Review
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jun 28, 2025; 31(24): 108021
Published online Jun 28, 2025. doi: 10.3748/wjg.v31.i24.108021
Table 2 Emerging deep learning approaches in gastrointestinal disease management (2022-2025)[52-77]
AI algorithm
Parameters employed/study design
Sample size, control group, validation
Outcomes
Performance
Ref.
CNN14 EUS anatomical sites; multicenter validationTraining: 1812 patients/6230 images; internal: 47 patients/1569 images; external: 131 patients/85322 imagesOutperformed novices in 11 sites; high expert agreement (kappa 084-0.98)Internal Acc 92.1-100%; external sensitivity 89.45%-99.92%/specificity 93.35%-99.79%Tian et al[52]
NNLS deconvolution + GCNNMethylation atlas (TSMA) + genome-wide density; multi-modal strategy5 tumor types + WBC training; validation = 239 low-depth cfDNAMulti-modal improves TOO in low-depth cfDNAValidation Acc 69%Nguyen et al[53]
CNN + survival MLPCT + clinical multimodal data; 5-fold CVGC patients = 1061; vs 3 SOTA methods; no controlMultimodal > single-modality; optimal OS/PFS predictionOS C-index 0.849; PFS 0.783 (surpass SOTA)Hao et al[54]
CNNHE features for HER2 status; trastuzumab responseSurgical = 300; biopsy = 101; treated = 41; no controlHER2 amplification prediction; treatment response (CR + PR vs SD + PD)Surgical AUC 0.847 (amplification)/0.903 (2 +); biopsy 0.723; treatment 0.833Wu et al[55]
DCNNHE whole-slide imaging; fibrosis stage comparisonNon-HCC = 639; HCC = 46; paired training/unpaired validationDetect HCC risk in mild fibrosis; saliency maps reveal nuclear atypia/immune infiltrationTraining Acc 81.0% (AUC = 0.80); validation 82.3% (AUC = 0.84)Nakatsuka et al[56]
Faster R-CNN modelPreoperative CT/MRI analysis; multicenter retrospective cohort (2012-2020)Total n = 1141 (PCCCL = 62, CHCC = 1079); 4:1 split (train-val vs test); CHCC cases (n = 1079) as negative controlDifferential diagnosis of rare PCCCLAccuracy: 0.962 (95%CI: 0.931-0.992); AP: PCCCL 0.908, CHCC 0.907; Recall: 0.95Liu et al[57]
TransformerEnd-to-end biomarker prediction; multicenter validationTotal n > 13k (16 CRC cohorts); resection training/biopsy validationSolved biopsy MSI diagnosis; improved interpretabilityMSI detection: Sensitivity 0.99/NPV > 0.99Wagner et al[58]
CNN + SMOTE/SVMPathomics/radiomics/immune score (CD3 +/CD8 +)/clinical; digital pathologyLung metastasis = 103; internal validationPath/radio features vs immunoscore (neg); triple independent prognosisIntegrated model: OS = 0.860/DFS = 0.875; Calib/DCA validatedWang et al[59]
INSIGHT (CNN) + wise MSI (self-attention) two-stageTumor tile classification + ResNet pre-trained + attention pooling; multicenterChinese multicenter cohort; vs 5 DL methodsOutperforms SOTA in MSI prediction; high pathologist consistencyWise MSI AUC 0.954 (0.948-0.960)Chang et al[60]
CNN + RNNMulticenter blinded trial; real-time monitoring + second observerTotal n = 946 (adenomas = 989); multicenterCADe > human in adenoma detection (sensitivity 94.6% vs 96.0%); changed 2.3% follow-upADR + 1.1%/case; Non-neoplastic + 4.9%; time + 42.6% (6.6 minutes)Sinonquel et al[61]
ANNPathological image analysis; retrospective multicenterTraining = 496 (GDPH); external validation = 150 (SYSMH)Avoided 34.9% unnecessary surgeries; outperformed United States guidelinesTraining AUC = 0.979; validation AUC = 0.978Su et al[62]
Multitask transformerPreop MRI multiparametric features; 7-center retrospectiveTotal n = 725 (train 234 + internal 58); external = 212/111/110PA-TACE benefit in high-MVI/low-survival group (P < 0.001)RFS C-index: Training 0.763/validation 0.628-0.728Wang et al[63]
Multistage DL modelsLongitudinal MRI (pre/post-TA) + clinical variables; multicenter retrospectiveTotal n = 289 (train 254 + external 35); 3 hospitalsDL clinical improved ER prediction (AUC = 0.740); High/low-risk RFS P = 0.04DL clinical AUC: 0.740 vs 0.571/0.648/0.689Kong and Li[64]
CNNClinical data + MRI radiomics; 6 time-frame predictionEarly HCC = 120 (recurrence = 44); retrospective (2005-2018)Imaging model > clinical (AUC 0.76 vs 0.68, P = 0.03)Imaging model AUC 0.71-0.85; KM P < 0.05 (2-6 years)Iseke et all[65]
RSF/ANN/decision treeInflammatory markers + ALBI + AFP + tumor size + INR; single-center retrospectiveTotal n = 808 (train 2:1 split)ANN optimal (5 years AUC = 0.85); High-risk OS HR = 7.98 (5.85-10.93)Training AUC 0.85 (0.82-0.88); validation 0.82 (0.74-0.85); P < 0.0001Zhang et al[66]
DLDCE-MRI + clinical/radiologic features; retrospective multicenterTotal n = 355 (train 251 + internal 62 + external 42); 2 centersProliferative HCC prediction; fusion model improves recurrence stratificationDL + clinical + radiologic model AUC: Training 0.99/internal 0.87/external 0.80Qu et al[67]
DenseNet169 + MLPMultiphase 25D CT + clinical features + RNA-seq; multicenter retrospectiveTotal n = 620 (TCIA + 3 centers); internal + 2 external test setsStratified RFS/OS (P < 0.001); high score links WNT/MYC/KRAS activationDLER MLP 0.891 vs DLER 0.797 vs clinical model 0.752Guo et al[68]
scSE-CatBoostMulti-site endoscopic images; CNN + scSE feature extractionTotal n = 302 (An Nan Hospital); RUT validationReal-time Helicobacter pylori detection; NPV 100%Acc 0.90; sensitivity 1.00/specificity 0.81; AUC = 0.88Lin et al[69]
Transformer + MILHE WSIs; dual-task (subtype + TMB prediction)EC = 529/918; CRC = 594/1495; vs 7 SOTA methodsStrong subtype-TMB association (fisher P < 0.001); guides immunotherapyOutperformed SOTA in both tasksWang et al[70]
GAN + ViT distillationHE/HPS staining; multi-task prognosis (OS/TTR/TRG)Internal = 258 CLM; two public datasetsTRG dichotomization. Acc 86.9-90.3%; 3-class Acc 78.5-82.1%OS C-index 0.804 (± 0.014); TTR C-index 0.735 (± 0.016)Elforaici et al[71]
Transfer learningHE WSIs analysisSegmentation = 100 WSI; validation: 4 cohorts (3 internal +1 external) + 6-month series = 217Fine-tuning improved F1 0.797-0.949 (P < 0.00001); 100% visual overlay accuracyDetection model AUC 0.959-0.978 (P < 0.00001)Khan et al[72]
DBMIA-NetGIA + EIA modules; adaptive channel graph convolution5 public datasets (CVC-Clinic DB); vs SOTA methodsEnhanced generalization94.12% dice (vs PraNet + 4.22%); leading in 6 metricsZhang et al[73]
UC-former vision transformerMulticenter retrospective study; mayo endoscopic score predictionTotal n = 768 UC patients/15120 images; internal + 3 external validationsSurpassed senior endoscopists; strong multicenter stabilityInternal Acc 90.8%; external Acc 82.4%-85.0%Qi et al[74]
MISTSelf-supervised contrastive learning + dual-stream MILTotal n = 480/666 WSI (Drum Tower); external = 273 WSI (Nanjing First)Acc comparable to pathologists (0.784 vs 0.806)External Acc 0.784Cai et al[75]
ResTransUNetGlobal context (transformer) + local features (CNN); LiTS2017/3Dircadb/Chaos/Sliver07LiTS2017/3Dircadb/Chaos/Sliver07Solved small/discontinuous region segmentation; outperformed SOTALiTS2017 dice 09535/VOE 0.0804/RVD -0.0007Ou et al[76]
GCNPathological micronecrosis analysis + multicenter datasets; GCN feature fusionTotal n = 752/3622 slides; internal (FAH-ZJUMS) + external (TCGA-LIHC)Improved prognostic stratification; precise necrosis localizationInternal + 8.18%; External + 9.02%; superior C-index vs baselineDeng et al[77]