1
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
2
|
Wang Y, Wang DY, Bu KN, Gao JD, Zhang BL. Prognosis prediction and risk stratification of breast cancer patients based on a mitochondria-related gene signature. Sci Rep 2024; 14:2859. [PMID: 38310106 PMCID: PMC10838276 DOI: 10.1038/s41598-024-52981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
As the malignancy with the highest global incidence, breast cancer represents a significant threat to women's health. Recent advances have shed light on the importance of mitochondrial function in cancer, particularly in metabolic reprogramming within tumors. Recognizing this, we developed a novel risk signature based on mitochondrial-related genes to improve prognosis prediction and risk stratification in breast cancer patients. In this study, transcriptome data and clinical features of breast cancer samples were extracted from two sources: the TCGA, serving as the training set, and the METABRIC, used as the independent validation set. We developed the signature using LASSO-Cox regression and assessed its prognostic efficacy via ROC curves. Furthermore, the signature was integrated with clinical features to create a Nomogram model, whose accuracy was validated through clinical calibration curves and decision curve analysis. To further elucidate prognostic variations between high and low-risk groups, we conducted functional enrichment and immune infiltration analyses. Additionally, the study encompassed a comparison of mutation landscapes and drug sensitivity, providing a comprehensive understanding of the differing characteristics in these groups. Conclusively, we established a risk signature comprising 8 mitochondrial-related genes-ACSL1, ALDH2, MTHFD2, MRPL13, TP53AIP1, SLC1A1, ME3, and BCL2A1. This signature was identified as an independent risk predictor for breast cancer patient survival, exhibiting a significant high hazard ratio (HR = 3.028, 95%CI 2.038-4.499, P < 0.001). Patients in the low-risk group showed a more favorable prognosis, with enhanced immune infiltration, distinct mutation landscapes, and greater sensitivity to anti-tumor drugs. In contrast, the high-risk group exhibited an adverse trend in these aspects. This risk signature represents a novel and effective prognostic indicator, suggesting valuable insights for patient stratification in breast cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ding-Yuan Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ke-Na Bu
- Xingyuan Hospital of Yulin City, Yulin City, 719051, Shanxi Province, China
| | - Ji-Dong Gao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union College, Shenzhen, 518116, China.
| | - Bai-Lin Zhang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med 2023; 21:827. [PMID: 37978384 PMCID: PMC10657029 DOI: 10.1186/s12967-023-04714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell population in breast tumors. A functionally diverse population of CAFs increases the dynamic complexity of the tumor microenvironment (TME). The intertwined network of the TME facilitates the interaction between activated CAFs and breast cancer cells, which can lead to the proliferation and invasion of breast cells. Considering the special transmission function of CAFs, the aim of this review is to summarize and highlight the crosstalk between CAFs and breast cancer cells in the TME as well as the relationship between CAFs and extracellular matrix (ECM), soluble cytokines, and other stromal cells in the metastatic state. The crosstalk between cancer-associated fibroblasts and tumor microenvironment also provides a plastic therapeutic target for breast cancer metastasis. In the course of the study, the inhibitory effects of different natural compounds on targeting CAFs and the advantages of different drug combinations were summarized. CAFs are also widely used in the diagnosis and treatment of breast cancer. The cumulative research on this phenomenon supports the establishment of a targeted immune microenvironment as a possible breakthrough in the prevention of invasive metastasis of breast cancer.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jia Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China
| | - Changgang Sun
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, 261000, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
4
|
Expression and Signaling Pathways of Nerve Growth Factor (NGF) and Pro-NGF in Breast Cancer: A Systematic Review. Curr Oncol 2022; 29:8103-8120. [PMID: 36354700 PMCID: PMC9689427 DOI: 10.3390/curroncol29110640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Breast cancer represents the most common type of cancer and is the leading cause of death due to cancer among women. Thus, the prevention and early diagnosis of breast cancer is of primary urgency, as well as the development of new treatments able to improve its prognosis. Nerve Growth Factor (NGF) is a neurotrophic factor involved in the regulation of neuronal functions through the binding of the Tropomyosin receptor kinase A (TrkA) and the Nerve Growth Factor receptor or Pan-Neurotrophin Receptor 75 (NGFR/p75NTR). In addition, its precursor (pro-NGF) can extert biological activity by forming a trimeric complex with NGFR/p75NTR and sortilin, or by binding to TrkA receptors with low affinity. Several examples of in vitro and in vivo evidence show that NGF is both synthesized and released by breast cancer cells, and has mitogen, antiapoptotic and angiogenic effects on these cells through the activation of different signaling cascades that involve TrkA and NGFR/p75NTR receptors. Conversely, pro-NGF signaling has been related to breast cancer invasion and metastasis. Other studies suggested that NGF and its receptors could represent a good diagnostic and prognostic tool, as well as promising therapeutic targets for breast cancer. In this paper, we comprehensively summarize and systematically review the current experimental evidence on this topic. INPLASY ID: INPLASY2022100017.
Collapse
|
5
|
Di Donato M, Galasso G, Giovannelli P, Sinisi AA, Migliaccio A, Castoria G. Targeting the Nerve Growth Factor Signaling Impairs the Proliferative and Migratory Phenotype of Triple-Negative Breast Cancer Cells. Front Cell Dev Biol 2021; 9:676568. [PMID: 34268306 PMCID: PMC8275826 DOI: 10.3389/fcell.2021.676568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is a heterogeneous disease that still lacks specific therapeutic approaches. The identification of new biomarkers, predictive of the disease's aggressiveness and pharmacological response, is a challenge for a more tailored approach in the clinical management of patients. Nerve growth factor, initially identified as a key factor for neuronal survival and differentiation, turned out to be a multifaceted molecule with pleiotropic effects in quite divergent cell types, including cancer cells. Many solid tumors exhibit derangements of the nerve growth factor and its receptors, including the tropomyosin receptor kinase A. This receptor is expressed in triple-negative breast cancer, although its role in the pathogenesis and aggressiveness of this disease is still under investigation. We now report that triple-negative breast cancer-derived MDA-MB-231 and MDA-MB-453 cells express appreciable levels of tropomyosin receptor kinase A and release a biologically active nerve growth factor. Activation of tropomyosin receptor kinase by nerve growth factor treatment positively affects the migration, invasion, and proliferation of triple-negative breast cancer cells. An increase in the size of triple-negative breast cancer cell spheroids is also detected. This latter effect might occur through the nerve growth factor-induced release of matrix metalloproteinase 9, which contributes to the reorganization of the extracellular matrix and cell invasiveness. The tropomyosin receptor kinase A inhibitor GW441756 reverses all these responses. Co-immunoprecipitation experiments in both cell lines show that nerve growth factor triggers the assembly of the TrkA/β1-integrin/FAK/Src complex, thereby activating several downstream effectors. GW441756 prevents the complex assembly induced by nerve growth factor as well as the activation of its dependent signaling. Pharmacological inhibition of the tyrosine kinases Src and FAK (focal adhesion kinase), together with the silencing of β1-integrin, shows that the tyrosine kinases impinge on both proliferation and motility, while β1-integrin is needed for motility induced by nerve growth factor in triple-negative breast cancer cells. The present data support the key role of the nerve growth factor/tropomyosin receptor kinase A pathway in triple-negative breast cancer and offer new hints in the diagnostic and therapeutic management of patients.
Collapse
Affiliation(s)
- Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio A Sinisi
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Rogez B, Pascal Q, Bobillier A, Machuron F, Toillon RA, Tierny D, Chopin V, Le Bourhis X. Expression and Prognostic Significance of Neurotrophins and Their Receptors in Canine Mammary Tumors. Vet Pathol 2020; 57:507-519. [PMID: 32351171 DOI: 10.1177/0300985820921813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating data highlight the role of neurotrophins and their receptors in human breast cancer. This family includes nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both synthetized as proneurotrophins (proNGF and proBDNF). (pro)NGF and (pro)BDNF initiate their biological effects by binding to both their specific receptors TrkA and TrkB, respectively, and the common receptor p75NTR. Currently, no data are available about their expression and potential role in canine mammary tumors. The aim of this study was to investigate expression of proNGF and BDNF as well as their receptors TrkA, TrkB, and p75NTR in canine mammary carcinomas, and to correlate them with clinicopathological parameters (grade, histological type, lymph node status, recurrence, and distant metastasis) and survival. Immunohistochemistry was performed on serial sections of 96 canine mammary carcinomas with antibodies against proNGF, BDNF, TrkA, TrkB, and p75NTR. Of the 96 carcinomas, proNGF expression was detected in 71 (74%), BDNF in 79 (82%), TrkA in 94 (98%), TrkB in 35 (37%), and p75NTR in 44 (46%). No association was observed between proNGF, BDNF, or TrkA expression and either clinicopathological parameters or survival. TrkB and p75NTR expression were associated with favorable clinicopathological parameters as well as better overall survival.
Collapse
Affiliation(s)
- Bernadette Rogez
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,OCR (Oncovet Clinical Research), Parc Eurasanté, Loos, France
| | - Quentin Pascal
- OCR (Oncovet Clinical Research), Parc Eurasanté, Loos, France
| | | | | | - Robert-Alain Toillon
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France
| | | | - Valérie Chopin
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,University of Picardie Jules Verne, Amiens, France.,Contributed equally to this work
| | - Xuefen Le Bourhis
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,Contributed equally to this work
| |
Collapse
|
7
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
8
|
Meco D, Di Francesco AM, Melotti L, Ruggiero A, Riccardi R. Ectopic nerve growth factor prevents proliferation in glioma cells by senescence induction. J Cell Physiol 2019; 234:6820-6830. [PMID: 30417351 DOI: 10.1002/jcp.27430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The neurotrophin nerve growth factor (NGF) affects survival, regulation and differentiation of both central and peripheral nervous system neurons. NGF exerts its effects primarily through tropomyosin receptor kinase A (TrkA), inducing a cascade of tyrosine kinase-initiated responses. In spite of its importance, the general behavior of NGF looks contradictory: its effects can be both stimulatory and inhibitory. The present study aims to explore the molecular mechanisms induced by NGF in glioma cancer cells. METHODS The effects of NGF were investigated in high grade glioma and low grade pediatric glioma (PLGG) cell lines through comparative studies. In particular, we investigated TrkA-mediated cellular pathways, molecular signaling, proliferation, cell cycle and cellular senescence. RESULTS We found that exposure of PLGG cells to NGF produced stable growth arrest with the features of a senescence phenotype but without the expression of anti-poly(ADP-ribose) polymerase cleavage, a marker of apoptosis. Moreover, NGF treatment promoted the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling. In addition, K252a, a TrkA inhibitor, significantly reduced the phosphorylation of the aforementioned signaling pathways, suggesting that NGF-activated ERK1/2 and AKT signaling take place downstream of TrkA-neurotrophin interaction. CONCLUSIONS These findings provide the first evidence that NGF can induce senescence of PLGG cells in a receptor-mediated fashion, thus supporting the hypothesis that in the clinical setting NGF might be beneficial to pediatric glioma patients.
Collapse
Affiliation(s)
- Daniela Meco
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | | | | | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Riccardi
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| |
Collapse
|
9
|
Miladinovic T, Ungard RG, Linher-Melville K, Popovic S, Singh G. Functional effects of TrkA inhibition on system x C--mediated glutamate release and cancer-induced bone pain. Mol Pain 2018; 14:1744806918776467. [PMID: 29761734 PMCID: PMC5956640 DOI: 10.1177/1744806918776467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells release the signalling molecule glutamate via the system xC− antiporter, which is upregulated to exchange extracellular cystine for intracellular glutamate to protect against oxidative stress. Here, we demonstrate that this antiporter is functionally influenced by the actions of the neurotrophin nerve growth factor on its cognate receptor tyrosine kinase, TrkA, and that inhibiting this complex may reduce cancer-induced bone pain via its downstream actions on xCT, the functional subunit of system xC−. We have characterized the effects of the selective TrkA inhibitor AG879 on system xC− activity in murine 4T1 and human MDA-MB-231 mammary carcinoma cells, as well as its effects on nociception in our validated immunocompetent mouse model of cancer-induced bone pain, in which BALB/c mice are intrafemorally inoculated with 4T1 murine carcinoma cells. AG879 decreased functional system xC− activity, as measured by cystine uptake and glutamate release, and inhibited nociceptive and physiologically relevant responses in tumour-bearing animals. Cumulatively, these data suggest that the activation of TrkA by nerve growth factor may have functional implications on system xC−-mediated cancer pain. System xC−-mediated TrkA activation therefore presents a promising target for therapeutic intervention in cancer pain treatment.
Collapse
Affiliation(s)
- Tanya Miladinovic
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert G Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Snezana Popovic
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Park HJ, Kim S, Li W. Model-based analysis of competing-endogenous pathways (MACPath) in human cancers. PLoS Comput Biol 2018; 14:e1006074. [PMID: 29565967 PMCID: PMC5882149 DOI: 10.1371/journal.pcbi.1006074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/03/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023] Open
Abstract
Competing endogenous RNA (ceRNA) has emerged as an important post-transcriptional mechanism that simultaneously alters expressions of thousands genes in cancers. However, only a few ceRNA genes have been studied for their functions to date. To understand the major biological functions of thousands ceRNA genes as a whole, we designed Model-based Analysis of Competing-endogenous Pathways (MACPath) to infer pathways co-regulated through ceRNA mechanism (cePathways). Our analysis on breast tumors suggested that NGF (nerve growth factor)-induced tumor cell proliferation might be associated with tumor-related growth factor pathways through ceRNA. MACPath also identified indirect cePathways, whose ceRNA relationship is mediated by mediating ceRNAs. Finally, MACPath identified mediating ceRNAs that connect the indirect cePathways based on efficient integer linear programming technique. Mediating ceRNAs are unexpectedly enriched in tumor suppressor genes, whose down-regulation is suspected to disrupt indirect cePathways, such as between DNA replication and WNT signaling pathways. Altogether, MACPath is the first computational method to comprehensively understand functions of thousands ceRNA genes, both direct and indirect, at the pathway level.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (HJP); (WL)
| | - Soyeon Kim
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Wei Li
- Division of Biostatistics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (HJP); (WL)
| |
Collapse
|
11
|
Tagliabue E, Ghirelli C, Lombardi L, Castiglioni F, Asnaghi L, Longhi C, Borrello MG, Aiello P, Ménard S. Production of a Monoclonal Antibody Directed against the High-Affinity Nerve Growth Factor Receptor. Int J Biol Markers 2018; 14:68-72. [PMID: 10399625 DOI: 10.1177/172460089901400203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The high-affinity nerve growth factor receptor corresponds to the tyrosine protein kinase encoded by the proto-oncogene trkA. Different findings suggest that nerve growth factor (NGF) can be operative in the growth modulation of tumor cell lines possessing high-affinity binding sites for this molecule. Using as immunizing material the SKNBE neuroblastoma cell line transfected with proto-trkA we produced a monoclonal antibody (MAb) able to recognize the high-affinity nerve growth factor receptor. The selected MAb, designated MGR12, is directed against an epitope present on the extracellular domain of the receptor since it showed reactivity on living trkA-expressing cells and was able to immunoprecipitate the proto-trkA molecule. The MGR12 MAb is directed against a non-functional epitope since it neither inhibited NGF binding nor induced receptor internalization. This new reagent appears to be an appropriate tool for analyzing the expression of high-affinity nerve growth factor receptor in tumors of different origin and for elucidating its involvement in tumor progression.
Collapse
Affiliation(s)
- E Tagliabue
- Department of Experimental Oncology, Istituto Nazionale Tumori, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Noh SJ, Kim KM, Jang KY. Individual and co-expression patterns of nerve growth factor and heme oxygenase-1 predict shorter survival of gastric carcinoma patients. Diagn Pathol 2017; 12:48. [PMID: 28679437 PMCID: PMC5498870 DOI: 10.1186/s13000-017-0644-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/30/2017] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Nerve growth factor (NGF) is a neurotrophic factor which regulates cell development and proliferation. Recently, it has been suggested that NGF induces heme oxygenase-1 (HO1) expression, and that both NGF and HO1 are involved in the progression of malignant human tumors. However, exact roles of NGF and HO1 in tumorigenesis remain controversial. Therefore, we investigated the expression and correlation of NGF and HO1 in human gastric carcinoma tissues. METHODS We examined immunohistochemical expression of NGF and HO1 in 167 gastric carcinomas and compared with various prognostic clinicopathological factors. RESULTS The expression of NGF and HO1 was positive in 40% (67/167) and 51% (85/167) of cases, respectively, and their expression was significantly correlated with each other (p < 0.001). Individual expression patterns of NGF and HO1, and co-expression pattern of these two molecules were significantly associated with shorter survival by univariate analysis. HO1 expression (overall survival; p < 0.001, relapse-free survival; p = 0.002) and co-expression pattern of NGF and HO1 (overall survival; p = 0.002, relapse-free survival; p = 0.003) were independent poor prognostic indicators of gastric carcinoma patients by multivariate analysis. CONCLUSIONS These results demonstrate that the individual and co-expression patterns of NGF and HO1 might be used as prognostic indicators for gastric carcinoma patients.
Collapse
Affiliation(s)
- Sang Jae Noh
- Department of Forensic Medicine, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, 20, Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, 20, Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, 20, Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk, 54907, Republic of Korea.
| |
Collapse
|
13
|
Shi W, George SK, George B, Curry CV, Murzabdillaeva A, Alkan S, Amin HM. TrkA is a binding partner of NPM-ALK that promotes the survival of ALK + T-cell lymphoma. Mol Oncol 2017; 11:1189-1207. [PMID: 28557340 PMCID: PMC5579389 DOI: 10.1002/1878-0261.12088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 11/25/2022] Open
Abstract
Nucleophosmin‐anaplastic lymphoma kinase‐expressing (NPM‐ALK+) T‐cell lymphoma is an aggressive neoplasm that is more commonly seen in children and young adults. The pathogenesis of NPM‐ALK+ T‐cell lymphoma is not completely understood. Wild‐type ALK is a receptor tyrosine kinase that is physiologically expressed in neural tissues during early stages of human development, which suggests that ALK may interact with neurotrophic factors. The aberrant expression of NPM‐ALK results from a translocation between the ALK gene on chromosome 2p23 and the NPM gene on chromosome 5q35. The nerve growth factor (NGF) is the first neurotrophic factor attributed to non‐neural functions including cancer cell survival, proliferation, and metastasis. These functions are primarily mediated through the tropomyosin receptor kinase A (TrkA). The expression and role of NGF/TrkA in NPM‐ALK+ T‐cell lymphoma are not known. In this study, we tested the hypothesis that TrkA signaling is upregulated and sustains the survival of this lymphoma. Our data illustrate that TrkA and NGF are expressed in five NPM‐ALK+ T‐cell lymphoma cell lines and TrkA is expressed in 11 of 13 primary lymphoma tumors from patients. In addition, we found evidence to support that NPM‐ALK and TrkA functionally interact. A selective TrkA inhibitor induced apoptosis and decreased cell viability, proliferation, and colony formation of NPM‐ALK+ T‐cell lymphoma cell lines. These effects were associated with downregulation of cell survival regulatory proteins. Similar results were also observed using specific knockdown of TrkA in NPM‐ALK+ T‐cell lymphoma cells by siRNA. Importantly, the inhibition of TrkA signaling was associated with antitumor effects in vivo, because tumor xenografts in mice regressed and the mice exhibited improved survival. In conclusion, TrkA plays an important role in the pathogenesis of NPM‐ALK+ T‐cell lymphoma, and therefore, targeting TrkA signaling may represent a novel approach to eradicate this aggressive neoplasm.
Collapse
Affiliation(s)
- Wenyu Shi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Hematology, Affiliated Hospital of the University of Nantong, Jiangsu, China
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bhawana George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Albina Murzabdillaeva
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
14
|
Albumin hybrid nanoparticles loaded with tyrosine kinase A inhibitor GNF-5837 for targeted inhibition of breast cancer cell growth and invasion. Int J Pharm 2016; 515:527-534. [DOI: 10.1016/j.ijpharm.2016.10.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/17/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
|
15
|
Chakravarthy R, Mnich K, Gorman AM. Nerve growth factor (NGF)-mediated regulation of p75(NTR) expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochem Biophys Res Commun 2016; 478:1541-7. [PMID: 27577679 DOI: 10.1016/j.bbrc.2016.08.149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023]
Abstract
Triple negative breast cancer [TNBC] cells are reported to secrete the neurotrophin nerve growth factor [NGF] and express its receptors, p75 neurotrophin receptor [p75(NTR)] and TrkA, leading to NGF-activated pro-survival autocrine signaling. This provides a rationale for NGF as a potential therapeutic target for TNBC. Here we show that exposure of TNBC cells to NGF leads to increased levels of p75(NTR), which was diminished by NGF-neutralizing antibody or NGF inhibitors [Ro 08-2750 and Y1086]. NGF-mediated increase in p75(NTR) levels were partly due to increased transcription and partly due to inhibition of proteolytic processing of p75(NTR). In contrast, proNGF caused a decrease in p75(NTR) levels. Functionally, NGF-induced increase in p75(NTR) caused a decrease in the sensitivity of TNBC cells to apoptosis induction. In contrast, knock-down of p75(NTR) using shRNA or small molecule inhibition of NGF-p75(NTR) interaction [using Ro 08-2750] sensitized TNBC cells to drug-induced apoptosis. In patient samples, the expression of NGF and NGFR [the p75(NTR) gene] mRNA are positively correlated in several subtypes of breast cancer, including basal-like breast cancer. Together these data suggest a positive feedback loop through which NGF-mediated upregulation of p75(NTR) can contribute to the chemo-resistance of TNBC cells.
Collapse
|
16
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
17
|
Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, Keely P. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res 2016; 18:35. [PMID: 27000374 PMCID: PMC4802888 DOI: 10.1186/s13058-016-0695-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Background High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1tm1jae, there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2). Methods To understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques. Results PyMT/Col1a1tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals. Conclusion These findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0695-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karla Esbona
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.,Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA.,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sandeep Saha
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin Jeffery
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Pepper Schedin
- Department of Cell and Developmental Biology, School of Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lee Wilke
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Keely
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA. .,School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Sarin H. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. J Transl Med 2015; 13:372. [PMID: 26610602 PMCID: PMC4660824 DOI: 10.1186/s12967-015-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre-synthesized vesicular endogolgi peptides and small molecules as well as nuclear-to-rough endoplasmic reticulum membrane proteins to the CM, with the potential to simultaneously increase the NM-associated chromatin DNA transcription of higher molecular weight protein forms, secretory and CM-destined, mitochondrial and nuclear, including the highest molecular weight nuclear proteins, Ki67 (359 kDa) and Separase (230 kDa), with the latter leading to mitogenesis and cell division; while, in the case of growth factors or cytokines with external cationomodulation capability, CM Receptor External Cationomodulation of CM receptors (≥3+ → 1+) results in cationic extracellular interaction (≥3+) with extracellular matrix heparan sulfates (≥3+ → 1+) concomitant with lamellopodesis and cell migration. It can be surmised that the modulation of cellular, and nuclear, function is mostly a reactive process, governed, primarily, by small molecule hormone and peptide interactions at the cell membrane, with CM receptors and the CM itself. These insights taken together, provide valuable translationally applicable knowledge.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, WV, USA.
| |
Collapse
|
19
|
Beretov J, Wasinger VC, Millar EKA, Schwartz P, Graham PH, Li Y. Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach. PLoS One 2015; 10:e0141876. [PMID: 26544852 PMCID: PMC4636393 DOI: 10.1371/journal.pone.0141876] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/14/2015] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Breast cancer is a complex heterogeneous disease and is a leading cause of death in women. Early diagnosis and monitoring progression of breast cancer are important for improving prognosis. The aim of this study was to identify protein biomarkers in urine for early screening detection and monitoring invasive breast cancer progression. METHOD We performed a comparative proteomic analysis using ion count relative quantification label free LC-MS/MS analysis of urine from breast cancer patients (n = 20) and healthy control women (n = 20). RESULTS Unbiased label free LC-MS/MS-based proteomics was used to provide a profile of abundant proteins in the biological system of breast cancer patients. Data analysis revealed 59 urinary proteins that were significantly different in breast cancer patients compared to the normal control subjects (p<0.05, fold change >3). Thirty-six urinary proteins were exclusively found in specific breast cancer stages, with 24 increasing and 12 decreasing in their abundance. Amongst the 59 significant urinary proteins identified, a list of 13 novel up-regulated proteins were revealed that may be used to detect breast cancer. These include stage specific markers associated with pre-invasive breast cancer in the ductal carcinoma in-situ (DCIS) samples (Leucine LRC36, MAST4 and Uncharacterized protein CI131), early invasive breast cancer (DYH8, HBA, PEPA, uncharacterized protein C4orf14 (CD014), filaggrin and MMRN2) and metastatic breast cancer (AGRIN, NEGR1, FIBA and Keratin KIC10). Preliminary validation of 3 potential markers (ECM1, MAST4 and filaggrin) identified was performed in breast cancer cell lines by Western blotting. One potential marker MAST4 was further validated in human breast cancer tissues as well as individual human breast cancer urine samples with immunohistochemistry and Western blotting, respectively. CONCLUSIONS Our results indicate that urine is a useful non-invasive source of biomarkers and the profile patterns (biomarkers) identified, have potential for clinical use in the detection of BC. Validation with a larger independent cohort of patients is required in the following study.
Collapse
Affiliation(s)
- Julia Beretov
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, Australia
- SEALS, Anatomical Pathology, St George Hospital, Kogarah, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Kensington, Australia
- School of Medical Sciences, UNSW, Kensington, Australia
| | - Ewan K. A. Millar
- SEALS, Anatomical Pathology, St George Hospital, Kogarah, Australia
- School of Medical Sciences, UNSW, Kensington, Australia
- Cancer Research Program, Kinghorn Cancer Centre and Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Medicine and Health Sciences, University of Western Sydney, Campbelltown, Australia
| | - Peter Schwartz
- Breast Surgery, St George Private Hospital, Kogarah, Australia
| | - Peter H. Graham
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW), Kensington, Australia
- * E-mail:
| |
Collapse
|
20
|
Kazi JU, Kabir NN, Rönnstrand L. Brain-Expressed X-linked (BEX) proteins in human cancers. Biochim Biophys Acta Rev Cancer 2015; 1856:226-33. [PMID: 26408910 DOI: 10.1016/j.bbcan.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The Brain-Expressed X-linked (BEX) family proteins are comprised of five human proteins including BEX1, BEX2, BEX3, BEX4 and BEX5. BEX family proteins are expressed in a wide range of tissues and are known to play a role in neuronal development. Recent studies suggest a role of BEX family proteins in cancers. BEX1 expression is lost in a subgroup of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Expression of BEX1 controls cell surface receptor signaling and restores imatinib response in resistant cells. BEX2 is overexpressed in a group of breast cancer patients and also in gliomas. Increased BEX2 expression led to enhanced NF-κB signaling as well as cell proliferation. Although BEX2 acts as tumor promoter in a subset of breast cancer, BEX3 expression displayed an opposite role. Overexpression of BEX3 resulted in inhibition of tumor formation in breast cancer mouse xenograft models. The role of BEX4 and BEX5 in cancer has not yet been defined. Collectively this suggests that BEX family members have distinct roles in cancers. While BEX1 and BEX3 act as tumor suppressors, BEX2 seems to act as an oncogene.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404 ,Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh.
| | - Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404 ,Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Tomellini E, Touil Y, Lagadec C, Julien S, Ostyn P, Ziental-Gelus N, Meignan S, Lengrand J, Adriaenssens E, Polakowska R, Le Bourhis X. Nerve growth factor and proNGF simultaneously promote symmetric self-renewal, quiescence, and epithelial to mesenchymal transition to enlarge the breast cancer stem cell compartment. Stem Cells 2015; 33:342-53. [PMID: 25286822 DOI: 10.1002/stem.1849] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
The discovery of cancer stem cells (CSCs) fundamentally advanced our understanding of the mechanisms governing breast cancer development. However, the stimuli that control breast CSC self-renewal and differentiation have still not been fully detailed. We previously showed that nerve growth factor (NGF) and its precursor proNGF can stimulate breast cancer cell growth and invasion in an autocrine manner. In this study, we investigated the effects of NGF and proNGF on the breast CSC compartment and found that NGF or proNGF enrich for CSCs in several breast cancer cell lines. This enrichment appeared to be achieved by increasing the number of symmetric divisions of quiescent/slow-proliferating CSCs. Interestingly, in vitro NGF pretreatment of MCF-7 luminal breast cancer cells promoted epithelial to mesenchymal transition in tumors of severe combined immunodeficient mice. Furthermore, p75(NTR), the common receptor for both neurotrophins and proneurotrophins, mediated breast CSC self-renewal by regulating the expression of pluripotency transcription factors. Our data indicate, for the first time, that the NGF/proNGF/p75(NTR) axis plays a critical role in regulating breast CSC self-renewal and plasticity.
Collapse
Affiliation(s)
- Elisa Tomellini
- Inserm U908, Villeneuve d'Ascq, France; Université Lille 1, Villeneuve d'Ascq, France; Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Colitti M. Expression of NGF, BDNF and their high-affinity receptors in ovine mammary glands during development and lactation. Histochem Cell Biol 2015; 144:559-70. [DOI: 10.1007/s00418-015-1360-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 01/01/2023]
|
23
|
Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H. NGF and ProNGF: Regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul 2014; 58:16-27. [PMID: 25491371 DOI: 10.1016/j.jbior.2014.11.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) and its precursor (proNGF) are primarily considered as regulators of neuronal function that induce their responses via the tyrosine kinase receptor TrkA and the pan-neurotrophin receptor p75NTR. It has been generally held that NGF exerts its effects primarily through TrkA, inducing a cascade of tyrosine kinase-initiated responses, while proNGF binds more strongly to p75NTR. When this latter entity interacts with a third receptor, sortilin, apoptotic responses are induced in contrast to the survival/differentiation associated with the other two. Recent studies have outlined portions of the downstream phosphoproteome of TrkA in the neuronal PC12 cells and have clarified the contribution of individual docking sites in the TrkA endodomain. The patterns observed showed a similarity with the profile induced by the epidermal growth factor receptor, which is extensively associated with oncogenesis. Indeed, as with other neurotrophic factors, the distribution of TrkA and p75NTR is not limited to neuronal tissue, thus providing an array of targets outside the nervous systems. One such source is breast cancer cells, in which NGF and proNGF stimulate breast cancer cell survival/growth and enhance cell invasion, respectively. This latter activity is exerted via TrkA (as opposed to p75NTR) in conjunction with sortilin. Another tissue overexpressing proNGF is prostate cancer and here the ability of cancer cells to induce neuritogenesis has been implicated in cancer progression. These studies show that the non-neuronal functions of proNGF/NGF are likely integrated with their neuronal activities and point to the clinical utility of these growth factors and their receptors as biomarkers and therapeutic targets for metastasis and cancer pain.
Collapse
Affiliation(s)
| | - Jay Pundavela
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| | - Jordane Biarc
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | | | - A L Burlingame
- Dept of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA.
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Hunter Medical Research Institute, Faculty of Health and Medicine, University of Newcastle, Australia.
| |
Collapse
|
24
|
Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T, Liu B, Brodeur GM. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 2014; 75:131-41. [PMID: 25394774 DOI: 10.1007/s00280-014-2627-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC₅₀ around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.
Collapse
Affiliation(s)
- Jamie L Croucher
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tomellini E, Lagadec C, Polakowska R, Le Bourhis X. Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 2014; 71:2467-81. [PMID: 24481864 PMCID: PMC11113797 DOI: 10.1007/s00018-014-1564-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/02/2023]
Abstract
p75(NTR), the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75(NTR) expression and pluripotency has been described. p75(NTR) was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75(NTR) in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75(NTR) signaling in different models are also highlighted. p75(NTR)-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75(NTR) can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75(NTR) activity as well as the underlying molecular mechanisms of p75(NTR) will shed new light on the biology of both normal and cancer stem cells.
Collapse
Affiliation(s)
- Elisa Tomellini
- Université Lille 1, 59655 Villeneuve d’Ascq, France
- Inserm U908, 59655 Villeneuve d’Ascq, France
- SIRIC ONCOLille, Lille, France
| | - Chann Lagadec
- Université Lille 1, 59655 Villeneuve d’Ascq, France
- Inserm U908, 59655 Villeneuve d’Ascq, France
- SIRIC ONCOLille, Lille, France
| | - Renata Polakowska
- Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL), 59045 Lille, France
- SIRIC ONCOLille, Lille, France
| | - Xuefen Le Bourhis
- Université Lille 1, 59655 Villeneuve d’Ascq, France
- Inserm U908, 59655 Villeneuve d’Ascq, France
- Inserm U908, Université Lille 1, Batiment SN3, 59655 Villeneuve d’Ascq, France
- SIRIC ONCOLille, Lille, France
| |
Collapse
|
26
|
Stamatakos G, Dionysiou D, Lunzer A, Belleman R, Kolokotroni E, Georgiadi E, Erdt M, Pukacki J, Rueping S, Giatili S, d'Onofrio A, Sfakianakis S, Marias K, Desmedt C, Tsiknakis M, Graf N. The Technologically Integrated Oncosimulator: Combining Multiscale Cancer Modeling With Information Technology in the In Silico Oncology Context. IEEE J Biomed Health Inform 2014; 18:840-54. [DOI: 10.1109/jbhi.2013.2284276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Georgios Stamatakos
- Institute of Communication and Computer Systems, National Technical University of Athens, In Silico Oncology Group, 9 Iroon Polytechniou, Zografos, Greece
| | - Dimitra Dionysiou
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | | | | | - Eleni Kolokotroni
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | - Eleni Georgiadi
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | | | - Juliusz Pukacki
- Poznan Supercomputing and Networking Center (PSNC), Poznan, Poland
| | - Stefan Rueping
- Fraunhofer IAIS, Schloss Birlinghoven, St. Augustin, Germany
| | - Stavroula Giatili
- Oncology Group, Institute of Communication and Computer Systems, National Technical University of Athens, GR , Greece
| | | | | | - Kostas Marias
- Foundation for Research and Technology Hellas, Heraklion, Greece
| | | | - Manolis Tsiknakis
- Department of Informatics Engineering, TEI Crete and the Computational Medicine Laboratory, Institute of Computer Science, FORTH , Heraklion, Greece
| | - Norbert Graf
- University Hospital of the Saarland, Pediatric Haematology and Oncology, Homburg, Germany
| |
Collapse
|
27
|
Noh SJ, Bae JS, Jamiyandorj U, Park HS, Kwon KS, Jung SH, Youn HJ, Lee H, Park BH, Chung MJ, Moon WS, Kang MJ, Jang KY. Expression of nerve growth factor and heme oxygenase-1 predict poor survival of breast carcinoma patients. BMC Cancer 2013; 13:516. [PMID: 24180625 PMCID: PMC3818967 DOI: 10.1186/1471-2407-13-516] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/29/2013] [Indexed: 12/30/2022] Open
Abstract
Background Nerve growth factor (NGF) is a neurotrophin and has been suggested to induce heme oxygenase-1 (HO1) expression. Although the role of HO1 in tumorigenesis remains controversial, recent evidence suggests NGF and HO1 as tumor-progressing factors. However, the correlative role of NGF and HO1 and their prognostic impact in breast carcinoma is unknown. Methods We investigated the expression and prognostic significance of the expression of NGF and HO1 in 145 cases of breast carcinoma. Results Immunohistochemical expression of NGF and HO1 was observed in 31% and 49% of breast carcinoma, respectively. The expression of NGF and HO1 significantly associated with each other, and both have a significant association with histologic grade, HER2 expression, and latent distant metastasis. The expression of NGF and HO1 predicted shorter overall survival of breast carcinoma by univariate and multivariate analysis. NGF expression was an independent prognostic indicator for relapse-free survival by multivariate analysis. The combined expression pattern of NGF and HO1 was also an independent prognostic indicator of overall survival and relapse-free survival. The patients with tumors expressing NGF had the shortest survival and the patients with tumor, which did not express NGF or HO1 showed the longest survival time. Conclusions This study has demonstrated that individual expression of NGF or HO1, and the combined NGF/HO1 expression pattern could be prognostic indicators for breast carcinoma patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kyu Yun Jang
- Departments of Pathology, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
28
|
Marsigliante S, Vetrugno C, Muscella A. CCL20 induces migration and proliferation on breast epithelial cells. J Cell Physiol 2013; 228:1873-83. [PMID: 23460117 DOI: 10.1002/jcp.24349] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/08/2013] [Indexed: 12/23/2022]
Abstract
The communication between the tumor cells and the surrounding cells helps drive the process of tumor progression. Since the microenvironment of breast cancer includes CCL20 chemokine, the purpose of this study was to determine whether CCL20 modulates the physiology of healthy breast epithelial cells in areas adjacent to the tumor. Therefore, primary cultures of mammary cells taken from normal peritumoral areas were used. We assessed that breast cells expressed CCR6 CCL20 receptor. Using molecular (siRNA) and pharmacological (inhibitors) techniques, we found multiple signaling kinases to be activated by CCR6 and involved in CCL20-induced breast cell proliferation and migration. The binding of 10 ng/ml CCL20 to CCR6 induced cell migration whilst higher concentrations (from 15 to 25 ng/ml) led to cell proliferation. CCL20 controlled cell migration and MMP-9 expression by PKC-alpha that activated Src, which caused the activation of downstream Akt, JNK, and NF-kB pathways. Furthermore, higher CCL20 concentrations increased cycE and decreased p27Kip expression ending in enhanced cell proliferation. Cell proliferation occurred through PKC-epsilon activation that transactivated EGFR and ERK1/2/MAPK pathway. Although activated by different CCL20 concentrations, these pathways function in parallel and crosstalk to some extent, inasmuch as Akt activation was responsible for ERK1/2 nuclear translocation and enhanced the transcription of of c-fos and c-myc, involved in cell proliferation. In summary, tumor cells exchange signals with the surrounding healthy cells modifying the extracellular matrix through enzyme secretion; thus, CCL20 might be a factor involved in the ontogeny of breast carcinoma.
Collapse
Affiliation(s)
- Santo Marsigliante
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | | | | |
Collapse
|
29
|
Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 2012; 23:357-65. [DOI: 10.1016/j.cytogfr.2012.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 12/21/2022]
|
30
|
Studying the growth kinetics of untreated clinical tumors by using an advanced discrete simulation model. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mcm.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Expression of BDNF, TrkB, and p53 in early-stage squamous cell carcinoma of the uterine cervix. Pathology 2011; 43:453-8. [DOI: 10.1097/pat.0b013e3283484a3a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Patani N, Jiang WG, Mokbel K. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell Int 2011; 11:23. [PMID: 21767406 PMCID: PMC3156720 DOI: 10.1186/1475-2867-11-23] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/18/2011] [Indexed: 12/19/2022] Open
Abstract
Introduction Brain-derived neurotrophic factor (BDNF) has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC). However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007). The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009). Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047). Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR) (p = 0.0014), death from BC (p = 0.018) and poor prognosis overall (p = 0.013). After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS) (106 vs. 136 months, p = 0.006). BDNF emerged as an independent prognostic variable in multivariate analysis for disease free survival (DFS) (p = 0.026) and approached significance for OS (p = 0.055). Conclusion BDNF expression was found to be significantly higher in BC specimens compared to normal tissue. Higher transcript levels were significantly associated with unfavourable pathological parameters including nodal positivity and increasing NPI; and adverse clinical outcomes including LR, death from BC, poor prognosis, reduced DFS and OS. BDNF offers utility as a prognostic marker and potential for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Neill Patani
- Department of Breast Surgery, The London Breast Institute, The Princess Grace Hospital, 42-52 Nottingham Place, W1U-5NY, London, England, UK.
| | | | | |
Collapse
|
33
|
Bloom AP, Jimenez-Andrade JM, Taylor RN, Castañeda-Corral G, Kaczmarska MJ, Freeman KT, Coughlin KA, Ghilardi JR, Kuskowski MA, Mantyh PW. Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. THE JOURNAL OF PAIN 2011; 12:698-711. [PMID: 21497141 DOI: 10.1016/j.jpain.2010.12.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/09/2010] [Accepted: 12/27/2010] [Indexed: 01/06/2023]
Abstract
UNLABELLED Breast cancer metastasis to bone is frequently accompanied by pain. What remains unclear is why this pain tends to become more severe and difficult to control with disease progression. Here we test the hypothesis that with disease progression, sensory nerve fibers that innervate the breast cancer bearing bone undergo a pathological sprouting and reorganization, which in other nonmalignant pathologies has been shown to generate and maintain chronic pain. Injection of human breast cancer cells (MDA-MB-231-BO) into the femoral intramedullary space of female athymic nude mice induces sprouting of calcitonin gene-related peptide (CGRP(+)) sensory nerve fibers. Nearly all CGRP(+) nerve fibers that undergo sprouting also coexpress tropomyosin receptor kinase A (TrkA(+)) and growth-associated protein-43 (GAP43(+)). This ectopic sprouting occurs in periosteal sensory nerve fibers that are in close proximity to breast cancer cells, tumor-associated stromal cells, and remodeled cortical bone. Therapeutic treatment with an antibody that sequesters nerve growth factor (NGF), administered when the pain and bone remodeling were first observed, blocks this ectopic sprouting and attenuates cancer pain. The present data suggest that the breast cancer cells and tumor-associated stromal cells express and release NGF, which drives bone pain and the pathological reorganization of nearby CGRP(+)/TrkA(+)/GAP43(+) sensory nerve fibers. PERSPECTIVE Therapies that block breast cancer pain by reducing the tumor-induced pathological sprouting and reorganization of sensory nerve fibers may provide insight into the evolving mechanisms that drive breast cancer pain and lead to more effective therapies for attenuating this chronic pain state.
Collapse
Affiliation(s)
- Aaron P Bloom
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nerve growth factor in cancer cell death and survival. Cancers (Basel) 2011; 3:510-30. [PMID: 24212627 PMCID: PMC3756375 DOI: 10.3390/cancers3010510] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 12/19/2022] Open
Abstract
One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.
Collapse
|
35
|
Ounzain S, Bowen S, Patel C, Fujita R, Heads RJ, Budhram-Mahadeo VS. Proliferation-associated POU4F2/Brn-3b transcription factor expression is regulated by oestrogen through ERα and growth factors via MAPK pathway. Breast Cancer Res 2011; 13:R5. [PMID: 21241485 PMCID: PMC3109571 DOI: 10.1186/bcr2809] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/14/2010] [Accepted: 01/17/2011] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION In cancer cells, elevated transcription factor-related Brn-3a regulator isolated from brain cDNA (Brn-3b) transcription factor enhances proliferation in vitro and increases tumour growth in vivo whilst conferring drug resistance and migratory potential, whereas reducing Brn-3b slows growth both in vitro and in vivo. Brn-3b regulates distinct groups of key target genes that control cell growth and behaviour. Brn-3b is elevated in >65% of breast cancer biopsies, but mechanisms controlling its expression in these cells are not known. METHODS Bioinformatics analysis was used to identify the regulatory promoter region and map transcription start site as well as transcription factor binding sites. Polymerase chain reaction (PCR) cloning was used to generate promoter constructs for reporter assays. Chromatin immunoprecipitation and site-directed mutagenesis were used to confirm the transcription start site and autoregulation. MCF-7 and Cos-7 breast cancer cells were used. Cells grown in culture were transfected with Brn-3b promoter and treated with growth factors or estradiol to test for effects on promoter activity. Quantitative reverse transcriptase PCR assays and immunoblotting were used to confirm changes in gene and protein expression. RESULTS We cloned the Brn-3b promoter, mapped the transcription start site and showed stimulation by estradiol and growth factors, nerve growth factor and epidermal growth factor, which are implicated in breast cancer initiation and/or progression. The effects of growth factors are mediated through the mitogen-activated protein kinase pathway, whereas hormone effects act via oestrogen receptor α (ERα). Brn-3b also autoregulates its expression and cooperates with ERα to further enhance levels. CONCLUSIONS Key regulators of growth in cancer cells, for example, oestrogens and growth factors, can stimulate Brn-3b expression, and autoregulation also contributes to increasing Brn-3b in breast cancers. Since increasing Brn-3b profoundly enhances growth in these cells, understanding how Brn-3b is increased in breast cancers will help to identify strategies for reducing its expression and thus its effects on target genes, thereby reversing its effects in breast cancer cells.
Collapse
Affiliation(s)
- Samir Ounzain
- Medical Molecular Biology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Ongoing and breakthrough pain is a primary concern for the cancer patient. Although the etiology of cancer pain remains unclear, animal models of cancer pain have allowed investigators to unravel some of the cancer-induced neuropathologic processes that occur in the region of tumor growth and in the dorsal horn of the spinal cord. Within the cancer microenvironment, cancer and immune cells produce and secrete mediators that activate and sensitize primary afferent nociceptors. Pursuant to these peripheral changes, nociceptive secondary neurons in spinal cord exhibit increased spontaneous activity and enhanced responsiveness to three modes of noxious stimulation: heat, cold, and mechanical stimuli. As our understanding of the peripheral and central mechanisms that underlie cancer pain improves, targeted analgesics for the cancer patient will likely follow.
Collapse
Affiliation(s)
- Brian L Schmidt
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California San Francisco, USA.
| | | | | | | |
Collapse
|
37
|
Stamatakos G, Kolokotroni E, Dionysiou D, Georgiadi E, Desmedt C. An advanced discrete state–discrete event multiscale simulation model of the response of a solid tumor to chemotherapy: Mimicking a clinical study. J Theor Biol 2010; 266:124-39. [DOI: 10.1016/j.jtbi.2010.05.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/29/2010] [Accepted: 05/14/2010] [Indexed: 12/24/2022]
|
38
|
Ricci A, Mariotta S, Pompili E, Mancini R, Bronzetti E, De Vitis C, Pisani L, Cherubini E, Bruno P, Gencarelli G, Giovagnoli MR, Terzano C, Ciliberto G, Giarnieri E, Fumagalli L. Neurotrophin system activation in pleural effusions. Growth Factors 2010; 28:221-31. [PMID: 20214505 DOI: 10.3109/08977191003677402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurotrophins (NTs) expression was assessed in malignant and non-malignant pleural effusions (inflammatory exudates and transudates). Enzyme-linked immunosorbent assay, in malignant exudates from small and non-small cell lung cancer (SCLC and NSCLC), detected nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their levels are higher as compared with inflammatory and transudative effusions. By immunoblots, in cultured cancer cells coming from malignant pleural effusions, NTs and low- and high-affinity NT receptors were detected in a percentage of SCLC and NSCLC. Proliferation assay demonstrated that BDNF significantly increased cancer cell proliferation in vitro, on the contrary, NT-3 reduced cancer cell growth rate and NGF did not modify cell growth. Moreover, NGF protects cells from death during starvation. These effects are reverted by the addition of NT receptor antagonists. Cultured cancer cells injected into the lung of immunodeficient mice generate lung tumors expressing NTs and NT receptors. These findings suggest that NTs may be able to modulate cancer cell behavior and their growth.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Blotting, Western
- Brain-Derived Neurotrophic Factor/blood
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Gene Expression
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Lung/pathology
- Lung Neoplasms/metabolism
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Middle Aged
- Neoplasm Transplantation
- Nerve Growth Factors/blood
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/pharmacology
- Neurotrophin 3/blood
- Neurotrophin 3/metabolism
- Neurotrophin 3/pharmacology
- Pleural Effusion/genetics
- Pleural Effusion/metabolism
- Pleural Effusion, Malignant/genetics
- Pleural Effusion, Malignant/metabolism
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
- Small Cell Lung Carcinoma/metabolism
- Tumor Cells, Cultured
Collapse
|
39
|
Kolokythas A, Cox DP, Dekker N, Schmidt BL. Nerve growth factor and tyrosine kinase A receptor in oral squamous cell carcinoma: is there an association with perineural invasion? J Oral Maxillofac Surg 2010; 68:1290-5. [PMID: 20363547 DOI: 10.1016/j.joms.2010.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/03/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Perineural invasion (PNI) in oral squamous cell carcinoma (SCC) is recognized as a significant predictor of outcome. PNI is associated with locoregional recurrence and decreased survival of patients with head and neck SCC. Nerve growth factor (NGF) has been shown to be involved in PNI in several malignancies, including breast, prostate, and pancreatic cancers. We investigated the hypothesis that NGF and its high-affinity receptor tyrosine kinase A (TrkA) are highly expressed in cases of oral SCC that have histologic evidence of PNI. MATERIALS AND METHODS We performed immunohistochemistry on archived oral tongue SCC specimens from the established oral and general pathology databases at the University of California, San Francisco. The following groups were evaluated: 1) 21 T1/T2 oral tongue SCC cases with PNI and 2) 21 T1/T2 oral tongue SCC cases without histologic evidence of PNI. RESULTS Strong homogeneous cytoplasmic staining for NGF and TrkA was detected in the malignant cells in the PNI-positive group of tumors. In group II (PNI negative) NGF and TrkA were detected in the stroma cells or were very weakly expressed by the malignant cells. We were able to show the presence of NGF and TrkA in the cytoplasm of malignant squamous cells in tumors with histologic evidence of PNI. Immunostaining for NGF (P = .0001) and TrkA (P = .039) was significantly higher in the PNI-positive oral SCC group than in the PNI-negative oral SCC group. CONCLUSION This study shows that oral SCC with evidence of PNI shows increased expression of NGF and TrkA and suggests that NGF and TrkA are involved with the mechanism leading to PNI. Further investigations are warranted to determine the potential for use of NGF and TrkA as candidate biomarkers to predict progression and outcome.
Collapse
Affiliation(s)
- Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago College of Dentistry, Chicago, IL, USA
| | | | | | | |
Collapse
|
40
|
Lagadec C, Romon R, Tastet C, Meignan S, Com E, Page A, Bidaux G, Hondermarck H, Le Bourhis X. Ku86 is important for TrkA overexpression-induced breast cancer cell invasion. Proteomics Clin Appl 2010; 4:580-90. [PMID: 21137076 DOI: 10.1002/prca.200900148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/07/2009] [Accepted: 11/08/2009] [Indexed: 11/08/2022]
Abstract
PURPOSE We have recently shown that breast tumors express high levels of TrkA compared with normal breast tissues, with TrkA overexpression enhancing breast cancer cell invasion in vitro and metastasis in animal models. In this study, we tried to identify molecules involved in TrkA overexpression-mediated biological effects in breast cancer cells. EXPERIMENTAL DESIGN We used a proteomic-based approach to identify proteins involved in TrkA overexpression-stimulated invasion of MDA-MB-231 breast cancer cells. Proteins from control and TrkA overexpressing cells were separated using a cup-loading two-dimensional electrophoresis system before MALDI and LC-MS/MS mass spectrometry analysis. RESULTS Among several putative regulated proteins, Ku86 was found increased in TrkA overexpressing cells. Moreover, Ku86 was co-immunoprecipitated with TrkA, suggesting the interaction of these two proteins in TrkA overexpressing cells. Interestingly, inhibition with small-interfering RNA and neutralizing antibodies showed that Ku86 was required for TrkA-stimulated cell invasion. CONCLUSIONS AND CLINICAL RELEVANCE These data allowed the identification of Ku86 as a new player involved in metastasis in breast cancer cells. Our findings suggest that TrkA and its down stream signaling pathways should be regarded as potential new targets for the development of future breast cancer therapy.
Collapse
Affiliation(s)
- Chann Lagadec
- Signalisation des facteurs de croissance dans le cancer du sein. Proteomique fonctionnelle, Université Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Montano X. Repression of SHP-1 expression by p53 leads to trkA tyrosine phosphorylation and suppression of breast cancer cell proliferation. Oncogene 2009; 28:3787-800. [PMID: 19749791 DOI: 10.1038/onc.2009.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nerve growth factor (NGF) receptor, trkA, the tumour suppressor p53 and the phosphatase SHP-1 are critical in cell proliferation and differentiation. SHP-1 is a trkA phosphatase that dephosphorylates trkA at tyrosines (Y) 674 and 675. p53 can induce trkA activation and tyrosine phosphorylation in the absence of NGF stimulation. In breast cancer tumours trkA expression is associated with increased patient survival. TrkA protein expression is higher in breast-cancer cell lines than in normal breast epithelia. In cell lines (but not in normal breast epithelia) trkA is functional and can be NGF-stimulated to promote cell proliferation. This study investigates the functional relationship between trkA, p53 and SHP-1 in breast-cancer, and reveals that in wild-type (wt) trkA expressing breast-cancer cells both endogenous wtp53, activated by therapeutic agents, and transfected wtp53 repress expression of SHP-1 through the proximal CCAAT sequence of the SHP-1-P1-promoter and the transcription factor NF-Y. In these cells trkA-Y674/Y675 phosphorylation is detected when SHP-1 protein levels decrease in a wtp53-dependent manner. Proliferation and cell-cycle assays, with cells expressing endogenous or transfected wt-trkA and a temperature-sensitive p53 grown at 32 degrees C (when p53 is in the wt configuration), show suppressed cell proliferation. Suppression is not detected when grown at 37 degrees C (when p53 is in the mutant configuration). A release from suppression is observed when these cells are transiently transfected with wt-SHP-1 and grown at 32 degrees C. Suppression is also detected when, as control, wt-trkA-expressing cells are transiently transfected with SHP-1-siRNA, but not when a dominant-negative (DN) mutant trkA is used to abolish wt-trkA activity. Importantly, suppression is not seen with control trkA-negative breast-cancer cells (expressing wtp53, wt-SHP-1 and undetectable trkA), transfected with Y674F/Y675F mutant-trkA. BrdU-incorporation experiments reveal lack of incorporation in cells expressing wt-trkA and wtp53, or wt-trkA and SHP-1-siRNA. However, BrdU is incorporated in the presence of Y674F/Y675F mutant trkA or DN mutant trkA. These results indicate that p53 repression of SHP-1 expression leads to trkA-Y674/Y675 phosphorylation and trkA-dependent suppression of breast-cancer cell proliferation. These data provide an explanation as to why high trkA levels are associated with favourable prognosis.
Collapse
Affiliation(s)
- X Montano
- Division of Cell and Molecular Biology, Molecular Signalling Group, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
42
|
Han X, Yamanouchi G, Mori T, Kang JH, Niidome T, Katayama Y. Monitoring protein kinase activity in cell lysates using a high-density peptide microarray. ACTA ACUST UNITED AC 2009; 14:256-62. [PMID: 19211777 DOI: 10.1177/1087057108329348] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Monitoring and targeting protein kinases is widely accepted as a promising approach for disease diagnosis and drug discovery. For this purpose, the authors have developed an original type of peptide array as a high-throughput screening assay for quantitatively evaluating kinase activity. A volume of 2 nL of peptide solution was spotted onto a formyl group-modified glass slide by using an arrayer, which was designed for use with protein chip technology. The phosphorylation was recognized by fluorescence-label antibody and detected with an automatic microarray scanner widely used in DNA chip technology. The system needs low sample volume, provides a high-density peptide array, and supplies high reproducibility. It provided enough sensitivity for inhibitor screening, even though a relatively low concentration of purified kinase was employed. The assay also proved useful for the detection of intracellular kinase activity as well as for the measurement of the fluctuations of intracellular protein kinase activity with drug stimulation. Thus, this peptide array would be applicable for kinase-targeted diagnosis, cell-based drug screening, and signal pathway investigation.
Collapse
Affiliation(s)
- Xiaoming Han
- Graduate School of System Life Sciences, Department of Applied Chemistry, Faculty of Engineering, Center of Future Chemistry, Kyushu University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Moon WS, Jang KY, Chung MJ, Kang MJ, Lee DG, Lee H, Park HS. The Expressions of Nerve Growth Factor and Its Receptor p75NGFR in Hepatocellular Carcinoma: Their Relation with the Clinicopathologic Factors. KOREAN JOURNAL OF PATHOLOGY 2009. [DOI: 10.4132/koreanjpathol.2009.43.2.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Myoung Jae Kang
- Department of Pathology, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Dong Geun Lee
- Department of Pathology, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Ho Lee
- Department of Forensic Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| |
Collapse
|
44
|
Rasi G, Serafino A, Bellis L, Lonardo MT, Andreola F, Zonfrillo M, Vennarecci G, Pierimarchi P, Sinibaldi Vallebona P, Ettorre GM, Santoro E, Puoti C. Nerve growth factor involvement in liver cirrhosis and hepatocellular carcinoma. World J Gastroenterol 2007; 13:4986-4995. [PMID: 17854142 PMCID: PMC4434623 DOI: 10.3748/wjg.v13.i37.4986] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/02/2007] [Accepted: 07/26/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To define NGF (nerve growth factor) and its high-affinity receptor trkA(NGF) presence and distribution in fibrotic liver and in HCC, and to verify if NGF might have a role in fibrosis and HCC. METHODS Intracellular distribution of NGF and trkA(NGF) were assessed by immunohistochemistry and immuno-electron microscopy in liver specimens from HCC, cirrhosis or both. ELISA was used to measure circulating NGF levels. RESULTS NGF and trkA(NGF) were highly expressed in HCC tissue, mainly localized in hepatocytes, endothelial and some Kupffer cells. In the cirrhotic part of the liver they were also markedly expressed in bile ducts epithelial and spindle-shaped cells. Surprisingly, in cirrhotic tissue from patients without HCC, both NGF and trkA(NGF) were negative. NGF serum levels in cirrhotic and/or HCC patient were up to 25-fold higher than in controls. CONCLUSION NGF was only detected in liver tissue with HCC present. Intracellular distribution suggests paracrine and autocrine mechanisms of action. Better definition of mechanisms may allow for therapeutic and diagnostic/prognostic use of NGF.
Collapse
Affiliation(s)
- Guido Rasi
- National Research Council, Istituto di Neurobiologia e Medicina Molecolare, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Com E, Lagadec C, Page A, El Yazidi-Belkoura I, Slomianny C, Spencer A, Hammache D, Rudkin BB, Hondermarck H. Nerve growth factor receptor TrkA signaling in breast cancer cells involves Ku70 to prevent apoptosis. Mol Cell Proteomics 2007; 6:1842-54. [PMID: 17617666 DOI: 10.1074/mcp.m700119-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nerve growth factor (NGF)-tyrosine kinase receptor TrkA plays a critical role in various neuronal and non-neuronal cell types by regulating cell survival, differentiation, and proliferation. In breast cancer cells, TrkA stimulation results in the activation of cellular growth, but downstream signaling largely remains to be described. Here we used a proteomics-based approach to identify partners involved in TrkA signaling in breast cancer cells. Wild type and modified TrkA chimeric constructs with green fluorescent protein were transfected in MCF-7 cells, and co-immunoprecipitated proteins were separated by SDS-PAGE before nano-LC-MS/MS analysis. Several TrkA putative signaling partners were identified among which was the DNA repair protein Ku70, which is increasingly reported for its role in cell survival and carcinogenesis. Physiological interaction of Ku70 with endogenous TrkA was induced upon NGF stimulation in non-transfected cells, and co-localization was observed with confocal microscopy. Mass spectrometry analysis and Western blotting of phosphotyrosine immunoprecipitates demonstrated the induction of Ku70 tyrosine phosphorylation upon NGF stimulation. Interestingly no interaction between TrkA and Ku70 was detected in PC12 cells in the absence or presence of NGF, suggesting that it is not involved in the initiation of neuronal differentiation. In breast cancer cells, RNA interference indicated that whereas Ku70 depletion had no direct effect on cell survival, it induced a strong potentiation of apoptosis in TrkA-overexpressing cells. In conclusion, TrkA signaling appears to be proapoptotic in the absence of Ku70, and this protein might therefore play a role in the long time reported ambivalence of tyrosine kinase receptors that can exhibit both anti- and eventually proapoptotic activities.
Collapse
Affiliation(s)
- Emmanuelle Com
- INSERM ERI-8 (JE-2488), Growth factor signaling in breast cancer. Functional proteomics, University of Sciences and Technologies Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chin GM, Herbst R. Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Mol Cancer Ther 2007; 5:2580-91. [PMID: 17041103 DOI: 10.1158/1535-7163.mct-06-0201] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Spindle poisons such as paclitaxel are widely used as cancer therapeutics. By interfering with microtubule dynamics, paclitaxel induces mitotic arrest and apoptosis. Targeting the kinesin Eg5, which is required for the formation of a bipolar spindle, is a promising therapeutic alternative to drugs that interfere with microtubule dynamics. Recent data suggest that the spindle checkpoint can determine the response of tumor cells to microtubule poisons. The relationship between checkpoint function and Eg5 inhibition, however, has not yet been fully investigated. Here, we used time-lapse video microscopy and biochemical analysis to study the effect of spindle checkpoint abrogation on the response of HeLa cells to monastrol, a selective Eg5 inhibitor. In HeLa cells, monastrol activated the spindle checkpoint, leading to mitotic arrest and apoptosis. Small interfering RNA-mediated depletion of the spindle checkpoint proteins BubR1 or Mad2 significantly shortened drug-induced arrest, causing premature mitotic exit without cell division. Time-lapse microscopy as well as analysis of caspase activation shows that these checkpoint-deficient cells initiate apoptosis after mitotic exit in response to monastrol. Checkpoint-deficient cells treated with paclitaxel, on the other hand, yielded a higher frequency of cells with >4N DNA content and a decreased incidence of apoptotic events, particularly in Mad2-depleted cells. These results indicate that the immediate fate of postmitotic cells is influenced by both the nature of the checkpoint defect and the type of drug used. Furthermore, these results show that inactivation of the kinesin Eg5 can induce apoptosis in tumor cells in the absence of critical spindle checkpoint components.
Collapse
Affiliation(s)
- Gregory M Chin
- DNAX Research Institute of Molecular and Cellular Biology Research Institute, Palo Alto, California, USA
| | | |
Collapse
|
47
|
Rende M, Pistilli A, Stabile AM, Terenzi A, Cattaneo A, Ugolini G, Sanna P. Role of nerve growth factor and its receptors in non-nervous cancer growth: efficacy of a tyrosine kinase inhibitor (AG879) and neutralizing antibodies antityrosine kinase receptor A and antinerve growth factor: an in-vitro and in-vivo study. Anticancer Drugs 2007; 17:929-41. [PMID: 16940803 DOI: 10.1097/01.cad.0000224459.13651.fd] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurotrophins, originally identified as neuronal survival and differentiation factors, exert their actions through tyrosine kinase receptors such as TrKA, in the case of the nerve growth factor. Neurotrophins also interact with p75, a common receptor devoid of kinase activity and connected to apoptosis. Here we show that nerve growth factor, TrKA and p75 are expressed in cell lines of human cancers of various non-neuronal lineages, including a panel of muscular sarcomas, and we show that all cell lines investigated actively release nerve growth factor into the medium. Treatment by AG879 (a tyrosine kinase inhibitor that inhibits TrKA phosphorylation, but not TrKB and TrKC) or by neutralizing antibodies anti-nerve growth factor and anti-TrKA dramatically decreases their proliferation with a variable increase in apoptosis. Similarly, p75 transfection induced a significant increase in apoptosis. Furthermore, for the first time we have determined by high-performance liquid chromatography the pharmacokinetic profile of a novel preparation of AG879 and we have established an optimal plasmatic concentration for in-vivo administration. Treatment with AG879 in immunodepressed mice grafted with leiomyosarcoma or promyelocytic leukemia cells resulted in dramatic reductions in tumor sizes. In conclusion, our data have a novel preclinical potential for revealing a possible therapeutical utility in targeting in-vivo nerve growth factor/TrKA by AG879 or neutralizing antibody anti-TrKA in cancer proliferation and in muscle sarcomas, in particular.
Collapse
Affiliation(s)
- Mario Rende
- Section of Anatomy, Department of Experimental Medicine, University of Perugia School of Medicine, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ødegaard E, Staff AC, Abeler VM, Kopolovic J, Onsrud M, Lazarovici P, Davidson B. The activated nerve growth factor receptor p-TrkA is selectively expressed in advanced-stage ovarian carcinoma. Hum Pathol 2007; 38:140-6. [PMID: 16996570 DOI: 10.1016/j.humpath.2006.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/16/2022]
Abstract
The objective of this study was to compare the expression of the nerve growth factor (NGF) receptors TrkA and p75 in ovarian borderline tumors, International Federation of Gynecology and Obstetrics (FIGO) stage I carcinomas and advanced-stage (FIGO stage III-IV) carcinomas, and to assess a possible association between NGF receptor expression and mitogen-activated protein kinase (MAPK) activation in borderline tumors and FIGO stage I carcinomas. Sections from 119 borderline tumors, 57 FIGO stage I invasive ovarian carcinomas, and 56 advanced-stage carcinomas were evaluated for expression of activated phospho-TrkA (p-TrkA) and p75 using immunohistochemistry. MAPK activation was analyzed in stage I carcinomas and borderline tumors using phospho-specific antibodies against the extracellular-regulated kinase (p-ERK), the high osmolarity glycerol response kinase (p-p38), and the c-jun amino-terminal kinase (p-JNK). p-TrkA membrane expression was significantly more frequent in advanced-stage carcinomas compared with both borderline and stage I carcinomas (P < .001). p75 membrane expression was comparable in the 3 groups (P > .05). p-ERK and p-p38 expression was comparable in borderline and stage I carcinomas, whereas p-JNK was more frequently expressed in stage I ovarian carcinomas (P < .001). NGF receptor expression showed no association with MAPK activation in borderline and stage I carcinomas. In conclusion, expression of biologically active p-TrkA receptor at the cell membrane is up-regulated along tumor progression in ovarian carcinoma, whereas p75 expression remains unaltered. These data provide further evidence regarding the clinical role of p-TrkA in ovarian carcinoma. NGF receptors probably signal via MAPK-independent pathways in ovarian carcinoma.
Collapse
Affiliation(s)
- Elin Ødegaard
- Department of Gynecology, Ulleval University Hospital, University of Oslo, N-0407 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
49
|
Dang C, Zhang Y, Ma Q, Shimahara Y. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer. J Gastroenterol Hepatol 2006; 21:850-8. [PMID: 16704535 DOI: 10.1111/j.1440-1746.2006.04074.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The aim of the present study was to investigate the prognostic value of the two types of nerve growth factor receptors (NGFR), namely high-affinity receptor TrkA and low-affinity receptor p75NGFR, in pancreatic cancer. METHODS The mRNA expression of NGFR for TrkA and p75NGFR was examined in 56 human primary pancreatic cancers using real-time quantitative reverse transcription-polymerase chain reaction. RESULTS Nerve growth factor (NGF) receptors were found in all tumor specimens. It appears that the growth of pancreatic cancer cells stimulated by NGF depended on the expression levels and the ratio of TrkA to p75NGFR. TrkA and p75NGFR were negatively correlated and both were associated with abdominal or back pain and perineural invasion. Regarding this, patients with high TrkA expression levels exhibited more frequent perineural invasion and a higher degree of pain, whereas the results of p75NGFR were opposite. For Cox univariate analyses in the overall survival study, high expression of p75NGFR was associated with longer overall survival, but TrkA exhibited opposite effects and included an effect on perineural invasion and pain. Histoprognostic grading, tumor size and node involvement were not prognostic factors. In Cox multivariate analyses, TrkA and p75NGFR were both prognostic parameters. CONCLUSIONS The present study found that the expression of TrkA in pancreatic cancer is a marker of tumor aggressiveness. Conversely, we also found that elevated p75NGFR expression is associated with a favorable prognosis. We demonstrated that NGF exerts both stimulatory and inhibitory effects on pancreatic cancers, with the overall effect determined by the expression levels and the ratio of TrkA to p75NGFR.
Collapse
Affiliation(s)
- Chengxue Dang
- Department of Surgical Oncology, First Hospital of Xi'an Jiaotong University, Xi'an, China.
| | | | | | | |
Collapse
|
50
|
Tokusashi Y, Asai K, Tamakawa S, Yamamoto M, Yoshie M, Yaginuma Y, Miyokawa N, Aoki T, Kino S, Kasai S, Ogawa K. Expression of NGF in hepatocellular carcinoma cells with its receptors in non-tumor cell components. Int J Cancer 2005; 114:39-45. [PMID: 15523689 DOI: 10.1002/ijc.20685] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nerve growth factor (NGF) is suggested to have a role in tumor progression in addition to its role in differentiation and survival of neuronal cells. We investigated expression of NGF and its receptors, TrkA and p75NTR, in hepatocellular carcinomas (HCCs). Although hepatocytes and hepatic stellate cells (HSCs) showed respectively weak and intense NGF immunostaining in the background livers of patients suffering from liver cirrhosis (LC) or chronic hepatitis (CH), intense staining was demonstrated in HCC cells of 33 of 54 (61.1%) tumors. RT-PCR detected NGF mRNA in 7 freshly-isolated HCC samples, and in 2 of 4 cases, in which both background livers and tumors could be analyzed, NGF mRNA was more abundant in the tumors than the background livers. TrkA was detected in the smooth muscle cells of hepatic arteries, but it was negative in tumor cells as well as non-neoplastic hepatocytes. p75NTR and alpha-smooth muscle actin (alphaSMA) was expressed in HSCs in the background liver and fibroblast-like cells in stromal septa, whereas HSCs within the HCC tissues were mostly negative for p75NTR but positive for alphaSMA. This suggests that HSCs in HCC have a different property from those in background livers. Furthermore, the stromal septa contained abundant nerve fibers, which may be related to the increased NGF expression in HCC cells. NGF and its receptors are then thought to have a role in cellular interactions involving HCC cells, HSCs, arterial cells and nerve cells in HCC tissues.
Collapse
|