz P, Aristi Urista G, Nervi F. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51:349-364.  [PubMed]  [DOI]
7.  Hsing AW, Bai Y, Andreotti G, Rashid A, Deng J, Chen J, Goldstein AM, Han TQ, Shen MC, Fraumeni JF. Family history of gallstones and the risk of biliary tract cancer and gallstones: a population-based study in Shanghai, China. Int J Cancer. 2007;121:832-838.  [PubMed]  [DOI]
8.  Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for gallbladder cancer across the world. HPB (Oxford). 2008;10:327-331.  [PubMed]  [DOI]
9.  Pilgrim CH, Groeschl RT, Christians KK, Gamblin TC. Modern perspectives on factors predisposing to the development of gallbladder cancer. HPB (Oxford). 2013;15:839-844.  [PubMed]  [DOI]
10.  Iyer P, Barreto SG, Sahoo B, Chandrani P, Ramadwar MR, Shrikhande SV, Dutt A. Non-typhoidal Salmonella DNA traces in gallbladder cancer. Infect Agent Cancer. 2016;11:12.  [PubMed]  [DOI]
11.  Everson GT, McKinley C, Kern F. Mechanisms of gallstone formation in women. Effects of exogenous estrogen (Premarin) and dietary cholesterol on hepatic lipid metabolism. J Clin Invest. 1991;87:237-246.  [PubMed]  [DOI]
12.  Barreto SG, Haga H, Shukla PJ. Hormones and gallbladder cancer in women. Indian J Gastroenterol. 2009;28:126-130.  [PubMed]  [DOI]
13.  Jain K, Sreenivas V, Velpandian T, Kapil U, Garg PK. Risk factors for gallbladder cancer: a case-control study. Int J Cancer. 2013;132:1660-1666.  [PubMed]  [DOI]
14.  Shrikhande SV, Barreto SG, Singh S, Udwadia TE, Agarwal AK. Cholelithiasis in gallbladder cancer: coincidence, cofactor, or cause! Eur J Surg Oncol. 2010;36:514-519.  [PubMed]  [DOI]
15.  Yen S, Hsieh CC, MacMahon B. Extrahepatic bile duct cancer and smoking, beverage consumption, past medical history, and oral-contraceptive use. Cancer. 1987;59:2112-2116.  [PubMed]  [DOI]
16.  Park M, Song DY, Je Y, Lee JE. Body mass index and biliary tract disease: a systematic review and meta-analysis of prospective studies. Prev Med. 2014;65:13-22.  [PubMed]  [DOI]
17.  Shukla VK, Rastogi AN, Adukia TK, Raizada RB, Reddy DC, Singh S. Organochlorine pesticides in carcinoma of the gallbladder: a case-control study. Eur J Cancer Prev. 2001;10:153-156.  [PubMed]  [DOI]
18.  Mishra V, Mishra M, Ansari KM, Chaudhari BP, Khanna R, Das M. Edible oil adulterants, argemone oil and butter yellow, as aetiological factors for gall bladder cancer. Eur J Cancer. 2012;48:2075-2085.  [PubMed]  [DOI]
19.  Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78-85.  [PubMed]  [DOI]
20.  Moerman CJ, Berns MP, Bueno de Mesquita HB, Runia S. Reproductive history and cancer of the biliary tract in women. Int J Cancer. 1994;57:146-153.  [PubMed]  [DOI]
21.  Tavani A, Negri E, La Vecchia C. Menstrual and reproductive factors and biliary tract cancers. Eur J Cancer Prev. 1996;5:241-247.  [PubMed]  [DOI]
22.  Diehl AK. Epidemiology of gallbladder cancer: a synthesis of recent data. J Natl Cancer Inst. 1980;65:1209-1214.  [PubMed]  [DOI]
23.  Kimura W, Miyata R, Takahashi T, Yamashiro M. Simultaneous development of gallbladder and bile duct carcinomas with atypical epithelium intervention: a case report. Jpn J Clin Oncol. 1989;19:287-293.  [PubMed]  [DOI]
24.  Zatonski WA, Lowenfels AB, Boyle P, Maisonneuve P, Bueno de Mesquita HB, Ghadirian P, Jain M, Przewozniak K, Baghurst P, Moerman CJ. Epidemiologic aspects of gallbladder cancer: a case-control study of the SEARCH Program of the International Agency for Research on Cancer. J Natl Cancer Inst. 1997;89:1132-1138.  [PubMed]  [DOI]
25.  Feigelson HS, Ross RK, Yu MC, Coetzee GA, Reichardt JK, Henderson BE. Genetic susceptibility to cancer from exogenous and endogenous exposures. J Cell Biochem Suppl. 1996;25:15-22.  [PubMed]  [DOI]
26.  Dhiman RK, Chawla YK. Is there a link between oestrogen therapy and gallbladder disease? Expert Opin Drug Saf. 2006;5:117-129.  [PubMed]  [DOI]
27.  Piehler JM, Crichlow RW. Primary carcinoma of the gallbladder. Surg Gynecol Obstet. 1978;147:929-942.  [PubMed]  [DOI]
28.  Stephen AE, Berger DL. Carcinoma in the porcelain gallbladder: a relationship revisited. Surgery. 2001;129:699-703.  [PubMed]  [DOI]
29.  Serra I, Yamamoto M, Calvo A, Cavada G, Báez S, Endoh K, Watanabe H, Tajima K. Association of chili pepper consumption, low socioeconomic status and longstanding gallstones with gallbladder cancer in a Chilean population. Int J Cancer. 2002;102:407-411.  [PubMed]  [DOI]
30.  Báez S, Tsuchiya Y, Calvo A, Pruyas M, Nakamura K, Kiyohara C, Oyama M, Yamamoto M. Genetic variants involved in gallstone formation and capsaicin metabolism, and the risk of gallbladder cancer in Chilean women. World J Gastroenterol. 2010;16:372-378.  [PubMed]  [DOI]
31.  Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95:784-787.  [PubMed]  [DOI]
32.  Leong RW, Sung JJ. Review article: Helicobacter species and hepatobiliary diseases. Aliment Pharmacol Ther. 2002;16:1037-1045.  [PubMed]  [DOI]
33.  Nath G, Gulati AK, Shukla VK. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol. 2010;16:5395-5404.  [PubMed]  [DOI]
34.  Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Janssen H. Salmonella Manipulation of Host Signaling Pathways Provokes Cellular Transformation Associated with Gallbladder Carcinoma. Cell Host Microbe. 2015;17:763-774.  [PubMed]  [DOI]
35.  Shim KY, Cha SW, Um WH, Chun CG, Jeong SW, Jang JY, Cho YD. Simultaneous occurrence of gallbladder cancer in a laundry couple: association between gallbladder cancer and benzene. Korean J Gastroenterol. 2013;61:107-109.  [PubMed]  [DOI]
36.  Mishra RR, Tewari M, Shukla HS. Helicobacter pylori and pathogenesis of gallbladder cancer. J Gastroenterol Hepatol. 2011;26:260-266.  [PubMed]  [DOI]
37.  Hassan EH, Gerges SS, El-Atrebi KA, El-Bassyouni HT. The role of H. pylori infection in gall bladder cancer: clinicopathological study. Tumour Biol. 2015;36:7093-7098.  [PubMed]  [DOI]
38.  Shukla VK, Tiwari SC, Roy SK. Biliary bile acids in cholelithiasis and carcinoma of the gall bladder. Eur J Cancer Prev. 1993;2:155-160.  [PubMed]  [DOI]
39.  Kitamura T, Srivastava J, DiGiovanni J, Kiguchi K. Bile acid accelerates erbB2-induced pro-tumorigenic activities in biliary tract cancer. Mol Carcinog. 2015;54:459-472.  [PubMed]  [DOI]
40.  Gowda GA. Human bile as a rich source of biomarkers for hepatopancreatobiliary cancers. Biomark Med. 2010;4:299-314.  [PubMed]  [DOI]
41.  Benbow EW. Xanthogranulomatous cholecystitis. Br J Surg. 1990;77:255-256.  [PubMed]  [DOI]
42.  Matsumoto Y, Fujii H, Aoyama H, Yamamoto M, Sugahara K, Suda K. Surgical treatment of primary carcinoma of the gallbladder based on the histologic analysis of 48 surgical specimens. Am J Surg. 1992;163:239-245.  [PubMed]  [DOI]
43.  Tanaka K, Ikoma A, Hamada N, Nishida S, Kadono J, Taira A. Biliary tract cancer accompanied by anomalous junction of pancreaticobiliary ductal system in adults. Am J Surg. 1998;175:218-220.  [PubMed]  [DOI]
44.  Pandey M. Risk factors for gallbladder cancer: a reappraisal. Eur J Cancer Prev. 2003;12:15-24.  [PubMed]  [DOI]
45.  Pandey M. Environmental pollutants in gallbladder carcinogenesis. J Surg Oncol. 2006;93:640-643.  [PubMed]  [DOI]
46.  Ogura Y, Mizumoto R, Isaji S, Kusuda T, Matsuda S, Tabata M. Radical operations for carcinoma of the gallbladder: present status in Japan. World J Surg. 1991;15:337-343.  [PubMed]  [DOI]
47.  Wiles R, Varadpande M, Muly S, Webb J. Growth rate and malignant potential of small gallbladder polyps--systematic review of evidence. Surgeon. 2014;12:221-226.  [PubMed]  [DOI]
48.  Srivastava K, Srivastava A, Sharma KL, Mittal B. Candidate gene studies in gallbladder cancer: a systematic review and meta-analysis. Mutat Res. 2011;728:67-79.  [PubMed]  [DOI]
49.  Larsson SC, Wolk A. Obesity and the risk of gallbladder cancer: a meta-analysis. Br J Cancer. 2007;96:1457-1461.  [PubMed]  [DOI]
50.  Shukla VK, Shukla PK, Pandey M, Rao BR, Roy SK. Lipid peroxidation product in bile from patients with carcinoma of the gallbladder: a preliminary study. J Surg Oncol. 1994;56:258-262.  [PubMed]  [DOI]
51.  Jackson HH, Glasgow RE, Mulvihill SJ, Cannon-Albright LA. Cannon-Albright. Familial risk in gallbladder cancer. J Am Coll Surg. 2007;S38-S138.  [PubMed]  [DOI]
52.  Hemminki K, Li X. Familial liver and gall bladder cancer: a nationwide epidemiological study from Sweden. Gut. 2003;52:592-596.  [PubMed]  [DOI]
53.  Trajber HJ, Szego T, de Camargo HS, Mester M, Marujo WC, Roll S. Adenocarcinoma of the gallbladder in two siblings. Cancer. 1982;50:1200-1203.  [PubMed]  [DOI]
54.  Wistuba II, Sugio K, Hung J, Kishimoto Y, Virmani AK, Roa I, Albores-Saavedra J, Gazdar AF. Allele-specific mutations involved in the pathogenesis of endemic gallbladder carcinoma in Chile. Cancer Res. 1995;55:2511-2515.  [PubMed]  [DOI]
55.  Pandey M, Khatri AK, Dubey SS, Gautam A, Shukla VK. Erythrocyte membrane fatty acid profile in patients with primary carcinoma of the gallbladder. J Surg Oncol. 1995;59:31-34.  [PubMed]  [DOI]
56.  Sasatomi E, Tokunaga O, Miyazaki K. Precancerous conditions of gallbladder carcinoma: overview of histopathologic characteristics and molecular genetic findings. J Hepatobiliary Pancreat Surg. 2000;7:556-567.  [PubMed]  [DOI]
57.  Wistuba II, Tang M, Maitra A, Alvarez H, Troncoso P, Pimentel F, Gazdar AF. Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res. 2001;61:3795-3800.  [PubMed]  [DOI]
58.  Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am. 2002;11:995-1009.  [PubMed]  [DOI]
59.  Imai M, Hoshi T, Ogawa K. K-ras codon 12 mutations in biliary tract tumors detected by polymerase chain reaction denaturing gradient gel electrophoresis. Cancer. 1994;73:2727-2733.  [PubMed]  [DOI]
60.  Ajiki T, Fujimori T, Onoyama H, Yamamoto M, Kitazawa S, Maeda S, Saitoh Y. K-ras gene mutation in gall bladder carcinomas and dysplasia. Gut. 1996;38:426-429.  [PubMed]  [DOI]
61.  Itoi T, Watanabe H, Ajioka Y, Oohashi Y, Takel K, Nishikura K, Nakamura Y, Horil A, Saito T. APC, K-ras codon 12 mutations and p53 gene expression in carcinoma and adenoma of the gall-bladder suggest two genetic pathways in gall-bladder carcinogenesis. Pathol Int. 1996;46:333-340.  [PubMed]  [DOI]
62.  Itoi T, Watanabe H, Yoshida M, Ajioka Y, Nishikura K, Saito T. Correlation of p53 protein expression with gene mutation in gall-bladder carcinomas. Pathol Int. 1997;47:525-530.  [PubMed]  [DOI]
63.  Masuhara S, Kasuya K, Aoki T, Yoshimatsu A, Tsuchida A, Koyanagi Y. Relation between K-ras codon 12 mutation and p53 protein overexpression in gallbladder cancer and biliary ductal epithelia in patients with pancreaticobiliary maljunction. J Hepatobiliary Pancreat Surg. 2000;7:198-205.  [PubMed]  [DOI]
64.  Singh MK, Chetri K, Pandey UB, Kapoor VK, Mittal B, Choudhuri G. Mutational spectrum of K-ras oncogene among Indian patients with gallbladder cancer. J Gastroenterol Hepatol. 2004;19:916-921.  [PubMed]  [DOI]
65.  Wistuba II, Albores-Saavedra J. Genetic abnormalities involved in the pathogenesis of gallbladder carcinoma. J Hepatobiliary Pancreat Surg. 1999;6:237-244.  [PubMed]  [DOI]
66.  Kim YT, Kim J, Jang YH, Lee WJ, Ryu JK, Park YK, Kim SW, Kim WH, Yoon YB, Kim CY. Genetic alterations in gallbladder adenoma, dysplasia and carcinoma. Cancer Lett. 2001;169:59-68.  [PubMed]  [DOI]
67.  Hanada K, Tsuchida A, Kajiyama G. Cellular kinetics and gene mutations in gallbladder mucosa with an anomalous junction of pancreaticobiliary duct. J Hepatobiliary Pancreat Surg. 1999;6:223-228.  [PubMed]  [DOI]
68.  Nakayama K, Konno M, Kanzaki A, Morikawa T, Miyashita H, Fujioka T, Uchida T, Miyazaki K, Takao S, Aikou T. Allelotype analysis of gallbladder carcinoma associated with anomalous junction of pancreaticobiliary duct. Cancer Lett. 2001;166:135-141.  [PubMed]  [DOI]
69.  Yokoyama N, Watanabe H, Ajioka Y, Nishikura K, Date K, Kijima H, Shirai Y, Hatakeyama K. [Genetic alterations in gallbladder carcinoma: a review]. Nihon Geka Gakkai Zasshi. 1998;99:687-695.  [PubMed]  [DOI]
70.  Pfeifer GP. Involvement of DNA damage and repair in mutational spectra. Mutat Res. 2000;450:1-3.  [PubMed]  [DOI]
71.  Billo P, Marchegiani C, Capella C, Sessa F. [Expression of p53 in gallbladder carcinoma and in dysplastic and metaplastic lesions of the surrounding mucosa]. Pathologica. 2000;92:249-256.  [PubMed]  [DOI]
72.  Roa I, Melo A, Roa J, Araya J, Villaseca M, de Aretxabala X. [P53 gene mutation in gallbladder cancer]. Rev Med Chil. 2000;128:251-258.  [PubMed]  [DOI]
73.  Takada M, Horita Y, Okuda S, Okumoto S, Samizo M, Wada T, Kuroda Y, Maeda S. Genetic analysis of xanthogranulomatous cholecystitis: precancerous lesion of gallbladder cancer? Hepatogastroenterology. 2002;49:935-937.  [PubMed]  [DOI]
74.  Quan ZW, Wu K, Wang J, Shi W, Zhang Z, Merrell RC. Association of p53, p16, and vascular endothelial growth factor protein expressions with the prognosis and metastasis of gallbladder cancer. J Am Coll Surg. 2001;193:380-383.  [PubMed]  [DOI]
75.  Yokoyama N, Hitomi J, Watanabe H, Ajioka Y, Pruyas M, Serra I, Shirai Y, Hatakeyama K. Mutations of p53 in gallbladder carcinomas in high-incidence areas of Japan and Chile. Cancer Epidemiol Biomarkers Prev. 1998;7:297-301.  [PubMed]  [DOI]
76.  Roa JC, Roa I, de Aretxabala X, Melo A, Faría G, Tapia O. [K-ras gene mutation in gallbladder carcinoma]. Rev Med Chil. 2004;132:955-960.  [PubMed]  [DOI]
77.  Roa JC, Anabalón L, Tapia O, Melo A, de Aretxabala X, Roa I. [Frequency of K-ras mutation in biliary and pancreatic tumors]. Rev Med Chil. 2005;133:1434-1440.  [PubMed]  [DOI]
78.  Tada M, Yokosuka O, Omata M, Ohto M, Isono K. Analysis of ras gene mutations in biliary and pancreatic tumors by polymerase chain reaction and direct sequencing. Cancer. 1990;66:930-935.  [PubMed]  [DOI]
79.  Yoshida S, Todoroki T, Ichikawa Y, Hanai S, Suzuki H, Hori M, Fukao K, Miwa M, Uchida K. Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers. Cancer Res. 1995;55:2756-2760.  [PubMed]  [DOI]
80.  Hanada K, Tsuchida A, Iwao T, Eguchi N, Sasaki T, Morinaka K, Matsubara K, Kawasaki Y, Yamamoto S, Kajiyama G. Gene mutations of K-ras in gallbladder mucosae and gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct. Am J Gastroenterol. 1999;94:1638-1642.  [PubMed]  [DOI]
81.  House MG, Wistuba II, Argani P, Guo M, Schulick RD, Hruban RH, Herman JG, Maitra A. Progression of gene hypermethylation in gallstone disease leading to gallbladder cancer. Ann Surg Oncol. 2003;10:882-889.  [PubMed]  [DOI]
82.  Ueki T, Hsing AW, Gao YT, Wang BS, Shen MC, Cheng J, Deng J, Fraumeni JF, Rashid A. Alterations of p16 and prognosis in biliary tract cancers from a population-based study in China. Clin Cancer Res. 2004;10:1717-1725.  [PubMed]  [DOI]
83.  Tang M, Baez S, Pruyas M, Diaz A, Calvo A, Riquelme E, Wistuba II. Mitochondrial DNA mutation at the D310 (displacement loop) mononucleotide sequence in the pathogenesis of gallbladder carcinoma. Clin Cancer Res. 2004;10:1041-1046.  [PubMed]  [DOI]
84.  Saetta AA. K-ras, p53 mutations, and microsatellite instability (MSI) in gallbladder cancer. J Surg Oncol. 2006;93:644-649.  [PubMed]  [DOI]
85.  Fujii K, Yokozaki H, Yasui W, Kuniyasu H, Hirata M, Kajiyama G, Tahara E. High frequency of p53 gene mutation in adenocarcinomas of the gallbladder. Cancer Epidemiol Biomarkers Prev. 1996;5:461-466.  [PubMed]  [DOI]
86.  Hanada K, Itoh M, Fujii K, Tsuchida A, Ooishi H, Kajiyama G. K-ras and p53 mutations in stage I gallbladder carcinoma with an anomalous junction of the pancreaticobiliary duct. Cancer. 1996;77:452-458.  [PubMed]  [DOI]
87.  Kamel D, Pääkkö P, Nuorva K, Vähäkangas K, Soini Y. p53 and c-erbB-2 protein expression in adenocarcinomas and epithelial dysplasias of the gall bladder. J Pathol. 1993;170:67-72.  [PubMed]  [DOI]
88.  Kim YW, Huh SH, Park YK, Yoon TY, Lee SM, Hong SH. Expression of the c-erb-B2 and p53 protein in gallbladder carcinomas. Oncol Rep. 2001;8:1127-1132.  [PubMed]  [DOI]
89.  Kiguchi K, Carbajal S, Chan K, Beltrán L, Ruffino L, Shen J, Matsumoto T, Yoshimi N, DiGiovanni J. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res. 2001;61:6971-6976.  [PubMed]  [DOI]
90.  Kumari N, Kapoor VK, Krishnani N, Kumar K, Baitha DK. Role of C-erbB2 expression in gallbladder cancer. Indian J Pathol Microbiol. 2012;55:75-79.  [PubMed]  [DOI]
91.  Roa I, de Toro G, Schalper K, de Aretxabala X, Churi C, Javle M. Overexpression of the HER2/neu Gene: A New Therapeutic Possibility for Patients With Advanced Gallbladder Cancer. Gastrointest Cancer Res. 2014;7:42-48.  [PubMed]  [DOI]
92.  Pignochino Y, Sarotto I, Peraldo-Neia C, Penachioni JY, Cavalloni G, Migliardi G, Casorzo L, Chiorino G, Risio M, Bardelli A. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas. BMC Cancer. 2010;10:631.  [PubMed]  [DOI]
93.  Li M, Zhang Z, Li X, Ye J, Wu X, Tan Z, Liu C, Shen B, Wang XA, Wu W. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet. 2014;46:872-876.  [PubMed]  [DOI]
94.  Javle M, Rashid A, Churi C, Kar S, Zuo M, Eterovic AK, Nogueras-Gonzalez GM, Janku F, Shroff RT, Aloia TA. Molecular characterization of gallbladder cancer using somatic mutation profiling. Hum Pathol. 2014;45:701-708.  [PubMed]  [DOI]
95.  Kumari N, Corless CL, Warrick A, Beadling C, Nelson D, Neff T, Krishnani N, Kapoor VK. Mutation profiling in gallbladder cancer in Indian population. Indian J Pathol Microbiol. 2014;57:9-12.  [PubMed]  [DOI]
96.  Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, Hama N, Hosoda F, Urushidate T, Ohashi S. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003-1010.  [PubMed]  [DOI]
97.  Kim JH, Kim HN, Lee KT, Lee JK, Choi SH, Paik SW, Rhee JC, Lowe AW. Gene expression profiles in gallbladder cancer: the close genetic similarity seen for early and advanced gallbladder cancers may explain the poor prognosis. Tumour Biol. 2008;29:41-49.  [PubMed]  [DOI]
98.  Hansel DE, Rahman A, Hidalgo M, Thuluvath PJ, Lillemoe KD, Schulick R, Ku JL, Park JG, Miyazaki K, Ashfaq R. Identification of novel cellular targets in biliary tract cancers using global gene expression technology. Am J Pathol. 2003;163:217-229.  [PubMed]  [DOI]
99.  Murakawa K, Tada M, Takada M, Tamoto E, Shindoh G, Teramoto K, Matsunaga A, Komuro K, Kanai M, Kawakami A. Prediction of lymph node metastasis and perineural invasion of biliary tract cancer by selected features from cDNA array data. J Surg Res. 2004;122:184-194.  [PubMed]  [DOI]
100.  Washiro M, Ohtsuka M, Kimura F, Shimizu H, Yoshidome H, Sugimoto T, Seki N, Miyazaki M. Upregulation of topoisomerase IIalpha expression in advanced gallbladder carcinoma: a potential chemotherapeutic target. J Cancer Res Clin Oncol. 2008;134:793-801.  [PubMed]  [DOI]
101.  Miller G, Socci ND, Dhall D, D’Angelica M, DeMatteo RP, Allen PJ, Singh B, Fong Y, Blumgart LH, Klimstra DS. Genome wide analysis and clinical correlation of chromosomal and transcriptional mutations in cancers of the biliary tract. J Exp Clin Cancer Res. 2009;28:62.  [PubMed]  [DOI]
102.  Misra S, Chaturvedi A, Goel MM, Mehrotra R, Sharma ID, Srivastava AN, Misra NC. Overexpression of p53 protein in gallbladder carcinoma in North India. Eur J Surg Oncol. 2000;26:164-167.  [PubMed]  [DOI]
103.  Chaube A, Tewari M, Garbyal RS, Singh U, Shukla HS. Preliminary study of p53 and c-erbB-2 expression in gallbladder cancer in Indian patients manuscript id: 8962091628764582. BMC Cancer. 2006;6:126.  [PubMed]  [DOI]
104.  Legan M, Luzar B, Ferlan-Marolt V, Cör A. Cyclooxygenase-2 expression determines neo-angiogenesis in gallbladder carcinomas. Bosn J Basic Med Sci. 2006;6:58-63.  [PubMed]  [DOI]
105.  Wang SN, Chung SC, Tsai KB, Chai CY, Chang WT, Kuo KK, Chen JS, Lee KT. Aberrant p53 expression and the development of gallbladder carcinoma and adenoma. Kaohsiung J Med Sci. 2006;22:53-59.  [PubMed]  [DOI]
106.  Ghosh M, Sakhuja P, Singh S, Agarwal AK. p53 and beta-catenin expression in gallbladder tissues and correlation with tumor progression in gallbladder cancer. Saudi J Gastroenterol. 2013;19:34-39.  [PubMed]  [DOI]
107.  Choi HJ, Yun SS, Kim HJ, Choi JH. Expression of p16 protein in gallbladder carcinoma and its precancerous conditions. Hepatogastroenterology. 2010;57:18-21.  [PubMed]  [DOI]
108.  Koda M, Yashima K, Kawaguchi K, Andachi H, Hosoda A, Shiota G, Ito H, Murawaki Y. Expression of Fhit, Mlh1, and P53 protein in human gallbladder carcinoma. Cancer Lett. 2003;199:131-138.  [PubMed]  [DOI]
109.  Wistuba II, Ashfaq R, Maitra A, Alvarez H, Riquelme E, Gazdar AF. Fragile histidine triad gene abnormalities in the pathogenesis of gallbladder carcinoma. Am J Pathol. 2002;160:2073-2079.  [PubMed]  [DOI]
110.  Suzuki T, Takano Y, Kakita A, Okudaira M. An immunohistochemical and molecular biological study of c-erbB-2 amplification and prognostic relevance in gallbladder cancer. Pathol Res Pract. 1993;189:283-292.  [PubMed]  [DOI]
111.  Chow NH, Huang SM, Chan SH, Mo LR, Hwang MH, Su WC. Significance of c-erbB-2 expression in normal and neoplastic epithelium of biliary tract. Anticancer Res. 1995;15:1055-1059.  [PubMed]  [DOI]
112.  Shi YZ, Hui AM, Li X, Takayama T, Makuuchi M. Overexpression of retinoblastoma protein predicts decreased survival and correlates with loss of p16INK4 protein in gallbladder carcinomas. Clin Cancer Res. 2000;6:4096-4100.  [PubMed]  [DOI]
113.  Li X, Hui AM, Shi YZ, Takayama T, Makuuchi M. Reduced p21(WAF1/CIP1) expression is an early event in gallbladder carcinogenesis and is of prognostic significance for patients with carcinomas of the gallbladder. Hum Pathol. 2001;32:771-777.  [PubMed]  [DOI]
114.  Eguchi N, Fujii K, Tsuchida A, Yamamoto S, Sasaki T, Kajiyama G. Cyclin E overexpression in human gallbladder carcinomas. Oncol Rep. 1999;6:93-96.  [PubMed]  [DOI]
115.  Hui AM, Li X, Shi YZ, Takayama T, Torzilli G, Makuuchi M. Cyclin D1 overexpression is a critical event in gallbladder carcinogenesis and independently predicts decreased survival for patients with gallbladder carcinoma. Clin Cancer Res. 2000;6:4272-4277.  [PubMed]  [DOI]
116.  Asano T, Shoda J, Ueda T, Kawamoto T, Todoroki T, Shimonishi M, Tanabe T, Sugimoto Y, Ichikawa A, Mutoh M. Expressions of cyclooxygenase-2 and prostaglandin E-receptors in carcinoma of the gallbladder: crucial role of arachidonate metabolism in tumor growth and progression. Clin Cancer Res. 2002;8:1157-1167.  [PubMed]  [DOI]
117.  Kawamoto T, Shoda J, Asano T, Ueda T, Furukawa M, Koike N, Tanaka N, Todoroki T, Miwa M. Expression of cyclooxygenase-2 in the subserosal layer correlates with postsurgical prognosis of pathological tumor stage 2 carcinoma of the gallbladder. Int J Cancer. 2002;98:427-434.  [PubMed]  [DOI]
118.  Sasatomi E, Tokunaga O, Miyazaki K. Spontaneous apoptosis in gallbladder carcinoma. Relationships with clinicopathologic factors, expression of E-cadherin, bcl-2 protooncogene, and p53 oncosuppressor gene. Cancer. 1996;78:2101-2110.  [PubMed]  [DOI]
119.  Tanaka S, Tanaka H, Yamamoto T, Shuto T, Takemura S, Hai S, Sakabe K, Uenishi T, Hirohashi K, Kubo S. Immunohistochemical demonstration of c-Kit protooncogene product in gallbladder cancer. J Hepatobiliary Pancreat Surg. 2006;13:228-234.  [PubMed]  [DOI]
120.  Wang C, Zhao H, Lu J, Yin J, Zang L, Song N, Dong R, Wu T, Du X. Clinicopathological significance of SOX4 expression in primary gallbladder carcinoma. Diagn Pathol. 2012;7:41.  [PubMed]  [DOI]
121.  Lee HJ, Lee K, Lee DG, Bae KH, Kim JS, Liang ZL, Huang SM, Suk Oh Y, Kim HY, Jo DY. Chemokine (C-X-C motif) ligand 12 is associated with gallbladder carcinoma progression and is a novel independent poor prognostic factor. Clin Cancer Res. 2012;18:3270-3280.  [PubMed]  [DOI]
122.  Yao X, Zhou L, Han S, Chen Y. High expression of CXCR4 and CXCR7 predicts poor survival in gallbladder cancer. J Int Med Res. 2011;39:1253-1264.  [PubMed]  [DOI]
123.  Li J, Wu T, Lu J, Cao Y, Song N, Yang T, Dong R, Yang Y, Zang L, Du X. Immunohistochemical evidence of the prognostic value of hedgehog pathway components in primary gallbladder carcinoma. Surg Today. 2012;42:770-775.  [PubMed]  [DOI]
124.  Choi YL, Xuan YH, Shin YK, Chae SW, Kook MC, Sung RH, Youn SJ, Choi JW, Kim SH. An immunohistochemical study of the expression of adhesion molecules in gallbladder lesions. J Histochem Cytochem. 2004;52:591-601.  [PubMed]  [DOI]
125.  Wu J, Lei L, Wang S, Gu D, Zhang J. Immunohistochemical expression and prognostic value of CD97 and its ligand CD55 in primary gallbladder carcinoma. J Biomed Biotechnol. 2012;2012:587672.  [PubMed]  [DOI]
126.  Zou Q, Xiong L, Yang Z, Lv F, Yang L, Miao X. Expression levels of HMGA2 and CD9 and its clinicopathological significances in the benign and malignant lesions of the gallbladder. World J Surg Oncol. 2012;10:92.  [PubMed]  [DOI]
127.  Rai R, Tewari M, Kumar M, Singh TB, Shukla HS. Expression profile of cholecystokinin type-A receptor in gallbladder cancer and gallstone disease. Hepatobiliary Pancreat Dis Int. 2011;10:408-414.  [PubMed]  [DOI]
128.  Sun XN, Cao WG, Wang X, Wang Q, Gu BX, Yang QC, Hu JB, Liu H, Zheng S. Prognostic impact of vascular endothelial growth factor-A expression in resected gallbladder carcinoma. Tumour Biol. 2011;32:1183-1190.  [PubMed]  [DOI]
129.  Jiang L, Chen YL, She FF, Tang NH, Li XJ, Wang XX. [Expressions of VEGF-C and VEGF-D and their correlation with lymphangiogenesis and angiogenesis in gallbladder carcinoma]. Zhonghua Zhong Liu Za Zhi. 2010;32:190-195.  [PubMed]  [DOI]
130.  Maurya SK, Tewari M, Kumar M, Thakur MK, Shukla HS. Expression pattern of tumor endothelial marker 8 protein in gallbladder carcinomas. Asian Pac J Cancer Prev. 2011;12:507-512.  [PubMed]  [DOI]
131.  Choi SY, Jo YS, Huang SM, Liang ZL, Min JK, Hong HJ, Kim JM. L1 cell adhesion molecule as a novel independent poor prognostic factor in gallbladder carcinoma. Hum Pathol. 2011;42:1476-1483.  [PubMed]  [DOI]
132.  Qin YY, Gong W, Weng MZ, Li JY, Quan ZW. [The role of tissue factor pathway inhibitor-2 gene in gallbladder cancer]. Zhonghua Wai Ke Za Zhi. 2012;50:1099-1103.  [PubMed]  [DOI]
133.  Yang Z, Yang Z, Xiong L, Huang S, Liu J, Yang L, Miao X. Expression of VHL and HIF-1α and Their Clinicopathologic Significance in Benign and Malignant Lesions of the Gallbladder. Appl Immunohistochem Mol Morphol. 2011;19:534-539.  [PubMed]  [DOI]
134.  Roa I, de Aretxabala X, Lantadilla S, Munoz S. ERCC1 (excision repair cross-complementing 1) expression in pT2 gallbladder cancer is a prognostic factor. Histol Histopathol. 2011;26:37-43.  [PubMed]  [DOI]
135.  Wang J, Zhang M, Zhang L, Cai H, Zhou S, Zhang J, Wang Y. Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J Surg Res. 2010;164:e99-105.  [PubMed]  [DOI]
136.  Artico M, Bronzetti E, Alicino V, Ionta B, Bosco S, Grande C, Bruno M, Tranquilli Leali FM, Ionta G, Fumagalli L. Human gallbladder carcinoma: Role of neurotrophins, MIB-1, CD34 and CA15-3. Eur J Histochem. 2010;54:e10.  [PubMed]  [DOI]
137.  Wu K, Liao M, Liu B, Deng Z. ADAM-17 over-expression in gallbladder carcinoma correlates with poor prognosis of patients. Med Oncol. 2011;28:475-480.  [PubMed]  [DOI]
138.  Wani Y, Notohara K, Fujisawa M. Aberrant expression of an “intestinal marker” Cdx2 in pyloric gland adenoma of the gallbladder. Virchows Arch. 2008;453:521-527.  [PubMed]  [DOI]
139.  Huan P, Maosheng T, Zhiqian H, Long C, Xiaojun Y. TLR4 expression in normal gallbladder, chronic cholecystitis and gallbladder carcinoma. Hepatogastroenterology. 2012;59:42-46.  [PubMed]  [DOI]
140.  Shu GS, Yang ZL, Liu DC. Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol Res Pract. 2012;208:392-397.  [PubMed]  [DOI]
141.  Zhang M, Pan JW, Ren TR, Zhu YF, Han YJ, Kühnel W. Correlated expression of inducible nitric oxide synthase and P53, Bax in benign and malignant diseased gallbladder. Ann Anat. 2003;185:549-554.  [PubMed]  [DOI]
142.  Ono H, Hiraoka N, Lee YS, Woo SM, Lee WJ, Choi IJ, Saito A, Yanagihara K, Kanai Y, Ohnami S. Prostate stem cell antigen, a presumable organ-dependent tumor suppressor gene, is down-regulated in gallbladder carcinogenesis. Genes Chromosomes Cancer. 2012;51:30-41.  [PubMed]  [DOI]
143.  Zou Q, Yang L, Yang Z, Huang J, Fu X. PSCA and Oct-4 expression in the benign and malignant lesions of gallbladder: implication for carcinogenesis, progression, and prognosis of gallbladder adenocarcinoma. Biomed Res Int. 2013;2013:648420.  [PubMed]  [DOI]
144.  Shukla VK, Chauhan VS, Kumar M. Telomerase activation--one step on the road to carcinoma of the gall bladder. Anticancer Res. 2006;26:4761-4766.  [PubMed]  [DOI]
145.  Sekine S, Shimada Y, Nagata T, Moriyama M, Omura T, Watanabe T, Hori R, Yoshioka I, Okumura T, Sawada S. Prognostic significance of aquaporins in human biliary tract carcinoma. Oncol Rep. 2012;27:1741-1747.  [PubMed]  [DOI]
146.  Deng X, Pei D. Ornithine decarboxylase and glutamate decarboxylase 65 as prognostic markers of gallbladder malignancy: a clinicopathological study in benign and malignant lesions of the gallbladder. Mol Med Rep. 2013;7:413-418.  [PubMed]  [DOI]
147.  Wu LC, Chen LT, Tsai YJ, Lin CM, Lin CY, Tian YF, Sheu MJ, Uen YH, Shiue YL, Wang YH. Alpha-methylacyl coenzyme A racemase overexpression in gallbladder carcinoma confers an independent prognostic indicator. J Clin Pathol. 2012;65:309-314.  [PubMed]  [DOI]
148.  Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A, Hattori M, Oda Y, Tanaka M, Katano M. Hedgehog signaling pathway is a potential therapeutic target for gallbladder cancer. Cancer Sci. 2014;105:272-280.  [PubMed]  [DOI]
149.  Qiu Y, Luo X, Kan T, Zhang Y, Yu W, Wei Y, Shen N, Yi B, Jiang X. TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst. 2014;10:679-685.  [PubMed]  [DOI]
150.  Wang WX, Lin QF, Shen D, Liu SP, Mao WD, Ma G, Qi WD. Clinicopathological significance of SLP-2 overexpression in human gallbladder cancer. Tumour Biol. 2014;35:419-423.  [PubMed]  [DOI]
151.  Weng H, Wang X, Li M, Wu X, Wang Z, Wu W, Zhang Z, Zhang Y, Zhao S, Liu S. Zinc finger X-chromosomal protein (ZFX) is a significant prognostic indicator and promotes cellular malignant potential in gallbladder cancer. Cancer Biol Ther. 2015;16:1462-1470.  [PubMed]  [DOI]
152.  Tan Z, Zhang S, Li M, Wu X, Weng H, Ding Q, Cao Y, Bao R, Shu Y, Mu J. Regulation of cell proliferation and migration in gallbladder cancer by zinc finger X-chromosomal protein. Gene. 2013;528:261-266.  [PubMed]  [DOI]
153.  Kim HS, Kim NC, Chae KH, Kim G, Park WS, Park YK, Kim YW. Expression of multidrug resistance-associated protein 2 in human gallbladder carcinoma. Biomed Res Int. 2013;2013:527534.  [PubMed]  [DOI]
154.  Sun DP, Lin CY, Tian YF, Chen LT, Lin LC, Lee SW, Hsing CH, Lee HH, Shiue YL, Huang HY. Clinicopathological significance of HuR expression in gallbladder carcinoma: with special emphasis on the implications of its nuclear and cytoplasmic expression. Tumour Biol. 2013;34:3059-3069.  [PubMed]  [DOI]
155.  Kono H, Nakamura M, Ohtsuka T, Nagayoshi Y, Mori Y, Takahata S, Aishima S, Tanaka M. High expression of microRNA-155 is associated with the aggressive malignant behavior of gallbladder carcinoma. Oncol Rep. 2013;30:17-24.  [PubMed]  [DOI]
156.  Zhou L, He XD, Chen J, Cui QC, Qu Q, Rui JA, Zhao YP. Overexpression of LAPTM4B-35 closely correlated with clinicopathological features and post-resectional survival of gallbladder carcinoma. Eur J Cancer. 2007;43:809-815.  [PubMed]  [DOI]
157.  Alsheyab FM, Ziadeh MT, Bani-Hani KE. Expression of p21 and p27 in gallbladder cancer. Saudi Med J. 2007;28:683-687.  [PubMed]  [DOI]
158.  Iwahashi S, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, Mori H, Hanaoka J. Role of thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expressions in gallbladder carcinoma. Surg Today. 2012;42:565-569.  [PubMed]  [DOI]
159.  Wang W, Yang ZL, Liu JQ, Jiang S, Miao XY. Identification of CD146 expression, angiogenesis, and lymphangiogenesis as progression, metastasis, and poor-prognosis related markers for gallbladder adenocarcinoma. Tumour Biol. 2012;33:173-182.  [PubMed]  [DOI]
160.  Sun W, Fan YZ, Xi H, Lu XS, Ye C, Zhang JT. Astrocyte elevated gene-1 overexpression in human primary gallbladder carcinomas: an unfavorable and independent prognostic factor. Oncol Rep. 2011;26:1133-1142.  [PubMed]  [DOI]
161.  Li M, Zhang S, Wang Z, Zhang B, Wu X, Weng H, Ding Q, Tan Z, Zhang N, Mu J. Prognostic significance of nemo-like kinase (NLK) expression in patients with gallbladder cancer. Tumour Biol. 2013;34:3995-4000.  [PubMed]  [DOI]
162.  Leal P, García P, Sandoval A, Letelier P, Brebi P, Ili C, Álvarez H, Tapia O, Roa JC. Immunohistochemical expression of phospho-mTOR is associated with poor prognosis in patients with gallbladder adenocarcinoma. Arch Pathol Lab Med. 2013;137:552-557.  [PubMed]  [DOI]
163.  Deblakshmi RK, Deka M, Saikia AK, Sharma BK, Singh N, Das NN, Bose S. Prognostic relevance of human telomerase reverse transcriptase (hTERT) expression in patients with gall bladder disease and carcinoma. Asian Pac J Cancer Prev. 2015;16:2923-2928.  [PubMed]  [DOI]
164.  Lu W, Gao J, Yang J, Cao Y, Jiang L, Li M, Zhang Y, Zhou J, Liu Y. Down-Regulated Phosphoglycerate Kinase 1 Expression Is Associated With Poor Prognosis in Patients With Gallbladder Cancer. Medicine (Baltimore). 2015;94:e2244.  [PubMed]  [DOI]
165.  Liu L, Yang ZL, Wang C, Miao X, Liu Z, Li D, Zou Q, Li J, Liang L, Zeng G. The Expression of Notch 1 and Notch 3 in Gallbladder Cancer and Their Clinicopathological Significance. Pathol Oncol Res. 2016;22:483-492.  [PubMed]  [DOI]
166.  Faridi MS, Jaiswal MS, Goel SK. Expression of CCK Receptors in Carcinoma Gallbladder and Cholelithiasis: A Pilot Study. J Clin Diagn Res. 2015;9:PC04-PC07.  [PubMed]  [DOI]
167.  Lian S, Shao Y, Liu H, He J, Lu W, Zhang Y, Jiang Y, Zhu J. PDK1 induces JunB, EMT, cell migration and invasion in human gallbladder cancer. Oncotarget. 2015;6:29076-29086.  [PubMed]  [DOI]
168.  Ma F, Zhang M, Gong W, Weng M, Quan Z. MiR-138 Suppresses Cell Proliferation by Targeting Bag-1 in Gallbladder Carcinoma. PLoS One. 2015;10:e0126499.  [PubMed]  [DOI]
169.  Chen Y, Chen C, Ma C, Sun S, Zhang J, Sun Y. Expression of heat-shock protein gp96 in gallbladder cancer and its prognostic clinical significance. Int J Clin Exp Pathol. 2015;8:1946-1953.  [PubMed]  [DOI]
170.  Ma MZ, Kong X, Weng MZ, Zhang MD, Qin YY, Gong W, Zhang WJ, Quan ZW. Long non-coding RNA-LET is a positive prognostic factor and exhibits tumor-suppressive activity in gallbladder cancer. Mol Carcinog. 2015;54:1397-1406.  [PubMed]  [DOI]
171.  Nigam J, Chandra A, Kazmi HR, Parmar D, Singh D, Gupta V. Prognostic significance of survivin in resected gallbladder cancer. J Surg Res. 2015;194:57-62.  [PubMed]  [DOI]
172.  Ma MZ, Chu BF, Zhang Y, Weng MZ, Qin YY, Gong W, Quan ZW. Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis. 2015;6:e1583.  [PubMed]  [DOI]
173.  Song SP, Zhang SB, Liu R, Yao L, Hao YQ, Liao MM, Zhang YD, Li ZH. NDRG2 down-regulation and CD24 up-regulation promote tumor aggravation and poor survival in patients with gallbladder carcinoma. Med Oncol. 2012;29:1879-1885.  [PubMed]  [DOI]
174.  Zhang M, Gong W, Zhang Y, Yang Y, Zhou D, Weng M, Qin Y, Jiang A, Ma F, Quan Z. Expression of interleukin-6 is associated with epithelial-mesenchymal transition and survival rates in gallbladder cancer. Mol Med Rep. 2015;11:3539-3546.  [PubMed]  [DOI]
175.  Liang PI, Li CF, Chen LT, Sun DP, Chen TJ, Hsing CH, Hsu HP, Lin CY. BCL6 overexpression is associated with decreased p19 ARF expression and confers an independent prognosticator in gallbladder carcinoma. Tumour Biol. 2014;35:1417-1426.  [PubMed]  [DOI]
176.  Letelier P, Garcia P, Leal P, Ili C, Buchegger K, Riquelme I, Sandoval A, Tapia O, Roa JC. Immunohistochemical expression of vascular endothelial growth factor A in advanced gallbladder carcinoma. Appl Immunohistochem Mol Morphol. 2014;22:530-536.  [PubMed]  [DOI]
177.  Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, Weng H, Shu YJ, Liu TY, Jiang L. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 2014;15:806-814.  [PubMed]  [DOI]
178.  Chang HJ, Yoo BC, Kim SW, Lee BL, Kim WH. Significance of PML and p53 protein as molecular prognostic markers of gallbladder carcinomas. Pathol Oncol Res. 2007;13:326-335.  [PubMed]  [DOI]
179.  Liu DC, Yang ZL, Jiang S. Identification of PEG10 and TSG101 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Pathol Oncol Res. 2011;17:859-866.  [PubMed]  [DOI]
180.  Kalekou H, Miliaras D. Cytokeratin 7 and 20 expression in gallbladder carcinoma. Pol J Pathol. 2011;62:25-30.  [PubMed]  [DOI]
181.  Wistuba II, Maitra A, Carrasco R, Tang M, Troncoso P, Minna JD, Gazdar AF. High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma. Br J Cancer. 2002;87:432-440.  [PubMed]  [DOI]
182.  Scholes AG, Liloglou T, Maloney P, Hagan S, Nunn J, Hiscott P, Damato BE, Grierson I, Field JK. Loss of heterozygosity on chromosomes 3, 9, 13, and 17, including the retinoblastoma locus, in uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42:2472-2477.  [PubMed]  [DOI]
183.  Yoo WJ, Cho SH, Lee YS, Park GS, Kim MS, Kim BK, Park WS, Lee JY, Kang CS. Loss of heterozygosity on chromosomes 3p,8p,9p and 17p in the progression of squamous cell carcinoma of the larynx. J Korean Med Sci. 2004;19:345-351.  [PubMed]  [DOI]
184.  Goldin RD, Roa JC. Gallbladder cancer: a morphological and molecular update. Histopathology. 2009;55:218-229.  [PubMed]  [DOI]
185.  Yanagisawa N, Mikami T, Saegusa M, Okayasu I. More frequent beta-catenin exon 3 mutations in gallbladder adenomas than in carcinomas indicate different lineages. Cancer Res. 2001;61:19-22.  [PubMed]  [DOI]
186.  Saetta A, Koilakou SV, Michalopoulos NV, Davaris PS. Evaluation of BAT-26 as an indicator of microsatellite instability in gallbladder carcinomas. Hepatogastroenterology. 2003;50:1799-1802.  [PubMed]  [DOI]
187.  Yanagisawa N, Mikami T, Yamashita K, Okayasu I. Microsatellite instability in chronic cholecystitis is indicative of an early stage in gallbladder carcinogenesis. Am J Clin Pathol. 2003;120:413-417.  [PubMed]  [DOI]
188.  Roa JC, Roa I, Correa P, Vo Q, Araya JC, Villaseca M, Guzmán P, Schneider BG. Microsatellite instability in preneoplastic and neoplastic lesions of the gallbladder. J Gastroenterol. 2005;40:79-86.  [PubMed]  [DOI]
189.  Priya TP, Kapoor VK, Krishnani N, Agrawal V, Agrawal S. Role of E-cadherin gene in gall bladder cancer and its precursor lesions. Virchows Arch. 2010;456:507-514.  [PubMed]  [DOI]
190.  Priya TP, Kapoor VK, Krishnani N, Agrawal V, Agarwal S. Fragile histidine triad (FHIT) gene and its association with p53 protein expression in the progression of gall bladder cancer. Cancer Invest. 2009;27:764-773.  [PubMed]  [DOI]
191.  Matsuo K, Kuroki T, Kitaoka F, Tajima Y, Kanematsu T. Loss of heterozygosity of chromosome 16q in gallbladder carcinoma. J Surg Res. 2002;102:133-136.  [PubMed]  [DOI]
192.  Jain K, Mohapatra T, Das P, Misra MC, Gupta SD, Ghosh M, Kabra M, Bansal VK, Kumar S, Sreenivas V. Sequential occurrence of preneoplastic lesions and accumulation of loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer. Ann Surg. 2014;260:1073-1080.  [PubMed]  [DOI]
193.  Riquelme E, Tang M, Baez S, Diaz A, Pruyas M, Wistuba II, Corvalan A. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma. Cancer Lett. 2007;250:100-106.  [PubMed]  [DOI]
194.  Roa JC, Anabalón L, Roa I, Melo A, Araya JC, Tapia O, de Aretxabala X, Muñoz S, Schneider B. Promoter methylation profile in gallbladder cancer. J Gastroenterol. 2006;41:269-275.  [PubMed]  [DOI]
195.  García P, Manterola C, Araya JC, Villaseca M, Guzmán P, Sanhueza A, Thomas M, Alvarez H, Roa JC. Promoter methylation profile in preneoplastic and neoplastic gallbladder lesions. Mol Carcinog. 2009;48:79-89.  [PubMed]  [DOI]
196.  Letelier P, Brebi P, Tapia O, Roa JC. DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer. Clin Epigenetics. 2012;4:11.  [PubMed]  [DOI]
197.  Tozawa T, Tamura G, Honda T, Nawata S, Kimura W, Makino N, Kawata S, Sugai T, Suto T, Motoyama T. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 2004;95:736-740.  [PubMed]  [DOI]
198.  Takahashi T, Shivapurkar N, Riquelme E, Shigematsu H, Reddy J, Suzuki M, Miyajima K, Zhou X, Bekele BN, Gazdar AF. Aberrant promoter hypermethylation of multiple genes in gallbladder carcinoma and chronic cholecystitis. Clin Cancer Res. 2004;10:6126-6133.  [PubMed]  [DOI]
199.  Roa S JC, García M P, Melo A A, Tapia E O, Villaseca H M, Araya O JC, Guzmán G P. [Gene methylation patterns in digestive tumors]. Rev Med Chil. 2008;136:451-458.  [PubMed]  [DOI]
200.  Koga Y, Kitajima Y, Miyoshi A, Sato K, Kitahara K, Soejima H, Miyazaki K. Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol. 2005;12:354-363.  [PubMed]  [DOI]
201.  Klump B, Hsieh CJ, Dette S, Holzmann K, Kiebetalich R, Jung M, Sinn U, Ortner M, Porschen R, Gregor M. Promoter methylation of INK4a/ARF as detected in bile-significance for the differential diagnosis in biliary disease. Clin Cancer Res. 2003;9:1773-1778.  [PubMed]  [DOI]
202.  Tadokoro H, Shigihara T, Ikeda T, Takase M, Suyama M. Two distinct pathways of p16 gene inactivation in gallbladder cancer. World J Gastroenterol. 2007;13:6396-6403.  [PubMed]  [DOI]
203.  Kee SK, Lee JY, Kim MJ, Lee SM, Jung YW, Kim YJ, Park JY, Bae HI, Hong HS, Yun YK. Hypermethylation of the Ras association domain family 1A (RASSF1A) gene in gallbladder cancer. Mol Cells. 2007;24:364-371.  [PubMed]  [DOI]
204.  Takahashi T, Suzuki M, Shigematsu H, Shivapurkar N, Echebiri C, Nomura M, Stastny V, Augustus M, Wu CW, Wistuba II. Aberrant methylation of Reprimo in human malignancies. Int J Cancer. 2005;115:503-510.  [PubMed]  [DOI]
205.  Singh TD, Gupta S, Shrivastav BR, Tiwari PK. Epigenetic profiling of gallbladder cancer and gall stone diseases: Evaluation of role of tumour associated genes. Gene. 2016;576:743-752.  [PubMed]  [DOI]
206.  Ishak G, Leal MF, Dos Santos NP, Demachki S, Nunes CA, do Nascimento Borges B, Calcagno DQ, Smith MC, Assumpção PP, Burbano RR. Deregulation of MYC and TP53 through genetic and epigenetic alterations in gallbladder carcinomas. Clin Exp Med. 2015;15:421-426.  [PubMed]  [DOI]
207.  Kagohara LT, Schussel JL, Subbannayya T, Sahasrabuddhe N, Lebron C, Brait M, Maldonado L, Valle BL, Pirini F, Jahuira M. Global and gene-specific DNA methylation pattern discriminates cholecystitis from gallbladder cancer patients in Chile. Future Oncol. 2015;11:233-249.  [PubMed]  [DOI]
208.  Lee YM, Lee JY, Kim MJ, Bae HI, Park JY, Kim SG, Kim DS. Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features. Cancer Sci. 2006;97:1205-1210.  [PubMed]  [DOI]
209.  Kuroki T, Tajima Y, Matsuo K, Kanematsu T. Genetic alterations in gallbladder carcinoma. Surg Today. 2005;35:101-105.  [PubMed]  [DOI]
210.  Wang Z, Wu J, Miao X. Study on CCK-induced gallbladder emptying with real-time ultrasonography. Zhonghua Nei Ke Za Zhi. 1995;34:385-387.  [PubMed]  [DOI]
211.  Lammert F, Carey MC, Paigen B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map. Gastroenterology. 2001;120:221-238.  [PubMed]  [DOI]
212.  Mittal B, Mittal RD. Genetics of gallstone disease. J Postgrad Med. 2002;48:149-152.  [PubMed]  [DOI]
213.  Wittenburg H, Lyons MA, Paigen B, Carey MC. Mapping cholesterol gallstone susceptibility (Lith) genes in inbred mice. Dig Liver Dis. 2003;35 Suppl 3:S2-S7.  [PubMed]  [DOI]
214.  Pandey SN, Dixit M, Choudhuri G, Mittal B. Lipoprotein receptor associated protein (LRPAP1) insertion/deletion polymorphism: association with gallbladder cancer susceptibility. Int J Gastrointest Cancer. 2006;37:124-128.  [PubMed]  [DOI]
215.  Pandey SN, Jain M, Nigam P, Choudhuri G, Mittal B. Genetic polymorphisms in GSTM1, GSTT1, GSTP1, GSTM3 and the susceptibility to gallbladder cancer in North India. Biomarkers. 2006;11:250-261.  [PubMed]  [DOI]
216.  Pandey SN, Modi DR, Choudhuri G, Mittall B. Slow acetylator genotype of N-acetyl transferase2 (NAT2) is associated with increased susceptibility to gallbladder cancer: the cancer risk not modulated by gallstone disease. Cancer Biol Ther. 2007;6:91-96.  [PubMed]  [DOI]
217.  Pandey SN, Srivastava A, Dixit M, Choudhuri G, Mittal B. Haplotype analysis of signal peptide (insertion/deletion) and XbaI polymorphisms of the APOB gene in gallbladder cancer. Liver Int. 2007;27:1008-1015.  [PubMed]  [DOI]
218.  Pandey SN, Choudhuri G, Mittal B. Association of CYP1A1 Msp1 polymorphism with tobacco-related risk of gallbladder cancer in a north Indian population. Eur J Cancer Prev. 2008;17:77-81.  [PubMed]  [DOI]
219.  Vishnoi M, Pandey SN, Choudhury G, Kumar A, Modi DR, Mittal B. Do TNFA -308 G/A and IL6 -174 G/C gene polymorphisms modulate risk of gallbladder cancer in the north Indian population? Asian Pac J Cancer Prev. 2007;8:567-572.  [PubMed]  [DOI]
220.  Vishnoi M, Pandey SN, Choudhuri G, Mittal B. IL-1 gene polymorphisms and genetic susceptibility of gallbladder cancer in a north Indian population. Cancer Genet Cytogenet. 2008;186:63-68.  [PubMed]  [DOI]
221.  Vishnoi M, Pandey SN, Modi DR, Kumar A, Mittal B. Genetic susceptibility of epidermal growth factor +61A& gt; G and transforming growth factor beta1 -509C& gt; T gene polymorphisms with gallbladder cancer. Hum Immunol. 2008;69:360-367.  [PubMed]  [DOI]
222.  Huang WY, Gao YT, Rashid A, Sakoda LC, Deng J, Shen MC, Wang BS, Han TQ, Zhang BH, Chen BE. Selected base excision repair gene polymorphisms and susceptibility to biliary tract cancer and biliary stones: a population-based case-control study in China. Carcinogenesis. 2008;29:100-105.  [PubMed]  [DOI]
223.  Zhang M, Huang WY, Andreotti G, Gao YT, Rashid A, Chen J, Sakoda LC, Shen MC, Wang BS, Chanock S. Variants of DNA repair genes and the risk of biliary tract cancers and stones: a population-based study in China. Cancer Epidemiol Biomarkers Prev. 2008;17:2123-2127.  [PubMed]  [DOI]
224.  Park SK, Andreotti G, Sakoda LC, Gao YT, Rashid A, Chen J, Chen BE, Rosenberg PS, Shen MC, Wang BS. Variants in hormone-related genes and the risk of biliary tract cancers and stones: a population-based study in China. Carcinogenesis. 2009;30:606-614.  [PubMed]  [DOI]
225.  Srivastava A, Pandey SN, Choudhuri G, Mittal B. CCR5 Delta32 polymorphism: associated with gallbladder cancer susceptibility. Scand J Immunol. 2008;67:516-522.  [PubMed]  [DOI]
226.  Srivastava A, Pandey SN, Choudhuri G, Mittal B. Role of genetic variant A-204C of cholesterol 7alpha-hydroxylase (CYP7A1) in susceptibility to gallbladder cancer. Mol Genet Metab. 2008;94:83-89.  [PubMed]  [DOI]
227.  Srivastava A, Pandey SN, Dixit M, Choudhuri G, Mittal B. Cholecystokinin receptor A gene polymorphism in gallstone disease and gallbladder cancer. J Gastroenterol Hepatol. 2008;23:970-975.  [PubMed]  [DOI]
228.  Srivastava A, Pandey SN, Pandey P, Choudhuri G, Mittal B. No association of Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism in susceptibility to gallbladder cancer. DNA Cell Biol. 2008;27:127-132.  [PubMed]  [DOI]
229.  Srivastava A, Tulsyan S, Pandey SN, Choudhuri G, Mittal B. Single nucleotide polymorphism in the ABCG8 transporter gene is associated with gallbladder cancer susceptibility. Liver Int. 2009;29:831-837.  [PubMed]  [DOI]
230.  Srivastava A, Mittal B. Complement receptor 1 (A3650G RsaI and intron 27 HindIII) polymorphisms and risk of gallbladder cancer in north Indian population. Scand J Immunol. 2009;70:614-620.  [PubMed]  [DOI]
231.  Srivastava A, Srivastava K, Pandey SN, Choudhuri G, Mittal B. Single-nucleotide polymorphisms of DNA repair genes OGG1 and XRCC1: association with gallbladder cancer in North Indian population. Ann Surg Oncol. 2009;16:1695-1703.  [PubMed]  [DOI]
232.  Srivastava K, Srivastava A, Mittal B. Polymorphisms in ERCC2, MSH2, and OGG1 DNA repair genes and gallbladder cancer risk in a population of Northern India. Cancer. 2010;116:3160-3169.  [PubMed]  [DOI]
233.  Srivastava K, Srivastava A, Pandey SN, Kumar A, Mittal B. Functional polymorphisms of the cyclooxygenase (PTGS2) gene and risk for gallbladder cancer in a North Indian population. J Gastroenterol. 2009;44:774-780.  [PubMed]  [DOI]
234.  Cha PC, Zembutsu H, Takahashi A, Kubo M, Kamatani N, Nakamura Y. A genome-wide association study identifies SNP in DCC is associated with gallbladder cancer in the Japanese population. J Hum Genet. 2012;57:235-237.  [PubMed]  [DOI]
235.  Rai R, Sharma KL, Tiwari S, Misra S, Kumar A, Mittal B. DCC (deleted in colorectal carcinoma) gene variants confer increased susceptibility to gallbladder cancer (Ref. No.: Gene-D-12-01446). Gene. 2013;518:303-309.  [PubMed]  [DOI]
236.  Jiao X, Ren J, Chen H, Ma J, Rao S, Huang K, Wu S, Fu J, Su X, Luo C. Ala499Val (C& gt; T) and Lys939Gln (A& gt; C) polymorphisms of the XPC gene: their correlation with the risk of primary gallbladder adenocarcinoma--a case-control study in China. Carcinogenesis. 2011;32:496-501.  [PubMed]  [DOI]
237.  Tsuchiya Y, Baez S, Calvo A, Pruyas M, Nakamura K, Kiyohara C, Oyama M, Ikegami K, Yamamoto M. Evidence that genetic variants of metabolic detoxication and cell cycle control are not related to gallbladder cancer risk in Chilean women. Int J Biol Markers. 2010;25:75-78.  [PubMed]  [DOI]
238.  Kimura A, Tsuchiya Y, Lang I, Zoltan S, Nakadaira H, Ajioka Y, Kiyohara C, Oyama M, Nakamura K. Effect of genetic predisposition on the risk of gallbladder cancer in Hungary. Asian Pac J Cancer Prev. 2008;9:391-396.  [PubMed]  [DOI]
239.  Tsuchiya Y, Kiyohara C, Sato T, Nakamura K, Kimura A, Yamamoto M. Polymorphisms of cytochrome P450 1A1, glutathione S-transferase class mu, and tumour protein p53 genes and the risk of developing gallbladder cancer in Japanese. Clin Biochem. 2007;40:881-886.  [PubMed]  [DOI]
240.  Jiao X, Wu Y, Zhou L, He J, Yang C, Zhang P, Hu R, Luo C, Du J, Fu J. Variants and haplotypes in Flap endonuclease 1 and risk of gallbladder cancer and gallstones: a population-based study in China. Sci Rep. 2015;5:18160.  [PubMed]  [DOI]
241.  Xu HL, Hsing AW, Vogtmann E, Chu LW, Cheng JR, Gao J, Tan YT, Wang BS, Shen MC, Gao YT. Variants in CCK and CCKAR genes to susceptibility to biliary tract cancers and stones: a population-based study in Shanghai, China. J Gastroenterol Hepatol. 2013;28:1476-1481.  [PubMed]  [DOI]
242.  Srivastava A, Sharma KL, Srivastava N, Misra S, Mittal B. Significant role of estrogen and progesterone receptor sequence variants in gallbladder cancer predisposition: a multi-analytical strategy. PLoS One. 2012;7:e40162.  [PubMed]  [DOI]
243.  Park SK, Andreotti G, Rashid A, Chen J, Rosenberg PS, Yu K, Olsen J, Gao YT, Deng J, Sakoda LC. Polymorphisms of estrogen receptors and risk of biliary tract cancers and gallstones: a population-based study in Shanghai, China. Carcinogenesis. 2010;31:842-846.  [PubMed]  [DOI]
244.  Meyer TE, O’Brien TG, Andreotti G, Yu K, Li Q, Gao YT, Rashid A, Shen MC, Wang BS, Han TQ. Androgen receptor CAG repeat length and risk of biliary tract cancer and stones. Cancer Epidemiol Biomarkers Prev. 2010;19:787-793.  [PubMed]  [DOI]
245.  Chang SC, Rashid A, Gao YT, Andreotti G, Shen MC, Wang BS, Han TQ, Zhang BH, Sakoda LC, Leitzmann MF. Polymorphism of genes related to insulin sensitivity and the risk of biliary tract cancer and biliary stone: a population-based case-control study in Shanghai, China. Carcinogenesis. 2008;29:944-948.  [PubMed]  [DOI]
246.  Sakoda LC, Gao YT, Chen BE, Chen J, Rosenberg PS, Rashid A, Deng J, Shen MC, Wang BS, Han TQ. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene polymorphisms and risk of biliary tract cancer and gallstones: a population-based study in Shanghai, China. Carcinogenesis. 2006;27:1251-1256.  [PubMed]  [DOI]
247.  Hsing AW, Sakoda LC, Rashid A, Andreotti G, Chen J, Wang BS, Shen MC, Chen BE, Rosenberg PS, Zhang M. Variants in inflammation genes and the risk of biliary tract cancers and stones: a population-based study in China. Cancer Res. 2008;68:6442-6452.  [PubMed]  [DOI]
248.  Castro FA, Koshiol J, Hsing AW, Gao YT, Rashid A, Chu LW, Shen MC, Wang BS, Han TQ, Zhang BH. Inflammatory gene variants and the risk of biliary tract cancers and stones: a population-based study in China. BMC Cancer. 2012;12:468.  [PubMed]  [DOI]
249.  Sharma KL, Misra S, Kumar A, Mittal B. Higher risk of matrix metalloproteinase (MMP-2, 7, 9) and tissue inhibitor of metalloproteinase (TIMP-2) genetic variants to gallbladder cancer. Liver Int. 2012;32:1278-1286.  [PubMed]  [DOI]
250.  Hou L, Xu J, Gao YT, Rashid A, Zheng SL, Sakoda LC, Shen MC, Wang BS, Deng J, Han TQ. CYP17 MspA1 polymorphism and risk of biliary tract cancers and gallstones: a population-based study in Shanghai, China. Int J Cancer. 2006;118:2847-2853.  [PubMed]  [DOI]
251.  Rai R, Sharma KL, Misra S, Kumar A, Mittal B. CYP17 polymorphism (rs743572) is associated with increased risk of gallbladder cancer in tobacco users. Tumour Biol. 2014;35:6531-6537.  [PubMed]  [DOI]
252.  Sharma KL, Agarwal A, Misra S, Kumar A, Kumar V, Mittal B. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility. Tumour Biol. 2014;35:5431-5439.  [PubMed]  [DOI]
253.  Andreotti G, Chen J, Gao YT, Rashid A, Chen BE, Rosenberg P, Sakoda LC, Deng J, Shen MC, Wang BS. Polymorphisms of genes in the lipid metabolism pathway and risk of biliary tract cancers and stones: a population-based case-control study in Shanghai, China. Cancer Epidemiol Biomarkers Prev. 2008;17:525-534.  [PubMed]  [DOI]
254.  Xu HL, Cheng JR, Andreotti G, Gao YT, Rashid A, Wang BS, Shen MC, Chu LW, Yu K, Hsing AW. Cholesterol metabolism gene polymorphisms and the risk of biliary tract cancers and stones: a population-based case-control study in Shanghai, China. Carcinogenesis. 2011;32:58-62.  [PubMed]  [DOI]
255.  Srivastava A, Choudhuri G, Mittal B. CYP7A1 (-204 A& gt; C; rs3808607 and -469 T& gt; C; rs3824260) promoter polymorphisms and risk of gallbladder cancer in North Indian population. Metabolism. 2010;59:767-773.  [PubMed]  [DOI]
256.  Isomura Y, Yamaji Y, Ohta M, Seto M, Asaoka Y, Tanaka Y, Sasaki T, Nakai Y, Sasahira N, Isayama H. A genetic polymorphism of CYP2C19 is associated with susceptibility to biliary tract cancer. J Gastroenterol. 2010;45:1045-1052.  [PubMed]  [DOI]
257.  Rai R, Kim JJ, Misra S, Kumar A, Mittal B. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations. Int J Mol Sci. 2015;16:28038-28049.  [PubMed]  [DOI]
258.  Srivastava K, Srivastava A, Mittal B. Caspase-8 polymorphisms and risk of gallbladder cancer in a northern Indian population. Mol Carcinog. 2010;49:684-692.  [PubMed]  [DOI]
259.  Sharma KL, Misra S, Kumar A, Mittal B. Association of liver X receptors (LXRs) genetic variants to gallbladder cancer susceptibility. Tumour Biol. 2013;34:3959-3966.  [PubMed]  [DOI]
260.  Sharma KL, Yadav A, Gupta A, Tulsayan S, Kumar V, Misra S, Kumar A, Mittal B. Association of genetic variants of cancer stem cell gene CD44 haplotypes with gallbladder cancer susceptibility in North Indian population. Tumour Biol. 2014;35:2583-2589.  [PubMed]  [DOI]
261.  Yadav A, Gupta A, Rastogi N, Agrawal S, Kumar A, Kumar V, Mittal B. Association of cancer stem cell markers genetic variants with gallbladder cancer susceptibility, prognosis, and survival. Tumour Biol. 2016;37:1835-1844.  [PubMed]  [DOI]
262.  Ono H, Chihara D, Chiwaki F, Yanagihara K, Sasaki H, Sakamoto H, Tanaka H, Yoshida T, Saeki N, Matsuo K. Missense allele of a single nucleotide polymorphism rs2294008 attenuated antitumor effects of prostate stem cell antigen in gallbladder cancer cells. J Carcinog. 2013;12:4.  [PubMed]  [DOI]
263.  Rai R, Sharma KL, Misra S, Kumar A, Mittal B. PSCA gene variants (rs2294008 and rs2978974) confer increased susceptibility of gallbladder carcinoma in females. Gene. 2013;530:172-177.  [PubMed]  [DOI]
264.  Srivastava K, Srivastava A, Mittal B. Common genetic variants in pre-microRNAs and risk of gallbladder cancer in North Indian population. J Hum Genet. 2010;55:495-499.  [PubMed]  [DOI]
265.  Gupta A, Sharma A, Yadav A, Rastogi N, Agrawal S, Kumar A, Kumar V, Misra S, Mittal B. Evaluation of miR-27a, miR-181a, and miR-570 genetic variants with gallbladder cancer susceptibility and treatment outcome in a North Indian population. Mol Diagn Ther. 2015;19:317-327.  [PubMed]  [DOI]
266.  Yadav A, Gupta A, Yadav S, Rastogi N, Agrawal S, Kumar A, Kumar V, Misra S, Mittal B. Association of Wnt signaling pathway genetic variants in gallbladder cancer susceptibility and survival. Tumour Biol. 2016;37:8083-8095.  [PubMed]  [DOI]
267.  Pramanik V, Sarkar BN, Kar M, Das G, Malay BK, Sufia KK, Lakkakula BV, Vadlamudi RR. A novel polymorphism in codon 25 of the KRAS gene associated with gallbladder carcinoma patients of the eastern part of India. Genet Test Mol Biomarkers. 2011;15:431-434.  [PubMed]  [DOI]
268.  Srivastava K, Srivastava A, Mittal B. Angiotensin I-converting enzyme insertion/deletion polymorphism and increased risk of gall bladder cancer in women. DNA Cell Biol. 2010;29:417-422.  [PubMed]  [DOI]
269.  Srivastava K, Srivastava A, Mittal B. DNMT3B -579 G& gt; T promoter polymorphism and risk of gallbladder carcinoma in North Indian population. J Gastrointest Cancer. 2010;41:248-253.  [PubMed]  [DOI]
270.  Srivastava K, Srivastava A, Kumar A, Mittal B. Significant association between toll-like receptor gene polymorphisms and gallbladder cancer. Liver Int. 2010;30:1067-1072.  [PubMed]  [DOI]
271.  Rai R, Sharma KL, Misra S, Kumar A, Mittal B. Association of adrenergic receptor gene polymorphisms in gallbladder cancer susceptibility in a North Indian population. J Cancer Res Clin Oncol. 2014;140:725-735.  [PubMed]  [DOI]
272.  Sharma KL, Umar M, Pandey M, Misra S, Kumar A, Kumar V, Mittal B. Association of potentially functional genetic variants of PLCE1 with gallbladder cancer susceptibility in north Indian population. J Gastrointest Cancer. 2013;44:436-443.  [PubMed]  [DOI]
273.  Li Z, Yuan WT, Ning SJ, Zhang SJ. Vitamin D receptor genetic variants are associated with susceptibility of gallbladder adenocarcinoma in a Chinese cohort. Genet Mol Res. 2014;13:5387-5394.  [PubMed]  [DOI]
274.  Albores-Saavedra J, Alcántra-Vazquez A, Cruz-Ortiz H, Herrera-Goepfert R. The precursor lesions of invasive gallbladder carcinoma. Hyperplasia, atypical hyperplasia and carcinoma in situ. Cancer. 1980;45:919-927.  [PubMed]  [DOI]
275.  Roa I, Araya JC, Villaseca M, De Aretxabala X, Riedemann P, Endoh K, Roa J. Preneoplastic lesions and gallbladder cancer: an estimate of the period required for progression. Gastroenterology. 1996;111:232-236.  [PubMed]  [DOI]
276.  Vaittinen E. Carcinoma of the gall-bladder. A study of 390 cases diagnosed in Finland 1953-1967. Ann Chir Gynaecol Fenn Suppl. 1970;168:1-81.  [PubMed]  [DOI]
277.  Srivastava K, Srivastava A, Mittal B. Potential biomarkers in gallbladder cancer: present status and future directions. Biomarkers. 2013;18:1-9.  [PubMed]  [DOI]
278.  He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol. 2013;13:87.  [PubMed]  [DOI]
279.  Zur B, Holdenrieder S, Walgenbach-Brünagel G, Albers E, Stoffel-Wagner B. Method comparison for determination of the tumor markers AFP, CEA, PSA and free PSA between Immulite 2000 XPI and Dimension Vista 1500. Clin Lab. 2012;58:97-105.  [PubMed]  [DOI]
280.  Zhang D, Yu M, Xu T, Xiong B. Predictive value of serum CEA, CA19-9 and CA125 in diagnosis of colorectal liver metastasis in Chinese population. Hepatogastroenterology. 2013;60:1297-1301.  [PubMed]  [DOI]
281.  Koopmann J, Thuluvath PJ, Zahurak ML, Kristiansen TZ, Pandey A, Schulick R, Argani P, Hidalgo M, Iacobelli S, Goggins M. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer. 2004;101:1609-1615.  [PubMed]  [DOI]
282.  Huang L, Chen W, Liang P, Hu W, Zhang K, Shen S, Chen J, Zhang Z, Chen B, Han Y. Serum CYFRA 21-1 in Biliary Tract Cancers: A Reliable Biomarker for Gallbladder Carcinoma and Intrahepatic Cholangiocarcinoma. Dig Dis Sci. 2015;60:1273-1283.  [PubMed]  [DOI]
283.  Barreto SG, Dutt A, Chaudhary A. A genetic model for gallbladder carcinogenesis and its dissemination. Ann Oncol. 2014;25:1086-1097.  [PubMed]  [DOI]