BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zou M, Wang F, Gao R, Wu J, Ou Y, Chen X, Wang T, Zhou X, Zhu W, Li P, Qi LW, Jiang T, Wang W, Li C, Chen J, He Q, Chen Y. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep 2016;6:24747. [PMID: 27098600 DOI: 10.1038/srep24747] [Cited by in Crossref: 66] [Cited by in F6Publishing: 70] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Fu Q, Mo TR, Hu XY, Fu Y, Li J. miR-19a mitigates hypoxia/reoxygenation-induced injury by depressing CCL20 and inactivating MAPK pathway in human embryonic cardiomyocytes. Biotechnol Lett 2021;43:393-405. [PMID: 33165673 DOI: 10.1007/s10529-020-03045-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chen Q, Zhao T, Xie X, Yu D, Wu L, Yu W, Sun W. MicroRNA-663 regulates the proliferation of fibroblasts in hypertrophic scars via transforming growth factor-β1. Exp Ther Med 2018;16:1311-7. [PMID: 30116380 DOI: 10.3892/etm.2018.6350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
3 Logan SM, Gupta A, Wang A, Levy RJ, Storey KB. Isoflurane and low-level carbon monoxide exposures increase expression of pro-survival miRNA in neonatal mouse heart. Cell Stress Chaperones 2021;26:541-8. [PMID: 33661504 DOI: 10.1007/s12192-021-01199-0] [Reference Citation Analysis]
4 Yang Y, Qin X, Meng X, Zhu X, Zhang X, Li Y, Zhang Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019;11:E1025. [PMID: 31694166 DOI: 10.3390/v11111025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Unterbruner K, Matthes F, Schilling J, Nalavade R, Weber S, Winter J, Krauß S. MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression. PLoS One 2018;13:e0190437. [PMID: 29293623 DOI: 10.1371/journal.pone.0190437] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
6 Algeciras L, Palanca A, Maestro D, RuizdelRio J, Villar AV. Epigenetic alterations of TGFβ and its main canonical signaling mediators in the context of cardiac fibrosis. J Mol Cell Cardiol 2021;159:38-47. [PMID: 34119506 DOI: 10.1016/j.yjmcc.2021.06.003] [Reference Citation Analysis]
7 Li Y, Liu R, Wu J, Li X. Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Theranostics 2020;10:7993-8017. [PMID: 32724454 DOI: 10.7150/thno.47826] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
8 Zhou T, Lin D, Chen Y, Peng S, Jing X, Lei M, Tao E, Liang Y. α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics 2019;11:1661-77. [DOI: 10.2217/epi-2019-0222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
9 Guo H, Pu M, Tai Y, Chen Y, Lu H, Qiao J, Wang G, Chen J, Qi X, Huang R, Tao Z, Ren J. Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ 2021;28:320-36. [PMID: 32764647 DOI: 10.1038/s41418-020-0602-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
10 Peng T, Yang F, Sun Z, Yan J. miR-19a-3p Facilitates Lung Adenocarcinoma Cell Phenotypes by Inhibiting TEK. Cancer Biother Radiopharm 2021. [PMID: 33493418 DOI: 10.1089/cbr.2020.4456] [Reference Citation Analysis]
11 Song K, Li L, Quan Q, Wei Y, Hu S. Inhibited histone deacetylase 3 ameliorates myocardial ischemia-reperfusion injury in a rat model by elevating microRNA-19a-3p and reducing cyclin-dependent kinase 2. IUBMB Life 2020;72:2696-709. [PMID: 33217223 DOI: 10.1002/iub.2402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Yu FB, Sheng J, Yu JM, Liu JH, Qin XX, Mou B. MiR-19a-3p regulates the Forkhead box F2-mediated Wnt/β-catenin signaling pathway and affects the biological functions of colorectal cancer cells. World J Gastroenterol 2020; 26(6): 627-644 [PMID: 32103872 DOI: 10.3748/wjg.v26.i6.627] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
13 Wang H, Cai J. The role of microRNAs in heart failure. Biochim Biophys Acta Mol Basis Dis 2017;1863:2019-30. [PMID: 27916680 DOI: 10.1016/j.bbadis.2016.11.034] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
14 Ragusa R, Di Molfetta A, Del Turco S, Cabiati M, Del Ry S, Basta G, Mercatanti A, Pitto L, Amodeo A, Trivella MG, Rizzo M, Caselli C. Epigenetic Regulation of Cardiac Troponin Genes in Pediatric Patients with Heart Failure Supported by Ventricular Assist Device. Biomedicines 2021;9:1409. [PMID: 34680526 DOI: 10.3390/biomedicines9101409] [Reference Citation Analysis]
15 Duan J, Yu Y, Li Y, Jing L, Yang M, Wang J, Li Y, Zhou X, Miller MR, Sun Z. Comprehensive understanding of PM2.5 on gene and microRNA expression patterns in zebrafish (Danio rerio) model. Science of The Total Environment 2017;586:666-74. [DOI: 10.1016/j.scitotenv.2017.02.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
16 Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X. MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 2017;87:412-8. [PMID: 28068631 DOI: 10.1016/j.biopha.2016.12.080] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
17 Xu J, Wu H, Chen S, Qi B, Zhou G, Cai L, Zhao L, Wei Y, Liu S. MicroRNA-30c suppresses the pro-fibrogenic effects of cardiac fibroblasts induced by TGF-β1 and prevents atrial fibrosis by targeting TGFβRII. J Cell Mol Med 2018;22:3045-57. [PMID: 29532993 DOI: 10.1111/jcmm.13548] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
18 Medzikovic L, Aryan L, Eghbali M. Connecting sex differences, estrogen signaling, and microRNAs in cardiac fibrosis. J Mol Med (Berl) 2019;97:1385-98. [PMID: 31448389 DOI: 10.1007/s00109-019-01833-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
19 Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA, Wang JX, Li PF. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. Int J Mol Sci 2017;18:E745. [PMID: 28362341 DOI: 10.3390/ijms18040745] [Cited by in Crossref: 84] [Cited by in F6Publishing: 79] [Article Influence: 16.8] [Reference Citation Analysis]
20 Wang J, Feng Y, Wang Y, Xiang D, Zhang X, Yuan F. Autophagy regulates Endothelial-Mesenchymal transition by decreasing the phosphorylation level of Smad3. Biochem Biophys Res Commun 2017;487:740-7. [PMID: 28450107 DOI: 10.1016/j.bbrc.2017.04.130] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
21 Sun T, Li MY, Li PF, Cao JM. MicroRNAs in Cardiac Autophagy: Small Molecules and Big Role. Cells 2018;7:E104. [PMID: 30103495 DOI: 10.3390/cells7080104] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 6.8] [Reference Citation Analysis]
22 Akbari Dilmaghnai N, Shoorei H, Sharifi G, Mohaqiq M, Majidpoor J, Dinger ME, Taheri M, Ghafouri-Fard S. Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother 2021;136:111240. [PMID: 33454598 DOI: 10.1016/j.biopha.2021.111240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ruan Y, Li H, Cao X, Meng S, Jia R, Pu L, Fu H, Jin Z. Inhibition of the lncRNA DANCR attenuates cardiomyocyte injury induced by oxygen-glucose deprivation via the miR-19a-3p/MAPK1 axis. Acta Biochim Biophys Sin (Shanghai) 2021;53:1377-86. [PMID: 34515297 DOI: 10.1093/abbs/gmab110] [Reference Citation Analysis]
24 Su Y, Sun Y, Tang Y, Li H, Wang X, Pan X, Liu W, Zhang X, Zhang F, Xu Y, Yan C, Ong SB, Xu D. Circulating miR-19b-3p as a Novel Prognostic Biomarker for Acute Heart Failure. J Am Heart Assoc 2021;10:e022304. [PMID: 34612058 DOI: 10.1161/JAHA.121.022304] [Reference Citation Analysis]
25 Liu G, Ma C, Yang H, Zhang PY. Transforming growth factor β and its role in heart disease. Exp Ther Med 2017;13:2123-8. [PMID: 28565818 DOI: 10.3892/etm.2017.4246] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
26 Hashem T, Kammala AK, Thaxton K, Griffin RM, Mullany K, Panettieri RA Jr, Subramanian H, Das R. CD2 Regulates Pathogenesis of Asthma Induced by House Dust Mice Extract. Front Immunol 2020;11:881. [PMID: 32477356 DOI: 10.3389/fimmu.2020.00881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Lin B, Xu J, Feng D, Wang F, Wang J, Zhao H. DUSP14 knockout accelerates cardiac ischemia reperfusion (IR) injury through activating NF-κB and MAPKs signaling pathways modulated by ROS generation. Biochemical and Biophysical Research Communications 2018;501:24-32. [DOI: 10.1016/j.bbrc.2018.04.101] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
28 Gao Y, Liu Y, Fu Y, Wang Q, Liu Z, Hu R, Yang X, Chen M. The potential regulatory role of hsa_circ_0004104 in the persistency of atrial fibrillation by promoting cardiac fibrosis via TGF-β pathway. BMC Cardiovasc Disord 2021;21:25. [PMID: 33421993 DOI: 10.1186/s12872-021-01847-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Liu Y, Yang J, Wu Q, Han R, Yan W, Yuan J, Ji X, Li Y, Yao W, Ni C. LRBA Gene Polymorphisms and Risk of Coal Workers' Pneumoconiosis: A Case-Control Study from China. Int J Environ Res Public Health 2017;14:E1138. [PMID: 28953250 DOI: 10.3390/ijerph14101138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
30 Zhang J, Wang P, Wan L, Xu S, Pang D. The emergence of noncoding RNAs as Heracles in autophagy. Autophagy. 2017;13:1004-1024. [PMID: 28441084 DOI: 10.1080/15548627.2017.1312041] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 11.4] [Reference Citation Analysis]
31 Shen J, Xing W, Gong F, Wang W, Yan Y, Zhang Y, Xie C, Fu S. MiR-150-5p retards the progression of myocardial fibrosis by targeting EGR1. Cell Cycle 2019;18:1335-48. [PMID: 31122130 DOI: 10.1080/15384101.2019.1617614] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
32 Liu YM, Ma JH, Zeng QL, Lv J, Xie XH, Pan YJ, Yu ZJ. MiR-19a Affects Hepatocyte Autophagy via Regulating lncRNA NBR2 and AMPK/PPARα in D-GalN/Lipopolysaccharide-Stimulated Hepatocytes. J Cell Biochem 2018;119:358-65. [PMID: 28586153 DOI: 10.1002/jcb.26188] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
33 Huo JY, Jiang WY, Geng J, Chen C, Zhu L, Chen R, Ge TT, Chang Q, Jiang ZX, Shan QJ. Renal denervation attenuates pressure overload-induced cardiac remodelling in rats with biphasic regulation of autophagy. Acta Physiol (Oxf) 2019;226:e13272. [PMID: 30830723 DOI: 10.1111/apha.13272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Zhao Y, Li Y, Gao Y, Yuan M, Manthari RK, Wang J, Wang J. TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food and Chemical Toxicology 2018;115:26-33. [DOI: 10.1016/j.fct.2018.02.065] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
35 Huang JH, Han TT, Li LX, Qu T, Zhang XY, Liao X, Zhong Y. Host microRNAs regulate expression of hepatitis B virus genes during transmission from patients' sperm to embryo. Reprod Toxicol 2021;100:1-6. [PMID: 33338580 DOI: 10.1016/j.reprotox.2020.11.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Adamcova M, Kawano I, Simko F. The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021;22:4762. [PMID: 33946230 DOI: 10.3390/ijms22094762] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017;8:296. [PMID: 28626422 DOI: 10.3389/fphar.2017.00296] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
38 Wu J, Xing C, Zhang L, Mao H, Chen X, Liang M, Wang F, Ren H, Cui H, Jiang A, Wang Z, Zou M, Ji Y. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis. J Cell Mol Med 2018;22:1190-201. [PMID: 29077259 DOI: 10.1111/jcmm.13393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
39 Belenchia AM, Gavini MP, Toedebusch RG, DeMarco VG, Pulakat L. Comparison of Cardiac miRNA Transcriptomes Induced by Diabetes and Rapamycin Treatment and Identification of a Rapamycin-Associated Cardiac MicroRNA Signature. Oxid Med Cell Longev. 2018;2018:8364608. [PMID: 30647817 DOI: 10.1155/2018/8364608] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
40 Chen C, Ponnusamy M, Liu C, Gao J, Wang K, Li P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. Biomed Res Int 2017;2017:1278436. [PMID: 29094041 DOI: 10.1155/2017/1278436] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 5.2] [Reference Citation Analysis]
41 Ali Sheikh MS. Diagnostic Role of Plasma MicroRNA-21 in Stable and Unstable Angina Patients and Association with Aging. Cardiol Res Pract 2020;2020:9093151. [PMID: 32351734 DOI: 10.1155/2020/9093151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Chen Y, Wang W, Chen Y, Tang Q, Zhu W, Li D, Liao L. MicroRNA-19a-3p promotes rheumatoid arthritis fibroblast-like synoviocytes via targeting SOCS3. J Cell Biochem 2019. [PMID: 30854695 DOI: 10.1002/jcb.28442] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
43 Yan Y, Chen D, Han X, Liu M, Hu W. MiRNA-19a and miRNA-19b regulate proliferation of antler cells by targeting TGFBR2. Mamm Res 2020;65:339-48. [DOI: 10.1007/s13364-019-00469-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
44 Florio MC, Magenta A, Beji S, Lakatta EG, Capogrossi MC. Aging, MicroRNAs, and Heart Failure. Current Problems in Cardiology 2020;45:100406. [DOI: 10.1016/j.cpcardiol.2018.12.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Pu Q, Lin P, Wang Z, Gao P, Qin S, Cui L, Wu M. Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. Precis Clin Med 2019;2:166-82. [PMID: 31598387 DOI: 10.1093/pcmedi/pbz019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
46 Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. Int Rev Cell Mol Biol 2017;334:207-63. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
47 Guo Y, Yang JH, Cao SD, Gao CX, He Y, Wang Y, Wan HT, Jin B. Effect of main ingredients of Danhong Injection against oxidative stress induced autophagy injury via miR-19a/SIRT1 pathway in endothelial cells. Phytomedicine 2021;83:153480. [PMID: 33548866 DOI: 10.1016/j.phymed.2021.153480] [Reference Citation Analysis]
48 Zou J, Liu Y, Li B, Zheng Z, Ke X, Hao Y, Li X, Li X, Liu F, Zhang Z. Autophagy attenuates endothelial-to-mesenchymal transition by promoting Snail degradation in human cardiac microvascular endothelial cells. Biosci Rep 2017;37:BSR20171049. [PMID: 28811357 DOI: 10.1042/BSR20171049] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
49 Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors. 2019;45:844-856. [PMID: 31418958 DOI: 10.1002/biof.1555] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
50 Ahkin Chin Tai JK, Freeman JL. Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 2020;7:559-70. [PMID: 32373477 DOI: 10.1016/j.toxrep.2020.03.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
51 Zhao XD, Qin RH, Yang JJ, Xu SS, Tao H, Ding XS, Shi KH. DNMT3A controls miR-200b in cardiac fibroblast autophagy and cardiac fibrosis. Inflamm Res 2018;67:681-90. [PMID: 29786779 DOI: 10.1007/s00011-018-1159-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
52 Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. Mol Ther Nucleic Acids 2021;23:101-18. [PMID: 33335796 DOI: 10.1016/j.omtn.2020.10.039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
53 Souma K, Shichino S, Hashimoto S, Ueha S, Tsukui T, Nakajima T, Suzuki HI, Shand FHW, Inagaki Y, Nagase T, Matsushima K. Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis. Sci Rep 2018;8:16642. [PMID: 30413725 DOI: 10.1038/s41598-018-34839-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
54 Wang Y, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, Zhu W, Wang Y, Li P. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol 2019;234:4778-86. [PMID: 30256407 DOI: 10.1002/jcp.27274] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
55 Copier CU, León L, Fernández M, Contador D, Calligaris SD. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy. Sci Rep 2017;7:13514. [PMID: 29044172 DOI: 10.1038/s41598-017-13875-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
56 Zhang B, Liu Y, Zhang J. Silencing of miR-19a-3p enhances osteosarcoma cells chemosensitivity by elevating the expression of tumor suppressor PTEN. Oncol Lett 2019;17:414-21. [PMID: 30655782 DOI: 10.3892/ol.2018.9592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 14] [Article Influence: 0.8] [Reference Citation Analysis]
57 Song W, Ghosh AC, Cheng D, Perrimon N. Endocrine Regulation of Energy Balance by Drosophila TGF-β/Activins. Bioessays 2018;40:e1800044. [PMID: 30264417 DOI: 10.1002/bies.201800044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
58 Ye YL, Yin J, Hu T, Zhang LP, Wu LY, Pang Z. Increased circulating circular RNA_103516 is a novel biomarker for inflammatory bowel disease in adult patients. World J Gastroenterol 2019; 25(41): 6273-6288 [PMID: 31749597 DOI: 10.3748/wjg.v25.i41.6273] [Cited by in CrossRef: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
59 Wang H, Yang X, Yang Q, Gong L, Xu H, Wu Z. PARP-1 inhibition attenuates cardiac fibrosis induced by myocardial infarction through regulating autophagy. Biochemical and Biophysical Research Communications 2018;503:1625-32. [DOI: 10.1016/j.bbrc.2018.07.091] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
60 Pasquier J, Ramachandran V, Abu-Qaoud MR, Thomas B, Benurwar MJ, Chidiac O, Hoarau-Véchot J, Robay A, Fakhro K, Menzies RA, Jayyousi A, Zirie M, Al Suwaidi J, Malik RA, Talal TK, Najafi-Shoushtari SH, Rafii A, Abi Khalil C. Differentially expressed circulating microRNAs in the development of acute diabetic Charcot foot. Epigenomics 2018;10:1267-78. [PMID: 29869523 DOI: 10.2217/epi-2018-0052] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
61 Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population. Sci Rep 2017;7:13589. [PMID: 29051557 DOI: 10.1038/s41598-017-14025-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
62 Yin S, Miao Z, Tan Y, Wang P, Xu X, Zhang C, Hou W, Huang J, Xu H. SPHK1-induced autophagy in peritoneal mesothelial cell enhances gastric cancer peritoneal dissemination. Cancer Med 2019;8:1731-43. [PMID: 30791228 DOI: 10.1002/cam4.2041] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
63 Saadat S, Noureddini M, Mahjoubin-Tehran M, Nazemi S, Shojaie L, Aschner M, Maleki B, Abbasi-Kolli M, Rajabi Moghadam H, Alani B, Mirzaei H. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front Cardiovasc Med 2020;7:588347. [PMID: 33569393 DOI: 10.3389/fcvm.2020.588347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Xue R, Tan W, Wu Y, Dong B, Xie Z, Huang P, He J, Dong Y, Liu C. Role of Exosomal miRNAs in Heart Failure. Front Cardiovasc Med 2020;7:592412. [PMID: 33392270 DOI: 10.3389/fcvm.2020.592412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Liu PP, Liu HH, Sun SH, Shi XX, Yang WC, Su GH, Zhao J. Aspirin alleviates cardiac fibrosis in mice by inhibiting autophagy. Acta Pharmacol Sin 2017;38:488-97. [PMID: 28216620 DOI: 10.1038/aps.2016.143] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
66 Li F, Long TY, Bi SS, Sheikh SA, Zhang CL. circPAN3 exerts a profibrotic role via sponging miR-221 through FoxO3/ATG7-activated autophagy in a rat model of myocardial infarction. Life Sci 2020;257:118015. [PMID: 32629000 DOI: 10.1016/j.lfs.2020.118015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
67 Kränkel N, Blankenberg S, Zeller T. Early detection of myocardial infarction-microRNAs right at the time? Ann Transl Med 2016;4:502. [PMID: 28149864 DOI: 10.21037/atm.2016.12.12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
68 Bie Z, Sun L, Geng C, Meng Q, Lin X, Wang Y, Wang X, Yang J. MiR-125b regulates SFRP5 expression to promote growth and activation of cardiac fibroblasts: MiR-125b regulates SFRP5 in cardiac fibroblasts. Cell Biol Int 2016;40:1224-34. [DOI: 10.1002/cbin.10677] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
69 Riquelme JA, Chavez MN, Mondaca-Ruff D, Bustamante M, Vicencio JM, Quest AF, Lavandero S. Therapeutic targeting of autophagy in myocardial infarction and heart failure. Expert Rev Cardiovasc Ther 2016;14:1007-19. [PMID: 27308848 DOI: 10.1080/14779072.2016.1202760] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
70 Bao H, Sin TK, Zhang G. Activin A induces leiomyoma cell proliferation, extracellular matrix (ECM) accumulation and myofibroblastic transformation of myometrial cells via p38 MAPK. Biochemical and Biophysical Research Communications 2018;504:447-53. [DOI: 10.1016/j.bbrc.2018.08.171] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
71 Yu QG, Zhang Y. Transforming growth factor-β1 mediates NADPH oxidase 4: A significant contributor to the pathogenesis of myocardial fibrosis. Int J Cardiol 2017;227:53-4. [PMID: 27846463 DOI: 10.1016/j.ijcard.2016.10.118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
72 Tao J, Wang J, Li C, Wang W, Yu H, Liu J, Kong X, Chen Y. MiR-216a accelerates proliferation and fibrogenesis via targeting PTEN and SMAD7 in human cardiac fibroblasts. Cardiovasc Diagn Ther 2019;9:535-44. [PMID: 32038943 DOI: 10.21037/cdt.2019.11.06] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]