Gurji HA, White DW, Hoxha B, Sun J, Olivencia-Yurvati AH, Mallet RT. Pyruvate-fortified resuscitation stabilizes cardiac electrical activity and energy metabolism during hypovolemia. World J Crit Care Med 2013; 2(4): 56-64 [PMID: 24701417 DOI: 10.5492/wjccm.v2.i4.56]
Corresponding Author of This Article
Robert T Mallet, PhD, Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, United States. robert.mallet@unthsc.edu
Research Domain of This Article
Critical Care Medicine
Article-Type of This Article
Brief Article
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Crit Care Med. Nov 4, 2013; 2(4): 56-64 Published online Nov 4, 2013. doi: 10.5492/wjccm.v2.i4.56
Pyruvate-fortified resuscitation stabilizes cardiac electrical activity and energy metabolism during hypovolemia
Hunaid A Gurji, Daniel W White, Besim Hoxha, Jie Sun, Albert H Olivencia-Yurvati, Robert T Mallet
Hunaid A Gurji, Daniel W White, Jie Sun, Albert H Olivencia-Yurvati, Robert T Mallet, Departments of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
Besim Hoxha, Robert T Mallet, Olivencia-Yurvati, Departments of Surgery, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
Albert H Olivencia-Yurvati, Robert T Mallet, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
Robert T Mallet, Institute for Aging and Alzheimer’s Research, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
Author contributions: Gurji HA, White DW, Hoxha B, Olivencia-Yurvati AH, Mallet RT designed the research; Gurji HA, White DW, Hoxha B conducted the surgical preparation and experimental protocols; Gurji HA, Sun J performed analytical measurements; Gurji HA, Sun J analyzed the data and prepared the figures; Gurji HA, Olivencia-Yurvati AH, Mallet RT wrote the manuscript.
Supported by Grant #W911NF0910086 from the United States Department of Defense; Predoctoral fellowships from the Graduate School of Biomedical Sciences, University of North Texas Health Science Center to Gurji HA and White DW
Correspondence to: Robert T Mallet, PhD, Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, United States. robert.mallet@unthsc.edu
Telephone: +1-817-7352260 Fax: +1-817-7355084
Received: May 7, 2013 Revised: July 20, 2013 Accepted: August 12, 2013 Published online: November 4, 2013 Processing time: 177 Days and 11.2 Hours
Core Tip
Core tip: In goats subjected to exsanguination-induced hypovolemia and tourniquet-imposed hindlimb ischemia-reperfusion, intravenous resuscitation with Ringer’s lactate produced marked electrocardiographic instability, lipid peroxidation and inactivation of the critical creatine kinase system, which supplies energy for membrane ion transport. In comparison with lactated Ringer’s, resuscitation enriched with the natural antioxidant and energy substrate pyruvate stabilized cardiac rhythm, prevented lipid peroxidation, preserved creatine kinase activity and augmented myocardial energy reserves. Importantly, these favorable effects persisted for at least 3.5 h after terminating pyruvate-enriched resuscitation. Thus, pyruvate-enriched resuscitation prevented creatine kinase inactivation by oxidative stress, thereby preventing cardiac rhythm disturbances after central hypovolemia.