Topic Highlight
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Sep 7, 2014; 20(33): 11574-11585
Published online Sep 7, 2014. doi: 10.3748/wjg.v20.i33.11574
Perspectives on new biomarkers in gastric cancer: Diagnostic and prognostic applications
Danilo do Rosário Pinheiro, Wallax Augusto Silva Ferreira, Mariceli Baia Leão Barros, Mariana Diniz Araújo, Symara Rodrigues-Antunes, Bárbara do Nascimento Borges
Danilo do Rosário Pinheiro, Master Program of Animal Health and Production, Federal Rural University of Amazonia, Belém PA 66077-530, Brazil
Danilo do Rosário Pinheiro, Wallax Augusto Silva Ferreira, Mariceli Baia Leão Barros, Mariana Diniz Araújo, Symara Rodrigues-Antunes, Bárbara do Nascimento Borges, Molecular Biology Laboratory, Biological Science Institute, Federal University of Pará, Belém PA 66075-110, Brazil
Bárbara do Nascimento Borges, Center of Agropecuary Technology, Socio-environmental and Hydric Resources Institute, Federal Rural University of Amazonia, Belém PA 66077-530, Brazil
Author contributions: Pinheiro DR, Ferreira WAS, Barros MBL, Araújo MD, Rodrigues-Antunes S and Borges BN wrote the paper.
Correspondence to: Bárbara do Nascimento Borges, PhD, Center of Agropecuary Technology, Socio-environmental and Hydric Resources Institute, Federal Rural University of Amazonia, Avenida Presidente Tancredo Neves 2501, Belém PA 66077-530, Brazil. barbara.borges@ufra.edu.br
Telephone: +55-91-32017585 Fax: +55-91-32017585
Received: October 22, 2013
Revised: March 14, 2014
Accepted: April 30, 2014
Published online: September 7, 2014

Abstract

Gastric cancer is considered one of the most deadly tumors worldwide. Even with the decline in its incidence, the mortality rate of this disease has remained high, mainly due to its late diagnosis and to the lack of precise prognostic markers. The main purpose of this review is to present genetic, epigenetic and proteomic molecular markers that may be used in a diagnostic and prognostic manner and to discuss the pros and cons of each type of marker for improving clinical practice. In this sense, we observed that the use of genetic markers, especially mutations and polymorphisms, should be carefully considered, as they are strongly affected by ethnicity. Proteomic-based markers show promise, but the higher costs of the associated techniques continue to make this approach expensive for routine use. Alternatively, epigenetic markers appear to be very promising, as they can be detected in bodily fluids as well as tissues. However, such markers must be used carefully because epigenetic changes may occur due to environmental factors and aging. Despite the advances in technology and its access, to date, there are few defined biomarkers of prognostic and diagnostic use for gastric tumors. Therefore, the use of a panel of several approaches (genetic, epigenetic and proteomic) should be considered the best alternative for clinical practice.

Key Words: Molecular markers, Epigenetic, Genetic, Proteomic, Diagnosis, Prognosis, Gastric tumors

Core tip: Despite the advances in technology and its access, to date, there are few defined biomarkers of prognostic and diagnostic use for gastric tumors. Therefore, a combination of several approaches (genetic, epigenetic and proteomic) should be considered the best alternative for clinical practice. Considering this point of view, this review aims to discuss the most studied biomarkers, discussing the pros and cons of each type of marker and their use in the clinical practice.



INTRODUCTION

Despite the decline in its incidence since World War II, gastric cancer remains the fourth most common type of cancer worldwide and is tied with lung cancer as the second leading cause of death from cancer[1,2]. The global incidence of gastric cancer for 2008 was estimated to be 989000 new cases and 738000 related deaths[3].

It is known that gastric cancer is a multifactorial disease involving environmental factors, such as Helicobacter pylori infection, and genetic susceptibility[4,5]. Histologically, gastric cancer is classified according to Làuren[6] into two types, diffuse (or undifferentiated) and intestinal (or differentiated), with the majority of cases being of the intestinal type[7].

Despite improvements in medical technology, such as the development of new diagnostic imaging methods, gastric cancer remains a silent disease that is frequently diagnosed in advanced stages, which is responsible for its elevated mortality[8]. Additionally, the presence of metastasis in the lymph nodes is a frequent event in this type of neoplasia and is considered an important prognostic marker because it may contribute to the high rates of recurrence and/or gastric cancer mortality[9].

Considering the increasing level of understanding of the molecular basis of tumor biology, several biomarkers have been identified for many types of tumors[10]. These biomarkers or molecular markers are molecular entities (DNA, RNA or protein) that can be isolated from biological materials and are useful in the five main areas of cancer study and medicine: cancer screening, diagnosis, tumor classification, prognosis and prediction of a therapeutic response[11]. Despite its importance in translational medicine, some important factors determining the efficiency of a molecular marker assay are the levels of sensitivity and specificity[12], which currently limit their use in clinical practice.

Due to the above-mentioned factors, it is very important to establish molecular markers that can help health professionals in the diagnosis and prognosis of gastric cancer, including those that can be used in a non-invasive way. In this sense, this review aims to present the biomarkers of diagnostic and prognostic use with a broad spectrum of biological samples and detection methods, including genetic, epigenetic and proteomic approaches.

GENETIC MARKERS
Genomic instability

Genomic instability is considered one of the hallmarks of cancer[13]. It can be classified into chromosome instability (CIN) and microsatellite instability (MSI), with the latter being a major pathway involved in gastric carcinogenesis and occurring in at least 20% of all gastric cancer (GC) patients. Several studies have assessed the MSI status of GC patients around the world; however, to date, there are no conclusive studies regarding its significance in the diagnosis and/or prognosis of sporadic or familial gastric cancer[14,15].

MSI usually results from alterations in the genes responsible for DNA repair, such as MLH1 and MSH2, both of which are associated with the development of Lynch syndrome and gastric carcinogenesis[16,17].

In general, the occurrence of MSI in GC is associated with any change (genetic or epigenetic) in DNA repair genes[18]. To define the MSI status of an individual, researchers must assess a panel defined by the National Cancer Institute (BAT25, BAT26, D2S123, D5S346 and D17S250). In this sense, MSI can be considered a prognostic marker, as GC patients who are positive for microsatellite instability (MSI+) have certain features and prognosis, such as tumors located in the antrum and an intestinal phenotype with an expansive growth pattern, especially when associated with MLH1 methylation[19]. Direct invasion of adjacent organs and extensive nodal metastasis have both been reported, along with a lack of distant metastasis and chemoresistance to fluorouracil treatment[20-22], but with a better prognosis[23], especially in cases of the intestinal type[24,25].

The presence of MSI consequently influences the emergence of mutations in other genes that are important for the maintenance of cellular homeostasis. To date, this association has been reported in genes involved in cell cycle regulation and apoptosis (TGFβRII, IGFIIR, TCF4, RIZ, BAX, CASPASE 5, FAS, BCL10 and APAF1) and in the maintenance of the genomic integrity (MSH6, MSH3, MED1, RAD50, BLM, ATR and MRE11). Consequently, changes in these genes lead to the accumulation of mutations that can result in the development of a malignant phenotype[15,26].

In addition to MSI, another well-studied phenomenon is the CIN phenotype, the most common type of genomic instability observed in solid tumors and a major source of genomic instability in GC. This phenotype is characterized by gross chromosomal abnormalities, such as the gain or loss of entire chromosomes (i.e., aneuploidy) and/or fractions of chromosomes (i.e., loss of heterozygosity, amplifications and translocations)[27-30].

In contrast to MSI, for which the same markers are analyzed in any population, CIN analyzes the entire genome of the individual tumor. In this sense, a common characteristic observed is that several markers may be influenced by the patient’s ethnicity. One example is the description of a loss of chromosome 11q observed in diffuse-type GC, which is unique to the population of North Brazil[31].

However, in a broader sense, the results of CIN suggest that several altered chromosome regions are shared independent of the studied population. Therefore, we can observe that losses of chromosome 4q, 9p, 18q, 21q and 22q and gains of chromosomes 5p, 8p, 8q, 17q, 20p and 20q are frequent events in GC and are related to the patient’s clinical outcome, as this depends on the amount of DNA copy number alterations[30-33].

It is worth noting that the rearranged chromosomes are always involved with important genes, such those controlling the cell cycle machinery. This was explored by the work of Fan et al[32], who used array Comparative Genome Hybridization and found several events of losses and gains of entire chromosomes and amplifications and deletions of parts of the genome. All of these alterations involved or harbored regions of 321 known or candidate oncogenes (e.g., MYC, HER2, TGFB1), frequently showing copy number gains, and 12 tumor suppressor genes (e.g., p16, SMAD4, SMAD7), showing frequent copy number losses.

Another common feature of gastric tumors is the presence of gene amplification. It is known that the increased production and amplification of HER2 can be observed in various types of cancer. Several clinical studies have been able to identify HER2 protein overexpression or HER2 gene amplification in gastric cancer, with great variation in the number of patients with HER2-positive tumors[34]. Although the prognostic value of this biological marker remains questionable for resected gastric cancer[35-37], it is well documented that this amplification event is more frequent in intestinal-type GC[38-40] and is significantly associated with a poor prognosis[34-40]. Furthermore, this gene amplification is considered an important biological marker for guiding clinical decisions regarding adjuvant chemotherapy with trastuzumab, especially in patients with lymph node metastasis, as it predicts sensitivity to this chemotherapeutic agent[34,36,38,41-45].

The overexpression of the MYC gene, especially due to gene amplification, was described as a frequent event in GC, ranging from 15.6% to 100% in primary tumors, especially those of the intestinal type[46-51]. In a recent study, de Souza et al[52] demonstrated the overexpression of MYC in gastric tumors, linking it to tumor progression (deeper tumor extension and the presence of distant metastasis).

Mutations and polymorphisms

As genetic alterations have a clear influence on the development and outcome of cancer treatment, it is expected that gene-based markers have a significant impact on tumor control. Among the most prevalent and common genetic alterations in GC are mutations in the TP53 and CDH1 genes (Table 1). However, in terms of biomarkers of diagnosis and prognosis, there is some divergence in the results with respect to the occurrence of mutations and their relationship to the histological characteristics of the tumor or stage in GC[53-55].

Table 1 Main genetic and epigenetic alterations in gastric cancer tissues and their clinical application as biomarkers.
AlterationType of alterationClinical applicationRef.
HER-2 amplificationGeneticPrognostic and therapeutic[34-40]
MYC amplificationGeneticProgression and metastasis[52]
TP53 Arg72ProGeneticRisk predictor, prognostic[63-67,69-72]
CDH1 -160 C>AGeneticRisk predictor[76-78]
CDH1 hypermethylationEpigeneticPrognostic, metastasis[167,170,171]
p16 hypermethylationEpigeneticDiagnostic, prognostic and therapeutic[156-160]

In addition to mutations, other important genetic alterations influencing gastric tumorigenesis are single-nucleotide polymorphisms (SNPs), which are responsible for over 90% of the variation in the human genome[56]. It is known that infections and nutritional, environmental and genetic factors have a direct link with gastric carcinogenesis. However, individuals exposed to these factors that actually develop gastric cancer belong to a small group, suggesting that the genetic susceptibility, mainly SNPs, of the host must be taken into consideration[57-59].

The number of studies linking genetic polymorphisms and GC has increased exponentially over the past decades, in parallel with major advances in sequencing and genotyping, and polymorphisms may be useful indicators for assessing the risk of gastric cancer[60]. However, it is worth noting that the results derived from polymorphism studies still need to be carefully interpreted, as these biomarkers are generally population dependent, with a strong ethnic influence.

One well-studied polymorphism is TP53 Arg72Pro, which remains controversial with regard to its potential as biomarker. Although no association with GC risk was observed in Turkish[61] and Korean[62] populations, several meta-analyses indicate its potential use as a risk predictor for Asian but not Caucasian populations[63-67]. According to Francisco et al[68], this difference must be related to ethnicity, as it may modulate the penetrance of Arg72Pro in cancer susceptibility.

In addition to its application as a risk predictor, this polymorphism has recently been used as a prognostic factor because it may be correlated with the clinical outcome of patients receiving chemotherapy, though with contradictory results. Wang et al[69] observed that the Arg allele is related to an unfavorable effect on patients treated with 5-fluorouracil (5-FU). However, different results were obtained by several other works in which the Pro allele was related to poor survival in patients using 5-FU[70], oxaliplatin[71] or a combination of paclitaxel and cisplatin[72]. Therefore, although promising, the use of the Arg72Pro polymorphism in this sense should be carefully analyzed.

Another studied polymorphism is -160C>A, which is located in the promoter region of CDH1, a gene that encodes a transmembrane glycoprotein responsible for mediating intercellular adhesion and cell polarity and plays an important role not only in the regulation of morphogenesis of normal and neoplastic tissues but also in tumor invasion and metastasis[73].

It has been described that the A allele of this polymorphism results in an approximately 68% reduction in transcriptional activity in comparison to the C allele[74,75] and has been associated a with the negative regulation of CDH1, which can lead to the loss of cell-to-cell adhesion mediated by E-cadherin, resulting in increased susceptibility to tumor development and subsequent tumor invasion and metastasis[76]. Thus, the variant allele was suggested to be a likely genetic marker for an increased risk of GC[77,78].

A considerable number of studies have been conducted to investigate the association between this polymorphism and susceptibility to GC in humans, with conflicting results, which may also be explained by the ethnic composition of each population studied[55,60,79-84].

Although the AA genotype is related to an increased risk of GC in the Oman population[74] and Caucasians[73,76], several meta-analyses did not find any influence on the overall risk for the studied populations (Caucasians, Asians and mixed). However, when stratified by ethnicity, the results suggest a protective effect of the A allele in Asian populations[75,85,86].

Two other genotypes in CDH1, 347G>GA and +54T>C, were significantly associated with the risk of GC in a study conducted in China[87]. However, two studies in Japan[88] and Italy[89] did not confirm this relationship. According to Pan et al[90], to reach a definitive conclusion, further studies with better designs are needed to explore the association of CDH1 gene polymorphisms with GC susceptibility.

PROTEOMICS

Proteomic-based techniques in cancer biology, such as 2-DE (two-dimensional electrophoresis), iTRAQ (isobaric tags for relative and absolute quantitation), ICAT (isotope-coded affinity tag), protein chip array and liquid chromatography, have been used to identify and quantify proteins that can be used as biomarkers in bodily fluids and tissues in GC[91].

Human serum contains a complex array of peptides. Some of these may function as biomarkers, with their presence/absence or relative abundance being correlated with health status and thus useful for prognosis or diagnosis[92]. To date, the most common fluid biomarkers available for GC include carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), carbohydrate antigen 72-4 (CA 72-4), Cytokeratins (CYFRA 21-1, TPA - tissue polypeptide antigen, TPS - tissue polypeptide-specific antigen), E-cadherin, pepsinogen, cytokines and the β-subunit of HCG. However, although some authors suggest that the sensitivity and specificity of these markers are not sufficient for the diagnosis of GC[93,94], their use in clinical practice is recommended by most authors because they are useful as prognostic, diagnostic and peritoneal recurrence markers[95-100]. The use of CEA and CA 19-9 as prognosis markers, for example, is recommended because their levels increase according to the tumor stage; these markers are especially useful when a cutoff ratio (divided in three stages: negative, low and high) is applied[94-96].

An expansive bibliography about new biomarkers in biological fluids of GC has accumulated over time[101-106]. These biomarkers include, for example, tubulin beta chain, thymosin beta-4-like protein 3, cytochrome b-c1 complex subunit 1, aromatic amino acids (tyrosine, phenylalanine, tryptophan), S100A9/AAT and S100A9/GIF, collagen type IV, hyaluronic acid, prostaglandin E2, EGF, TGFα, epidermal growth factor receptor (EGFR), pro-apolipoprotein A1 (proApoA1), apolipoprotein A1, transthyretin (TTR), D-dimer, vitronectin (VN), interleukin-6, a-2 macroglobulin, C-reactive protein and plasminogen activator inhibitor-1[107]. However, most of these biomarker candidates still need to be extensively validated in large clinical cohorts because they have been identified in many studies with different methods over time.

It is worth mentioning that other sources of proteins, such as tissue samples and cell lines, have been used in the discovery of new GC biomarkers. To date, tissue samples have not been widely used for this purpose due to poor reproducibility and the small overlap between studies as well as conflicting data. Moreover, in most of these studies, etiological differences between diffuse and intestinal tumor subtypes were ignored because finer sample classification was not possible with the limited patient materials[107]. Due to these difficulties, modern techniques in proteomic studies have enabled a much higher number of proteins in GC tissues to be described, including selenium-binding protein 1, ENO1, ADHIC, ETFB, VDAC, DMBT1, LTF, GRP78, GRP94, PPIA, PRDX1, PTEN, CRIP1, HNP-1, S100A6, S100A8, S100A9, α-defensin-1 and α-defensin-2[107-111]. Other proposed candidate biomarkers include CRIP1, HNP-1, and S100-A6[112] and human neutrophil peptides 1-3 (HNPs 1-3) and MIF[113]. In summary, the detection and verification of tissue biomarkers through the application of various proteomic methods can promote the more robust clinical evaluation of patients with gastric cancer.

As reported, the majority of tumor biomarkers in GC diagnosis are glycoproteins[114], with the most common being mucin-5AC (MUC5AC), IgG, mucin-1 (MUC1), IGHM, LRG1, haptoglobin (HP), albumin (ALB), TF, kininogen-1 (KNG1), alpha-1-acid glycoprotein (AGP), ceruloplasmin (CP), A1BG, vitamin D binding protein (GC), alpha-1-antitrypsin (SERPINA1), antithrombin (SERPINC1), angiotensin (AGT), CFB, serpin peptidase inhibitor, Clade A (SERPINA3), alpha-2-HS-glycoprotein (AHSG), Zn-alpha-2-glycoprotein (AZGP1), CLU, ITIH2, complement factor H (CFH), interalpha-trypsin inhibitor HCRP, SERPING1 and C4A variant protein (C4A)[115-118].

Recently, Li et al[119] studied two multidrug-resistant cell lines and their parental drug-sensitive GC cell line to characterize the multiple drug resistance (MDR)-related cell surface glycoproteome. These authors successfully identified 56 cell membrane glycoproteins, 11 of which (Mesothelin, EGFR, Integrin alpha-3, CD59, Folate receptor alpha, Peptidyl-prolyl cis-trans isomerase FKBP9, Laminin subunit alpha-5, Dihydropyridine receptor alpha 2, Multidrug resistance protein 1, Prostaglandin F2 receptor negative regulator and Golgi apparatus protein 1) were found to be differentially expressed with the same trend in both the drug-resistant and sensitive cell lines. This report was the first concerning the relationship between glycoprotein alterations and MDR in gastric tumors and was also helpful for better interpreting the sophisticated mechanisms of MDR in gastric cancer, which, of course, still require further investigation and verification.

Given the current multiplicity of proteomic studies in GC, due to the vast amounts of data generated, it is important to maintain an up-to-date and searchable index of the lists of biomarkers obtained in different studies. Finally, it is essential that future studies focus not only on identifying the disease-associated alterations in proteins but also on determining the cellular functions of the proteins identified as well as the mechanistic networks in which they participate. The biomarkers identified experimentally should serve as entry points for investigating the mechanisms of carcinogenesis and tumor progression.

EPIGENETICS
MicroRNA

MicroRNAs (miRNAs) are small (typically about 22 nt in size) regulatory RNA molecules that modulate the activity of specific mRNA targets and play important roles in a wide range of physiologic and pathologic process. miRNAs generally disrupt gene expression by inhibiting translation or through the cleavage of the target mRNA[120]. When associated with the tumor process, miRNAs are called oncomiRs; they may act as oncogenes or as tumor suppressor genes. As a result, oncomiRs can be used in the diagnosis and treatment of cancer, as the expression patterns of miRNAs in human cancer appear to be tissue specific[121]. In addition, genome-wide studies have shown that miRNA genes are frequently located within regions of heterozygosity loss and amplification and fragile sites, suggesting the vital role of miRNAs in tumorigenesis[122].

miRNAs have shown great potential as tissue-based markers for cancer definition. The presence of a miRNA signature in gastric cancer has been suggested by some authors, with specific genes being up- and down-regulated, which can be useful in the diagnostic process[123-125]. Moreover, due to their size, abundance, tissue specificity and relative stability in the circulation of biological fluids, these molecules can serve as accessible biomarkers to detect and monitor GC[126] (Tables 2 and 3).

Table 2 miRNAs differently expressed in gastric cancer tissues and their clinical application.
miRNALevel of expressionClinical applicationRef.
miR-301aUp-regulatedProgression and prognostic[127]
miR-29 familyDown-regulatedPrognostic and therapeutic[128]
miR-146aDown-regulatedMetastasis[129]
miR-10bUp-regulatedProgression and prognostic[130]
miR-107Up-regulatedPrognostic[131]
miR-345 + miR-142Up-regulated (miR-345) and Down-regulated (miR-142)Recurrence and progression[132]
let-7iDown-regulatedPrognostic and therapeutic[133]
miR-221Up-regulatedProgression, prognostic and therapeutic[125,134]
miR-148aDown-regulatedPrognostic[135]
miR-155Down-regulatedProgression and metastasis[136]
miR-129-2-3pDown-regulatedProgression[137]
miR-181bUp-regulatedPrognostic[138]
miR-21Up-regulatedPrognostic[138,139]
Table 3 miRNAs differently expressed in body fluids from gastric cancer patients and their clinical application.
miRNABody fluidLevel of expressionClinical applicationRef.
miR-200cBloodUp-regulatedProgression and survival[140]
miR-421Gastric JuiceUp-regulatedScreening[141]
miR-21Gastric JuiceUp-regulatedScreening[142]
miR-106aGastric JuiceUp-regulatedScreening[142]
miR-129-1-3pGastric JuiceDown-regulatedScreening[137]
miR-129-2-3pGastric JuiceDown-regulatedScreening[137]
miR-335BloodUp-regulatedRecurrence and prognostic[143]
miR-221SerumUp-regulatedScreening[144]
miR-744SerumUp-regulatedScreening[144]
miR-376cSerumUp-regulatedScreening[144]
miR-199a-3pPlasmaUp-regulatedProgression, screening[145]

Recently, miRNA studies have focused on the prediction of chemotherapeutic resistance, as some of those molecules, such as miR-19a/b and miR-106a, accelerate drug efflux, acting as a barrier to the success of GC chemotherapy[146,147].

Methylation and histone modifications

DNA methylation is an epigenetic modification in both prokaryotes and eukaryotes and occurs at carbon 5 of the cytosine ring within CpG dinucleotides, especially in the promoter region of several genes and in noncoding genomic regions[148,149]. Because DNA methylation has a tissue-specific pattern, is involved in a variety of cellular processes, such as gene expression regulation, genomic imprinting, transcriptional regulation and cellular differentiation, and can be modified during tumorigenesis, it is used as a molecular marker of the tumor-development process[150-152].

In GC patients, it is suggested that the methylation pattern of some genes is dependent on environmental factors, such as the presence of H. pylori[153-155], as well as on the patient’s age[153]. Therefore, biomarkers should be carefully selected to avoid false results in a prognostic and diagnostic approach.

An aberrant methylation pattern of several genes is currently associated with GC (Table 1). One of these genes is the classical tumor suppressor gene p16, which was identified as a diagnostic[156,157] and prognostic biomarker in several populations because it can be related to better survival in patients who received 5-fluoracil therapy[158], to metastasis and poor survival in patients without neoadjuvant therapy[159] and to tumor location[160].

Several other genes with altered methylation patterns were identified as potentially useful prognostic biomarkers, including RKIP[161], ADAMTS9[154], XAF1[162], BCL6B[163], miR34b and miR129-2[164] and HOXD10[165], but studies have only been performed in a few Asian populations.

Some of the markers analyzed to date have methylation patterns that are related to the patient’s chemosensitivity, such as MGMT, MLH1, BNIP3, DAPK and BMP4[166-168]. As a result, these genes may be useful for predicting the best treatment for each patient.

One of the most interesting features of methylation markers is the fact that many of them may be used as non-invasive makers, as they can be detected in body fluids such as serum, plasma and peritoneal wash.

One of the most commonly used markers in body fluids is the CDH1 gene methylation pattern, the main mechanism responsible for CDH1 down-regulation[169]. The altered methylation pattern of this gene may be detected in peritoneal fluid and used as a marker of tumor recurrence, metastasis and tumor stage[167,170] or in serum, where it is used together with the APC methylation status as a marker of prognosis[171].

Some other markers may be detected in serum, such as SFRP2[172] and SLC19A3[173], or gastric washes, such as a combination of MINT25, ADAM23 and GDNF[174]; these are useful as diagnostic markers.

Although studies associating the methylation status of a particular gene and tumorigenesis are frequent, those associating histone modifications, as well as the enzymes responsible, are still few. The majority of such studies are related to histone deacetylase enzymes, which are considered molecular markers of prognosis, with the expression of HDAC 1 and 2 being related to tumor aggressiveness[175,176].

Concluding remarks

Advances in technology have allowed the development of several methods to understand the mechanisms underlying gastric carcinogenesis, resulting in the identification of a large number of molecular targets that can be used as biomarkers with diagnostic and prognostic potential. Several of these (especially HER-2 amplification, miR-19a/b, miR-160a and p16 hypermethylation) can also be used for the prediction of therapeutic response, which is a tremendous help to clinicians. Despite this, many of these biomarkers, especially genetic markers, have been tested in only one or a few populations. We must consider that GC, as with other types of tumor, is influenced by ethnic and environmental factors, which can result in the following question: how universal can a prognostic/diagnostic genetic marker be? Thus far, there is unfortunately no answer to that question, and we believe that it will be a long time until this question may be conclusively answered. Therefore, the simplest approach at present is to validate the discovered markers in the target population and to use several biomarkers for each patient. One alternative could be the use of a proteomic approach, which only analyzes protein expression and is independent of the cause (genetic or epigenetic) of any altered pattern. However, there are some limitations to that approach, such as the availability of studies in only a few populations and the cost of the analysis, which remains very high.

Conversely, epigenetic markers appear to be much more tumor specific, as their pattern has been confirmed in all of the studied populations. Moreover, epigenetic markers are more prone to become target markers for therapeutics trials, as these types of alterations are reversible.

Therefore, one might carefully select molecular markers depending on their use. We must bear in mind that genetic markers are much more dependent on the ethnic component than epigenetic markers, making the latter a currently much more reliable option for clinicians.

Footnotes

P- Reviewer: Abbott DE, Freedberg GE, Goetze TO, Guo P, Ozkan OV, Testini M S- Editor: Ma YJ L- Editor: A E- Editor: Wang CH

References
1.  González CA, Sala N, Rokkas T. Gastric cancer: epidemiologic aspects. Helicobacter. 2013;18 Suppl 1:34-38.  [PubMed]  [DOI]
2.  Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643-655.  [PubMed]  [DOI]
3.  Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893-2917.  [PubMed]  [DOI]
4.  Figueiredo C, Garcia-Gonzalez MA, Machado JC. Molecular pathogenesis of gastric cancer. Helicobacter. 2013;18 Suppl 1:28-33.  [PubMed]  [DOI]
5.  Akhavan-Niaki H, Samadani AA. Molecular insight in gastric cancer induction: an overview of cancer stemness genes. Cell Biochem Biophys. 2014;68:463-473.  [PubMed]  [DOI]
6.  Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31-49.  [PubMed]  [DOI]
7.  Hu Y, Fang JY, Xiao SD. Can the incidence of gastric cancer be reduced in the new century? J Dig Dis. 2013;14:11-15.  [PubMed]  [DOI]
8.  Mahar AL, Coburn NG, Singh S, Law C, Helyer LK. A systematic review of surgery for non-curative gastric cancer. Gastric Cancer. 2012;15 Suppl 1:S125-S137.  [PubMed]  [DOI]
9.  Arigami T, Uenosono Y, Yanagita S, Nakajo A, Ishigami S, Okumura H, Kijima Y, Ueno S, Natsugoe S. Clinical significance of lymph node micrometastasis in gastric cancer. Ann Surg Oncol. 2013;20:515-521.  [PubMed]  [DOI]
10.  Mehta S, Shelling A, Muthukaruppan A, Lasham A, Blenkiron C, Laking G, Print C. Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol. 2010;2:125-148.  [PubMed]  [DOI]
11.  Rose-James A, Sreelekha TT. Molecular Markers with Predictive and Prognostic Relevance in Lung Cancer. Lung Cancer Inter. 2012;2012:ID 729532.  [PubMed]  [DOI]
12.  Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer. 2002;2:210-219.  [PubMed]  [DOI]
13.  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.  [PubMed]  [DOI]
14.  Leite M, Corso G, Sousa S, Milanezi F, Afonso LP, Henrique R, Soares JM, Castedo S, Carneiro F, Roviello F. MSI phenotype and MMR alterations in familial and sporadic gastric cancer. Int J Cancer. 2011;128:1606-1613.  [PubMed]  [DOI]
15.  Nobili S, Bruno L, Landini I, Napoli C, Bechi P, Tonelli F, Rubio CA, Mini E, Nesi G. Genomic and genetic alterations influence the progression of gastric cancer. World J Gastroenterol. 2011;17:290-299.  [PubMed]  [DOI]
16.  Milne AN, Carneiro F, O’Morain C, Offerhaus GJ. Nature meets nurture: molecular genetics of gastric cancer. Hum Genet. 2009;126:615-628.  [PubMed]  [DOI]
17.  Resende C, Ristimäki A, Machado JC. Genetic and epigenetic alteration in gastric carcinogenesis. Helicobacter. 2010;15 Suppl 1:34-39.  [PubMed]  [DOI]
18.  Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta. 2013;424:53-65.  [PubMed]  [DOI]
19.  Kim KJ, Lee TH, Cho NY, Yang HK, Kim WH, Kang GH. Differential clinicopathologic features in microsatellite-unstable gastric cancers with and without MLH1 methylation. Hum Pathol. 2013;44:1055-1064.  [PubMed]  [DOI]
20.  Yamashita K, Arimura Y, Saito M, Suzuki H, Furuhata T, Hirata K, Shinomura Y. Gastric cancers with microsatellite instability sharing clinical features, chemoresistance and germline MSH6 variants. Clin J Gastroenterol. 2013;6:122-126.  [PubMed]  [DOI]
21.  An JY, Kim H, Cheong JH, Hyung WJ, Kim H, Noh SH. Microsatellite instability in sporadic gastric cancer: its prognostic role and guidance for 5-FU based chemotherapy after R0 resection. Int J Cancer. 2012;131:505-511.  [PubMed]  [DOI]
22.  Yashiro M, Inoue T, Nishioka N, Matsuoka T, Boland CR, Hirakawa K. Allelic imbalance at p53 and microsatellite instability are predictive markers for resistance to chemotherapy in gastric carcinoma. Ann Surg Oncol. 2009;16:2926-2935.  [PubMed]  [DOI]
23.  Fang WL, Chang SC, Lan YT, Huang KH, Chen JH, Lo SS, Hsieh MC, Li AF, Wu CW, Chiou SH. Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery. World J Surg. 2012;36:2131-2138.  [PubMed]  [DOI]
24.  Kim H, An JY, Noh SH, Shin SK, Lee YC, Kim H. High microsatellite instability predicts good prognosis in intestinal-type gastric cancers. J Gastroenterol Hepatol. 2011;26:585-592.  [PubMed]  [DOI]
25.  Jahng J, Youn YH, Kim KH, Yu J, Lee YC, Hyung WJ, Noh SH, Kim H, Kim H, Park H. Endoscopic and clinicopathologic characteristics of early gastric cancer with high microsatellite instability. World J Gastroenterol. 2012;18:3571-3577.  [PubMed]  [DOI]
26.  Hudler P. Genetic aspects of gastric cancer instability. ScientificWorldJournal. 2012;2012:761909.  [PubMed]  [DOI]
27.  Buffart TE, Louw M, van Grieken NC, Tijssen M, Carvalho B, Ylstra B, Grabsch H, Mulder CJ, van de Velde CJ, van der Merwe SW. Gastric cancers of Western European and African patients show different patterns of genomic instability. BMC Med Genomics. 2011;4:7.  [PubMed]  [DOI]
28.  Ottini L, Falchetti M, Lupi R, Rizzolo P, Agnese V, Colucci G, Bazan V, Russo A. Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann Oncol. 2006;17 Suppl 7:vii97-vi102.  [PubMed]  [DOI]
29.  Martin SA, Hewish M, Lord CJ, Ashworth A. Genomic instability and the selection of treatments for cancer. J Pathol. 2010;220:281-289.  [PubMed]  [DOI]
30.  Kawauchi S, Furuay T, Uchiyama T, Adachi A, Okada T, Nakao M, Oga A, Uchida K, Sasaki K. Genomic instability and DNA ploidy are linked to DNA copy number aberrations of 8p23 and 22q11.23 in gastric cancers. Int J Mol Med. 2010;26:333-339.  [PubMed]  [DOI]
31.  Takeno SS, Leal MF, Lisboa LC, Lipay MV, Khayat AS, Assumpção PP, Burbano RR, Smith Mde A. Genomic alterations in diffuse-type gastric cancer as shown by high-resolution comparative genomic hybridization. Cancer Genet Cytogenet. 2009;190:1-7.  [PubMed]  [DOI]
32.  Fan B, Dachrut S, Coral H, Yuen ST, Chu KM, Law S, Zhang L, Ji J, Leung SY, Chen X. Integration of DNA copy number alterations and transcriptional expression analysis in human gastric cancer. PLoS One. 2012;7:e29824.  [PubMed]  [DOI]
33.  Rossi E, Klersy C, Manca R, Zuffardi O, Solcia E. Correlation between genomic alterations assessed by array comparative genomic hybridization, prognostically informative histologic subtype, stage, and patient survival in gastric cancer. Hum Pathol. 2011;42:1937-1945.  [PubMed]  [DOI]
34.  Kulig J, Kołodziejczyk P, Kulig P, Legutko J. Targeted therapy for gastric cancer--current status. J Oncol Pharm Pract. 2013;19:75-81.  [PubMed]  [DOI]
35.  Fisher SB, Fisher KE, Squires MH, Patel SH, Kooby DA, El-Rayes BF, Cardona K, Russell MC, Staley CA, Farris AB. HER2 in resected gastric cancer: Is there prognostic value? J Surg Oncol. 2014;109:61-66.  [PubMed]  [DOI]
36.  Aizawa M, Nagatsuma AK, Kitada K, Kuwata T, Fujii S, Kinoshita T, Ochiai A. Evaluation of HER2-based biology in 1,006 cases of gastric cancer in a Japanese population. Gastric Cancer. 2014;17:34-42.  [PubMed]  [DOI]
37.  Oh HS, Eom DW, Kang GH, Ahn YC, Lee SJ, Kim JH, Jang HJ, Kim EJ, Oh KH, Ahn HJ. Prognostic implications of EGFR and HER-2 alteration assessed by immunohistochemistry and silver in situ hybridization in gastric cancer patients following curative resection. Gastric Cancer. 2014;17:402-411.  [PubMed]  [DOI]
38.  He C, Bian XY, Ni XZ, Shen DP, Shen YY, Liu H, Shen ZY, Liu Q. Correlation of human epidermal growth factor receptor 2 expression with clinicopathological characteristics and prognosis in gastric cancer. World J Gastroenterol. 2013;19:2171-2178.  [PubMed]  [DOI]
39.  Bădescu A, Georgescu CV, Vere CC, Crăiţoiu S, Grigore D. Correlations between Her2 oncoprotein, VEGF expression, MVD and clinicopathological parameters in gastric cancer. Rom J Morphol Embryol. 2012;53:997-1005.  [PubMed]  [DOI]
40.  Jácome AA, Wohnrath DR, Scapulatempo Neto C, Carneseca EC, Serrano SV, Viana LS, Nunes JS, Martinez EZ, Santos JS. Prognostic value of epidermal growth factor receptors in gastric cancer: a survival analysis by Weibull model incorporating long-term survivors. Gastric Cancer. 2014;17:76-86.  [PubMed]  [DOI]
41.  Smyth EC, Cunningham D. Targeted therapy for gastric cancer. Curr Treat Options Oncol. 2012;13:377-389.  [PubMed]  [DOI]
42.  Kochi M, Fujii M, Masuda S, Kanamori N, Mihara Y, Funada T, Tamegai H, Watanabe M, Suda H, Takayama T. Differing deregulation of HER2 in primary gastric cancer and synchronous related metastatic lymph nodes. Diagn Pathol. 2013;8:191.  [PubMed]  [DOI]
43.  Qiu MZ, Li Q, Wang ZQ, Liu TS, Liu Q, Wei XL, Jin Y, Wang DS, Ren C, Bai L. HER2-positive patients receiving trastuzumab treatment have a comparable prognosis with HER2-negative advanced gastric cancer patients: a prospective cohort observation. Int J Cancer. 2014;134:2468-2477.  [PubMed]  [DOI]
44.  Gomez-Martin C, Plaza JC, Pazo-Cid R, Salud A, Pons F, Fonseca P, Leon A, Alsina M, Visa L, Rivera F. Level of HER2 gene amplification predicts response and overall survival in HER2-positive advanced gastric cancer treated with trastuzumab. J Clin Oncol. 2013;31:4445-4452.  [PubMed]  [DOI]
45.  Ding X, Qu X, Fan Y, Che X, Qu J, Xu L, Liu J, Liu Y. Trastuzumab and oxaliplatin exhibit a synergistic antitumor effect in HER2-postive gastric cancer cells. Anticancer Drugs. 2014;25:315-322.  [PubMed]  [DOI]
46.  Xu AG, Li SG, Liu JH, Gan AH. Function of apoptosis and expression of the proteins Bcl-2, p53 and C-myc in the development of gastric cancer. World J Gastroenterol. 2001;7:403-406.  [PubMed]  [DOI]
47.  Ishii HH, Gobé GC, Pan W, Yoneyama J, Ebihara Y. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression. J Gastroenterol Hepatol. 2002;17:966-972.  [PubMed]  [DOI]
48.  Yang GF, Deng CS, Xiong YY, Gong LL, Wang BC, Luo J. Expression of nuclear factor-kappa B and target genes in gastric precancerous lesions and adenocarcinoma: association with Helicobactor pylori cagA (+) infection. World J Gastroenterol. 2004;10:491-496.  [PubMed]  [DOI]
49.  Milne AN, Carvalho R, Morsink FM, Musler AR, de Leng WW, Ristimäki A, Offerhaus GJ. Early-onset gastric cancers have a different molecular expression profile than conventional gastric cancers. Mod Pathol. 2006;19:564-572.  [PubMed]  [DOI]
50.  Lima VP, de Lima MA, André AR, Ferreira MV, Barros MA, Rabenhorst SH. H pylori (CagA) and Epstein-Barr virus infection in gastric carcinomas: correlation with p53 mutation and c-Myc, Bcl-2 and Bax expression. World J Gastroenterol. 2008;14:884-891.  [PubMed]  [DOI]
51.  Calcagno DQ, Leal MF, Assumpcao PP, Smith MA, Burbano RR. MYC and gastric adenocarcinoma carcinogenesis. World J Gastroenterol. 2008;14:5962-5968.  [PubMed]  [DOI]
52.  de Souza CR, Leal MF, Calcagno DQ, Costa Sozinho EK, Borges Bdo N, Montenegro RC, Dos Santos AK, Dos Santos SE, Ribeiro HF, Assumpção PP. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS One. 2013;8:e64420.  [PubMed]  [DOI]
53.  Bellini MF, Cadamuro AC, Succi M, Proença MA, Silva AE. Alterations of the TP53 gene in gastric and esophageal carcinogenesis. J Biomed Biotechnol. 2012;2012:891961.  [PubMed]  [DOI]
54.  Carneiro P, Fernandes MS, Figueiredo J, Caldeira J, Carvalho J, Pinheiro H, Leite M, Melo S, Oliveira P, Simões-Correia J. E-cadherin dysfunction in gastric cancer--cellular consequences, clinical applications and open questions. FEBS Lett. 2012;586:2981-2989.  [PubMed]  [DOI]
55.  Corso G, Marrelli D, Pascale V, Vindigni C, Roviello F. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature. BMC Cancer. 2012;12:8.  [PubMed]  [DOI]
56.  Bag A, Jyala NS, Bag N. Indian studies on genetic polymorphisms and cancer risk. Indian J Cancer. 2012;49:144-162.  [PubMed]  [DOI]
57.  Hwang IR, Kodama T, Kikuchi S, Sakai K, Peterson LE, Graham DY, Yamaoka Y. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology. 2002;123:1793-1803.  [PubMed]  [DOI]
58.  Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002;347:1175-1186.  [PubMed]  [DOI]
59.  Xue H, Lin B, Ni P, Xu H, Huang G. Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J Gastroenterol Hepatol. 2010;25:1604-1617.  [PubMed]  [DOI]
60.  Loh M, Koh KX, Yeo BH, Song CM, Chia KS, Zhu F, Yeoh KG, Hill J, Iacopetta B, Soong R. Meta-analysis of genetic polymorphisms and gastric cancer risk: variability in associations according to race. Eur J Cancer. 2009;45:2562-2568.  [PubMed]  [DOI]
61.  Engin AB, Karahalil B, Karakaya AE, Engin A. Association between XRCC1 ARG399GLN and P53 ARG72PRO polymorphisms and the risk of gastric and colorectal cancer in Turkish population. Arh Hig Rada Toksikol. 2011;62:207-214.  [PubMed]  [DOI]
62.  Kim N, Cho SI, Lee HS, Park JH, Kim JH, Kim JS, Jung HC, Song IS. The discrepancy between genetic polymorphism of p53 codon 72 and the expression of p53 protein in Helicobacter pylori-associated gastric cancer in Korea. Dig Dis Sci. 2010;55:101-110.  [PubMed]  [DOI]
63.  Liu KJ, Qi HZ, Yao HL, Lei SL, Lei ZD, Li TG, Zhao H. An updated meta-analysis of the p53 codon 72 polymorphism and gastric cancer risk. Mol Biol Rep. 2012;39:8265-8275.  [PubMed]  [DOI]
64.  Gao L, Nieters A, Brenner H. Cell proliferation-related genetic polymorphisms and gastric cancer risk: systematic review and meta-analysis. Eur J Hum Genet. 2009;17:1658-1667.  [PubMed]  [DOI]
65.  Zhang Q, Ma YY, Wang HJ, Shao CM, Zhang J, Ye ZY. Meta-analysis of the association between P53 codon 72 polymorphisms and gastric cancer. J Surg Oncol. 2013;107:360-366.  [PubMed]  [DOI]
66.  Su XL, Jin JJ. Pro variant of TP53 Arg72Pro contributes to gastric cancer risk in Asians: evidence from a meta-analysis. Asian Pac J Cancer Prev. 2012;13:915-921.  [PubMed]  [DOI]
67.  Xiang B, Mi YY, Li TF, Liu PF. Updated meta-analysis of the TP53 Arg72Pro polymorphism and gastric cancer risk. Asian Pac J Cancer Prev. 2012;13:1787-1791.  [PubMed]  [DOI]
68.  Francisco G, Menezes PR, Eluf-Neto J, Chammas R. Arg72Pro TP53 polymorphism and cancer susceptibility: a comprehensive meta-analysis of 302 case-control studies. Int J Cancer. 2011;129:920-930.  [PubMed]  [DOI]
69.  Wang S, Chen L, Zhao Q, Rong H, Wang M, Gong W, Zhou J, Wu D, Zhang Z. Effect of TP53 codon 72 and MDM2 SNP309 polymorphisms on survival of gastric cancer among patients who receiving 5-fluorouracil-based postoperative adjuvant chemotherapy. Cancer Chemother Pharmacol. 2013;71:1073-1082.  [PubMed]  [DOI]
70.  Huang ZH, Hua D, Li LH, Zhu JD. Prognostic role of p53 codon 72 polymorphism in gastric cancer patients treated with fluorouracil-based adjuvant chemotherapy. J Cancer Res Clin Oncol. 2008;134:1129-1134.  [PubMed]  [DOI]
71.  Huang ZH, Hua D, Du X. Polymorphisms in p53, GSTP1 and XRCC1 predict relapse and survival of gastric cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Cancer Chemother Pharmacol. 2009;64:1001-1007.  [PubMed]  [DOI]
72.  Kim JG, Sohn SK, Chae YS, Song HS, Kwon KY, Do YR, Kim MK, Lee KH, Hyun MS, Lee WS. TP53 codon 72 polymorphism associated with prognosis in patients with advanced gastric cancer treated with paclitaxel and cisplatin. Cancer Chemother Pharmacol. 2009;64:355-360.  [PubMed]  [DOI]
73.  Chen B, Zhou Y, Yang P, Liu L, Qin XP, Wu XT. CDH1 -160C& gt; A gene polymorphism is an ethnicity-dependent risk factor for gastric cancer. Cytokine. 2011;55:266-273.  [PubMed]  [DOI]
74.  Al-Moundhri MS, Al-Khanbashi M, Al-Kindi M, Al-Nabhani M, Burney IA, Al-Farsi A, Al-Bahrani B. Association of E-cadherin (CDH1) gene polymorphisms and gastric cancer risk. World J Gastroenterol. 2010;16:3432-3436.  [PubMed]  [DOI]
75.  Li YL, Tian Z, Zhang JB, Fu BY. CDH1 promoter polymorphism and stomach cancer susceptibility. Mol Biol Rep. 2012;39:1283-1286.  [PubMed]  [DOI]
76.  Gao L, Nieters A, Brenner H. Meta-analysis: tumour invasion-related genetic polymorphisms and gastric cancer susceptibility. Aliment Pharmacol Ther. 2008;28:565-573.  [PubMed]  [DOI]
77.  Li LC, Chui RM, Sasaki M, Nakajima K, Perinchery G, Au HC, Nojima D, Carroll P, Dahiya R. A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities. Cancer Res. 2000;60:873-876.  [PubMed]  [DOI]
78.  Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, Spain S, Lubbe S, Walther A, Sullivan K. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623-630.  [PubMed]  [DOI]
79.  Pharoah PD, Oliveira C, Machado JC, Keller G, Vogelsang H, Laux H, Becker KF, Hahn H, Paproski SM, Brown LA. CDH1 c-160a promotor polymorphism is not associated with risk of stomach cancer. Int J Cancer. 2002;101:196-197.  [PubMed]  [DOI]
80.  Kuraoka K, Oue N, Yokozaki H, Kitadai Y, Ito R, Nakayama H, Yasui W. Correlation of a single nucleotide polymorphism in the E-cadherin gene promoter with tumorigenesis and progression of gastric carcinoma in Japan. Int J Oncol. 2003;23:421-427.  [PubMed]  [DOI]
81.  Lu Y, Xu YC, Shen J, Yu RB, Niu JY, Guo JT, Hu X, Shen HB. E-cadherin gene C-160A promoter polymorphism and risk of non-cardia gastric cancer in a Chinese population. World J Gastroenterol. 2005;11:56-60.  [PubMed]  [DOI]
82.  Medina-Franco H, Ramos-De la Medina A, Vizcaino G, Medina-Franco JL. Single nucleotide polymorphisms in the promoter region of the E-cadherin gene in gastric cancer: case-control study in a young Mexican population. Ann Surg Oncol. 2007;14:2246-2249.  [PubMed]  [DOI]
83.  Borges Bdo N, Santos Eda S, Bastos CE, Pinto LC, Anselmo NP, Quaresma JA, Calcagno DQ, Burbano RM, Harada ML. Promoter polymorphisms and methylation of E-cadherin (CDH1) and KIT in gastric cancer patients from northern Brazil. Anticancer Res. 2010;30:2225-2233.  [PubMed]  [DOI]
84.  Zhan Z, Wu J, Zhang JF, Yang YP, Tong S, Zhang CB, Li J, Yang XW, Dong W. CDH1 gene polymorphisms, plasma CDH1 levels and risk of gastric cancer in a Chinese population. Mol Biol Rep. 2012;39:8107-8113.  [PubMed]  [DOI]
85.  Wang GY, Lu CQ, Zhang RM, Hu XH, Luo ZW. The E-cadherin gene polymorphism 160C-& gt; A and cancer risk: A HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol. 2008;167:7-14.  [PubMed]  [DOI]
86.  Cui Y, Xue H, Lin B, Ni P, Fang JY. A meta-analysis of CDH1 C-160A genetic polymorphism and gastric cancer risk. DNA Cell Biol. 2011;30:937-945.  [PubMed]  [DOI]
87.  Zhang XF, Wang YM, Ge H, Cao YY, Chen ZF, Wen DG, Guo W, Wang N, Li Y, Zhang JH. Association of CDH1 single nucleotide polymorphisms with susceptibility to esophageal squamous cell carcinomas and gastric cardia carcinomas. Dis Esophagus. 2008;21:21-29.  [PubMed]  [DOI]
88.  Yamada H, Shinmura K, Ikeda S, Tao H, Otani T, Hanaoka T, Tsuneyoshi T, Tsugane S, Sugimura H. Association between CDH1 haplotypes and gastric cancer risk in a Japanese population. Scand J Gastroenterol. 2007;42:1479-1485.  [PubMed]  [DOI]
89.  Humar B, Graziano F, Cascinu S, Catalano V, Ruzzo AM, Magnani M, Toro T, Burchill T, Futschik ME, Merriman T. Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer. Oncogene. 2002;21:8192-8195.  [PubMed]  [DOI]
90.  Pan F, Tian J, Zhang Y, Pan YY. CDH1 -160C& gt; A gene polymorphism is an ethnicity-dependent risk factor for gastric cancer. Cytokine. 2012;59:20-21.  [PubMed]  [DOI]
91.  Uppal DS, Powell SM. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol Clin North Am. 2013;42:241-260.  [PubMed]  [DOI]
92.  Yang J, Song YC, Dang CX, Song TS, Liu ZG, Guo YM, Li ZF, Huang C. Serum peptidome profiling in patients with gastric cancer. Clin Exp Med. 2012;12:79-87.  [PubMed]  [DOI]
93.  Liu W, Liu B, Cai Q, Li J, Chen X, Zhu Z. Proteomic identification of serum biomarkers for gastric cancer using multi-dimensional liquid chromatography and 2D differential gel electrophoresis. Clin Chim Acta. 2012;413:1098-1106.  [PubMed]  [DOI]
94.  He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol. 2013;13:87.  [PubMed]  [DOI]
95.  Lee JC, Lee SY, Kim CY, Yang DH. Clinical utility of tumor marker cutoff ratio and a combination scoring system of preoperative carcinoembryonic antigen, carbohydrate antigen 19-9, carbohydrate antigen 72-4 levels in gastric cancer. J Korean Surg Soc. 2013;85:283-289.  [PubMed]  [DOI]
96.  Bagaria B, Sood S, Sharma R, Lalwani S. Comparative study of CEA and CA19-9 in esophageal, gastric and colon cancers individually and in combination (ROC curve analysis). Cancer Biol Med. 2013;10:148-157.  [PubMed]  [DOI]
97.  Huang L, Xu A, Li T, Han W, Wu S, Wang Y. Detection of perioperative cancer antigen 72-4 in gastric juice pre- and post-distal gastrectomy and its significances. Med Oncol. 2013;30:651.  [PubMed]  [DOI]
98.  Xiao Y, Zhang J, He X, Ji J, Wang G. Diagnostic values of carcinoembryonic antigen in predicting peritoneal recurrence after curative resection of gastric cancer: a meta-analysis. Ir J Med Sci. 2013;Epub ahead of print.  [PubMed]  [DOI]
99.  Takata A, Kurokawa Y, Fujiwara Y, Nakamura Y, Takahashi T, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Mori M. Prognostic value of CEA and CK20 mRNA in the peritoneal lavage fluid of patients undergoing curative surgery for gastric cancer. World J Surg. 2014;38:1107-1111.  [PubMed]  [DOI]
100.  Ucar E, Semerci E, Ustun H, Yetim T, Huzmeli C, Gullu M. Prognostic value of preoperative CEA, CA 19-9, CA 72-4, and AFP levels in gastric cancer. Adv Ther. 2008;25:1075-1084.  [PubMed]  [DOI]
101.  Deng K, Lin S, Zhou L, Geng Q, Li Y, Xu M, Na R. Three aromatic amino acids in gastric juice as potential biomarkers for gastric malignancies. Anal Chim Acta. 2011;694:100-107.  [PubMed]  [DOI]
102.  Deng K, Lin S, Zhou L, Li Y, Chen M, Wang Y, Li Y. High levels of aromatic amino acids in gastric juice during the early stages of gastric cancer progression. PLoS One. 2012;7:e49434.  [PubMed]  [DOI]
103.  Dias A, Garcia C, Majewski M, Wallner G, McCallum RW, Poplawski C, Sarosiek J. Gastric juice prostaglandins and peptide growth factors as potential markers of chronic atrophic gastritis, intestinal metaplasia and gastric cancer: their potential clinical implications based on this pilot study. Dig Dis Sci. 2011;56:3220-3225.  [PubMed]  [DOI]
104.  Kam SY, Hennessy T, Chua SC, Gan CS, Philp R, Hon KK, Lai L, Chan WH, Ong HS, Wong WK. Characterization of the human gastric fluid proteome reveals distinct pH-dependent protein profiles: implications for biomarker studies. J Proteome Res. 2011;10:4535-4546.  [PubMed]  [DOI]
105.  Ruan HL, Hong RT, Xie HJ, Hu NZ, Xu JM, Zhang W. Significance of elevated levels of collagen type IV and hyaluronic acid in gastric juice and serum in gastric cancer and precancerous lesion. Dig Dis Sci. 2011;56:2001-2008.  [PubMed]  [DOI]
106.  Wu W, Juan WC, Liang CR, Yeoh KG, So J, Chung MC. S100A9, GIF and AAT as potential combinatorial biomarkers in gastric cancer diagnosis and prognosis. Proteomics Clin Appl. 2012;6:152-162.  [PubMed]  [DOI]
107.  Wu W, Chung MC. The gastric fluid proteome as a potential source of gastric cancer biomarkers. J Proteomics. 2013;90:3-13.  [PubMed]  [DOI]
108.  Cheng Y, Zhang J, Li Y, Wang Y, Gong J. Proteome analysis of human gastric cardia adenocarcinoma by laser capture microdissection. BMC Cancer. 2007;7:191.  [PubMed]  [DOI]
109.  Kim HK, Reyzer ML, Choi IJ, Kim CG, Kim HS, Oshima A, Chertov O, Colantonio S, Fisher RJ, Allen JL. Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. J Proteome Res. 2010;9:4123-4130.  [PubMed]  [DOI]
110.  Lin LL, Huang HC, Juan HF. Discovery of biomarkers for gastric cancer: a proteomics approach. J Proteomics. 2012;75:3081-3097.  [PubMed]  [DOI]
111.  Sousa JF, Ham AJ, Whitwell C, Nam KT, Lee HJ, Yang HK, Kim WH, Zhang B, Li M, LaFleur B. Proteomic profiling of paraffin-embedded samples identifies metaplasia-specific and early-stage gastric cancer biomarkers. Am J Pathol. 2012;181:1560-1572.  [PubMed]  [DOI]
112.  Balluff B, Rauser S, Meding S, Elsner M, Schöne C, Feuchtinger A, Schuhmacher C, Novotny A, Jütting U, Maccarrone G. MALDI imaging identifies prognostic seven-protein signature of novel tissue markers in intestinal-type gastric cancer. Am J Pathol. 2011;179:2720-2729.  [PubMed]  [DOI]
113.  Mohri Y, Mohri T, Wei W, Qi YJ, Martin A, Miki C, Kusunoki M, Ward DG, Johnson PJ. Identification of macrophage migration inhibitory factor and human neutrophil peptides 1-3 as potential biomarkers for gastric cancer. Br J Cancer. 2009;101:295-302.  [PubMed]  [DOI]
114.  Uen YH, Lin KY, Sun DP, Liao CC, Hsieh MS, Huang YK, Chen YW, Huang PH, Chen WJ, Tai CC. Comparative proteomics, network analysis and post-translational modification identification reveal differential profiles of plasma Con A-bound glycoprotein biomarkers in gastric cancer. J Proteomics. 2013;83:197-213.  [PubMed]  [DOI]
115.  Bones J, Mittermayr S, O’Donoghue N, Guttman A, Rudd PM. Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem. 2010;82:10208-10215.  [PubMed]  [DOI]
116.  Bones J, Byrne JC, O’Donoghue N, McManus C, Scaife C, Boissin H, Nastase A, Rudd PM. Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms. J Proteome Res. 2011;10:1246-1265.  [PubMed]  [DOI]
117.  Klaamas K, Kodar K, Kurtenkov O. An increased level of the Concanavalin A-positive IgG in the serum of patients with gastric cancer as evaluated by a lectin enzyme-linked immunosorbent assay (LELISA). Neoplasma. 2008;55:143-150.  [PubMed]  [DOI]
118.  Xu Y, Zhang L, Hu G. Potential application of alternatively glycosylated serum MUC1 and MUC5AC in gastric cancer diagnosis. Biologicals. 2009;37:18-25.  [PubMed]  [DOI]
119.  Li K, Sun Z, Zheng J, Lu Y, Bian Y, Ye M, Wang X, Nie Y, Zou H, Fan D. In-depth research of multidrug resistance related cell surface glycoproteome in gastric cancer. J Proteomics. 2013;82:130-140.  [PubMed]  [DOI]
120.  Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857-866.  [PubMed]  [DOI]
121.  Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259-269.  [PubMed]  [DOI]
122.  Yin Y, Li J, Chen S, Zhou T, Si J. MicroRNAs as Diagnostic Biomarkers in Gastric Cancer. Int J Mol Sci. 2012;13:12544-12555.  [PubMed]  [DOI]
123.  Chen Z, Saad R, Jia P, Peng D, Zhu S, Washington MK, Zhao Z, Xu Z, El-Rifai W. Gastric adenocarcinoma has a unique microRNA signature not present in esophageal adenocarcinoma. Cancer. 2013;119:1985-1993.  [PubMed]  [DOI]
124.  Brenner B, Hoshen MB, Purim O, David MB, Ashkenazi K, Marshak G, Kundel Y, Brenner R, Morgenstern S, Halpern M. MicroRNAs as a potential prognostic factor in gastric cancer. World J Gastroenterol. 2011;17:3976-3985.  [PubMed]  [DOI]
125.  Kim BH, Hong SW, Kim A, Choi SH, Yoon SO. Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol. 2013;107:505-510.  [PubMed]  [DOI]
126.  Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W, Ma Y, Xiao H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196-203.  [PubMed]  [DOI]
127.  Xu XD, He XJ, Tao HQ, Zhang W, Wang YY, Ye ZY, Zhao ZS. Abnormal expression of miR-301a in gastric cancer associated with progression and poor prognosis. J Surg Oncol. 2013;108:197-202.  [PubMed]  [DOI]
128.  Gong J, Li J, Wang Y, Liu C, Jia H, Jiang C, Wang Y, Luo M, Zhao H, Dong L. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis. 2014;35:497-506.  [PubMed]  [DOI]
129.  Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17:4277-4284.  [PubMed]  [DOI]
130.  Wang YY, Ye ZY, Zhao ZS, Li L, Wang YX, Tao HQ, Wang HJ, He XJ. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum Pathol. 2013;44:1278-1285.  [PubMed]  [DOI]
131.  Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep. 2012;27:1759-1764.  [PubMed]  [DOI]
132.  Zhang X, Yan Z, Zhang J, Gong L, Li W, Cui J, Liu Y, Gao Z, Li J, Shen L. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol. 2011;22:2257-2266.  [PubMed]  [DOI]
133.  Liu K, Qian T, Tang L, Wang J, Yang H, Ren J. Decreased expression of microRNA let-7i and its association with chemotherapeutic response in human gastric cancer. World J Surg Oncol. 2012;10:225.  [PubMed]  [DOI]
134.  Liu K, Li G, Fan C, Diao Y, Wu B, Li J. Increased Expression of MicroRNA-221 in gastric cancer and its clinical significance. J Int Med Res. 2012;40:467-474.  [PubMed]  [DOI]
135.  Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol. 2011;5:99.  [PubMed]  [DOI]
136.  Li CL, Nie H, Wang M, Su LP, Li JF, Yu YY, Yan M, Qu QL, Zhu ZG, Liu BY. microRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep. 2012;27:1960-1966.  [PubMed]  [DOI]
137.  Yu X, Luo L, Wu Y, Yu X, Liu Y, Yu X, Zhao X, Zhang X, Cui L, Ye G. Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med Oncol. 2013;30:365.  [PubMed]  [DOI]
138.  Jiang J, Zheng X, Xu X, Zhou Q, Yan H, Zhang X, Lu B, Wu C, Ju J. Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One. 2011;6:e23271.  [PubMed]  [DOI]
139.  Li X, Zhang Y, Zhang Y, Ding J, Wu K, Fan D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut. 2010;59:579-585.  [PubMed]  [DOI]
140.  Valladares-Ayerbes M, Reboredo M, Medina-Villaamil V, Iglesias-Díaz P, Lorenzo-Patiño MJ, Haz M, Santamarina I, Blanco M, Fernández-Tajes J, Quindós M. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J Transl Med. 2012;10:186.  [PubMed]  [DOI]
141.  Zhang X, Cui L, Ye G, Zheng T, Song H, Xia T, Yu X, Xiao B, Le Y, Guo J. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. 2012;33:2349-2355.  [PubMed]  [DOI]
142.  Cui L, Zhang X, Ye G, Zheng T, Song H, Deng H, Xiao B, Xia T, Yu X, Le Y. Gastric juice MicroRNAs as potential biomarkers for the screening of gastric cancer. Cancer. 2013;119:1618-1626.  [PubMed]  [DOI]
143.  Yan Z, Xiong Y, Xu W, Gao J, Cheng Y, Wang Z, Chen F, Zheng G. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS One. 2012;7:e40037.  [PubMed]  [DOI]
144.  Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, Yuasa Y, Kang D, Kim YS, You WC. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS One. 2012;7:e33608.  [PubMed]  [DOI]
145.  Li C, Li JF, Cai Q, Qiu QQ, Yan M, Liu BY, Zhu ZG. miRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Ann Surg Oncol. 2013;20 Suppl 3:S397-S405.  [PubMed]  [DOI]
146.  Wang F, Li T, Zhang B, Li H, Wu Q, Yang L, Nie Y, Wu K, Shi Y, Fan D. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem Biophys Res Commun. 2013;434:688-694.  [PubMed]  [DOI]
147.  Zhang Y, Lu Q, Cai X. MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 2013;587:3069-3075.  [PubMed]  [DOI]
148.  Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr. 2012;3:21-38.  [PubMed]  [DOI]
149.  Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012;94:2202-2211.  [PubMed]  [DOI]
150.  Lewin J, Schmitt AO, Adorján P, Hildmann T, Piepenbrock C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics. 2004;20:3005-3012.  [PubMed]  [DOI]
151.  Ushijima T, Okochi-Takada E. Aberrant methylations in cancer cells: where do they come from? Cancer Sci. 2005;96:206-211.  [PubMed]  [DOI]
152.  Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol. 2007;211:287-295.  [PubMed]  [DOI]
153.  Shin SH, Park SY, Ko JS, Kim N, Kang GH. Aberrant CpG island hypermethylation in pediatric gastric mucosa in association with Helicobacter pylori infection. Arch Pathol Lab Med. 2011;135:759-765.  [PubMed]  [DOI]
154.  Du W, Wang S, Zhou Q, Li X, Chu J, Chang Z, Tao Q, Ng EK, Fang J, Sung JJ. ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer. Oncogene. 2013;32:3319-3328.  [PubMed]  [DOI]
155.  Park SY, Kook MC, Kim YW, Cho NY, Jung N, Kwon HJ, Kim TY, Kang GH. CpG island hypermethylator phenotype in gastric carcinoma and its clinicopathological features. Virchows Arch. 2010;457:415-422.  [PubMed]  [DOI]
156.  Zou XP, Zhang B, Zhang XQ, Chen M, Cao J, Liu WJ. Promoter hypermethylation of multiple genes in early gastric adenocarcinoma and precancerous lesions. Hum Pathol. 2009;40:1534-1542.  [PubMed]  [DOI]
157.  do Nascimento Borges B, Burbano RM, Harada ML. Analysis of the methylation patterns of the p16 INK4A, p15 INK4B, and APC genes in gastric adenocarcinoma patients from a Brazilian population. Tumour Biol. 2013;34:2127-2133.  [PubMed]  [DOI]
158.  Mitsuno M, Kitajima Y, Ide T, Ohtaka K, Tanaka M, Satoh S, Miyazaki K. Aberrant methylation of p16 predicts candidates for 5-fluorouracil-based adjuvant therapy in gastric cancer patients. J Gastroenterol. 2007;42:866-873.  [PubMed]  [DOI]
159.  Shi J, Zhang G, Yao D, Liu W, Wang N, Ji M, He N, Shi B, Hou P. Prognostic significance of aberrant gene methylation in gastric cancer. Am J Cancer Res. 2012;2:116-129.  [PubMed]  [DOI]
160.  Hiraki M, Kitajima Y, Sato S, Mitsuno M, Koga Y, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K. Aberrant gene methylation in the lymph nodes provides a possible marker for diagnosing micrometastasis in gastric cancer. Ann Surg Oncol. 2010;17:1177-1186.  [PubMed]  [DOI]
161.  Guo W, Dong Z, Guo Y, Lin X, Chen Z, Kuang G, Yang Z. Aberrant methylation and loss expression of RKIP is associated with tumor progression and poor prognosis in gastric cardia adenocarcinoma. Clin Exp Metastasis. 2013;30:265-275.  [PubMed]  [DOI]
162.  Ling ZQ, Lv P, Lu XX, Yu JL, Han J, Ying LS, Zhu X, Zhu WY, Fang XH, Wang S. Circulating Methylated XAF1 DNA Indicates Poor Prognosis for Gastric Cancer. PLoS One. 2013;8:e67195.  [PubMed]  [DOI]
163.  Xu L, Li X, Chu ES, Zhao G, Go MY, Tao Q, Jin H, Zeng Z, Sung JJ, Yu J. Epigenetic inactivation of BCL6B, a novel functional tumour suppressor for gastric cancer, is associated with poor survival. Gut. 2012;61:977-985.  [PubMed]  [DOI]
164.  Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, Kao HW, Fang WL, Huang KH, Chan WC. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 2011;129:2600-2610.  [PubMed]  [DOI]
165.  Wang L, Chen S, Xue M, Zhong J, Wang X, Gan L, Lam EK, Liu X, Zhang J, Zhou T. Homeobox D10 gene, a candidate tumor suppressor, is downregulated through promoter hypermethylation and associated with gastric carcinogenesis. Mol Med. 2012;18:389-400.  [PubMed]  [DOI]
166.  Sugita H, Iida S, Inokuchi M, Kato K, Ishiguro M, Ishikawa T, Takagi Y, Enjoji M, Yamada H, Uetake H. Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer. Oncol Rep. 2011;25:513-518.  [PubMed]  [DOI]
167.  Hiraki M, Kitajima Y, Sato S, Nakamura J, Hashiguchi K, Noshiro H, Miyazaki K. Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer. World J Gastroenterol. 2010;16:330-338.  [PubMed]  [DOI]
168.  Ivanova T, Zouridis H, Wu Y, Cheng LL, Tan IB, Gopalakrishnan V, Ooi CH, Lee J, Qin L, Wu J. Integrated epigenomics identifies BMP4 as a modulator of cisplatin sensitivity in gastric cancer. Gut. 2013;62:22-33.  [PubMed]  [DOI]
169.  Stănculescu D, Mărgăritescu C, Stepan A, Mitruţ AO. E-cadherin in gastric carcinomas related to histological prognostic parameters. Rom J Morphol Embryol. 2011;52:1107-1112.  [PubMed]  [DOI]
170.  Yu QM, Wang XB, Luo J, Wang S, Fang XH, Yu JL, Ling ZQ. CDH1 methylation in preoperative peritoneal washes is an independent prognostic factor for gastric cancer. J Surg Oncol. 2012;106:765-771.  [PubMed]  [DOI]
171.  Leung WK, To KF, Chu ES, Chan MW, Bai AH, Ng EK, Chan FK, Sung JJ. Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer. Br J Cancer. 2005;92:2190-2194.  [PubMed]  [DOI]
172.  Cheng YY, Yu J, Wong YP, Man EP, To KF, Jin VX, Li J, Tao Q, Sung JJ, Chan FK. Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer. Br J Cancer. 2007;97:895-901.  [PubMed]  [DOI]
173.  Ng EK, Leung CP, Shin VY, Wong CL, Ma ES, Jin HC, Chu KM, Kwong A. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. PLoS One. 2011;6:e22233.  [PubMed]  [DOI]
174.  Watanabe Y, Kim HS, Castoro RJ, Chung W, Estecio MR, Kondo K, Guo Y, Ahmed SS, Toyota M, Itoh F. Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology. 2009;136:2149-2158.  [PubMed]  [DOI]
175.  Sudo T, Mimori K, Nishida N, Kogo R, Iwaya T, Tanaka F, Shibata K, Fujita H, Shirouzu K, Mori M. Histone deacetylase 1 expression in gastric cancer. Oncol Rep. 2011;26:777-782.  [PubMed]  [DOI]
176.  Weichert W, Röske A, Gekeler V, Beckers T, Ebert MP, Pross M, Dietel M, Denkert C, Röcken C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008;9:139-148.  [PubMed]  [DOI]