Esophageal Cancer
Copyright ©The Author(s) 2002. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Feb 15, 2002; 8(1): 40-43
Published online Feb 15, 2002. doi: 10.3748/wjg.v8.i1.40
Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite
Zhong-Ying Shen, Wen-Ying Shen, Ming-Hua Chen, Jian Shen, Wei-Jie Cai, Zeng Yi
Zhong-Ying Shen, Ming-Hua Chen, Jian Shen, Wei-Jie Cai, Department of Pathology
Wen-Ying Shen, Department of Chemistry Medical College of Shantou University, Shantou, 515031, Guangdong, China
Zeng Yi, Institute of Virology, Chinese Academy of Preventive Medicine. Beijing, 100052, China
Author contributions: All authors contributed equally to the work.
Supported by the National Natural Science Foundation of China. No. 39830380
Correspondence to: Dr. Zhong-Ying Shen, Department of Pathology, Medical College of Shantou University, 22 Xinling Road. Shantou 515031, Guandong Province, China. Zhongyingshen@yahoo.com
Telephone: +86-754-8538621 Fax: +86-754-8537516
Received: August 9, 2001
Revised: October 19, 2001
Accepted: November 12, 2001
Published online: February 15, 2002
Abstract

AIM: To Quantitatively analyze the nitri oxide (NO) and Ca2+ in apoptosis of esophageal carcinoma cells induced by arsenic trioxide (As2O3).

METHODS: The cell line SHEEC1, a malignant esophageal epithelial cell induced by HPV in synergy with TPA in our laboratory, was cultured in a serum-free medium and treated with As2O3. Before and after administration of As2O3, NO production in cultured medium was detected quantitatively using the Griess Colorimetric method. Intracellular Ca2+ was labeled by using the fluorescent dye Fluo3-AM and detected under confocal laser scanning microscope (CLSM), which was able to acquire data in real-time enabling Ca2+ dynamics of individual cells in vitro. The apoptotic cells were examined under electron microscopy.

RESULTS: Intracellular concentration of Ca2+ increased from 1.00 units to 1.09-1.38 units of fluorescent intensity at As2O3 treatment and NO products subsequently released from As2O3-treated cells increased from 0.98-1.00 × 10-2μmol·L-1 up to 1.48-1.52 × 10-2μmol·L-1 and maintained in a high level continuously. Finally apoptosis of cells occurred, chromatin being agglutinated, cells shrunk, nuclei became round and mitochondria swelled.

CONCLUSION: Ca2+ and NO increased with cell damage and apoptosis in cells treated by As2O3. The Ca2+ is an initial messenger to the apoptotic pathway. To investigate Ca2+ and NO will be a new direction for studying the apoptotic signaling messenger of the esophageal carcinoma cells induced by As2O3.

Keywords: $[Keywords]