Copyright
©The Author(s) 2025.
World J Gastroenterol. Jun 28, 2025; 31(24): 108021
Published online Jun 28, 2025. doi: 10.3748/wjg.v31.i24.108021
Published online Jun 28, 2025. doi: 10.3748/wjg.v31.i24.108021
AI algorithm | Parameters employed/study design | Sample size, control group, validation | Outcomes | Performance | Ref. |
CNN | 14 EUS anatomical sites; multicenter validation | Training: 1812 patients/6230 images; internal: 47 patients/1569 images; external: 131 patients/85322 images | Outperformed novices in 11 sites; high expert agreement (kappa 084-0.98) | Internal Acc 92.1-100%; external sensitivity 89.45%-99.92%/specificity 93.35%-99.79% | Tian et al[52] |
NNLS deconvolution + GCNN | Methylation atlas (TSMA) + genome-wide density; multi-modal strategy | 5 tumor types + WBC training; validation = 239 low-depth cfDNA | Multi-modal improves TOO in low-depth cfDNA | Validation Acc 69% | Nguyen et al[53] |
CNN + survival MLP | CT + clinical multimodal data; 5-fold CV | GC patients = 1061; vs 3 SOTA methods; no control | Multimodal > single-modality; optimal OS/PFS prediction | OS C-index 0.849; PFS 0.783 (surpass SOTA) | Hao et al[54] |
CNN | HE features for HER2 status; trastuzumab response | Surgical = 300; biopsy = 101; treated = 41; no control | HER2 amplification prediction; treatment response (CR + PR vs SD + PD) | Surgical AUC 0.847 (amplification)/0.903 (2 +); biopsy 0.723; treatment 0.833 | Wu et al[55] |
DCNN | HE whole-slide imaging; fibrosis stage comparison | Non-HCC = 639; HCC = 46; paired training/unpaired validation | Detect HCC risk in mild fibrosis; saliency maps reveal nuclear atypia/immune infiltration | Training Acc 81.0% (AUC = 0.80); validation 82.3% (AUC = 0.84) | Nakatsuka et al[56] |
Faster R-CNN model | Preoperative CT/MRI analysis; multicenter retrospective cohort (2012-2020) | Total n = 1141 (PCCCL = 62, CHCC = 1079); 4:1 split (train-val vs test); CHCC cases (n = 1079) as negative control | Differential diagnosis of rare PCCCL | Accuracy: 0.962 (95%CI: 0.931-0.992); AP: PCCCL 0.908, CHCC 0.907; Recall: 0.95 | Liu et al[57] |
Transformer | End-to-end biomarker prediction; multicenter validation | Total n > 13k (16 CRC cohorts); resection training/biopsy validation | Solved biopsy MSI diagnosis; improved interpretability | MSI detection: Sensitivity 0.99/NPV > 0.99 | Wagner et al[58] |
CNN + SMOTE/SVM | Pathomics/radiomics/immune score (CD3 +/CD8 +)/clinical; digital pathology | Lung metastasis = 103; internal validation | Path/radio features vs immunoscore (neg); triple independent prognosis | Integrated model: OS = 0.860/DFS = 0.875; Calib/DCA validated | Wang et al[59] |
INSIGHT (CNN) + wise MSI (self-attention) two-stage | Tumor tile classification + ResNet pre-trained + attention pooling; multicenter | Chinese multicenter cohort; vs 5 DL methods | Outperforms SOTA in MSI prediction; high pathologist consistency | Wise MSI AUC 0.954 (0.948-0.960) | Chang et al[60] |
CNN + RNN | Multicenter blinded trial; real-time monitoring + second observer | Total n = 946 (adenomas = 989); multicenter | CADe > human in adenoma detection (sensitivity 94.6% vs 96.0%); changed 2.3% follow-up | ADR + 1.1%/case; Non-neoplastic + 4.9%; time + 42.6% (6.6 minutes) | Sinonquel et al[61] |
ANN | Pathological image analysis; retrospective multicenter | Training = 496 (GDPH); external validation = 150 (SYSMH) | Avoided 34.9% unnecessary surgeries; outperformed United States guidelines | Training AUC = 0.979; validation AUC = 0.978 | Su et al[62] |
Multitask transformer | Preop MRI multiparametric features; 7-center retrospective | Total n = 725 (train 234 + internal 58); external = 212/111/110 | PA-TACE benefit in high-MVI/low-survival group (P < 0.001) | RFS C-index: Training 0.763/validation 0.628-0.728 | Wang et al[63] |
Multistage DL models | Longitudinal MRI (pre/post-TA) + clinical variables; multicenter retrospective | Total n = 289 (train 254 + external 35); 3 hospitals | DL clinical improved ER prediction (AUC = 0.740); High/low-risk RFS P = 0.04 | DL clinical AUC: 0.740 vs 0.571/0.648/0.689 | Kong and Li[64] |
CNN | Clinical data + MRI radiomics; 6 time-frame prediction | Early HCC = 120 (recurrence = 44); retrospective (2005-2018) | Imaging model > clinical (AUC 0.76 vs 0.68, P = 0.03) | Imaging model AUC 0.71-0.85; KM P < 0.05 (2-6 years) | Iseke et all[65] |
RSF/ANN/decision tree | Inflammatory markers + ALBI + AFP + tumor size + INR; single-center retrospective | Total n = 808 (train 2:1 split) | ANN optimal (5 years AUC = 0.85); High-risk OS HR = 7.98 (5.85-10.93) | Training AUC 0.85 (0.82-0.88); validation 0.82 (0.74-0.85); P < 0.0001 | Zhang et al[66] |
DL | DCE-MRI + clinical/radiologic features; retrospective multicenter | Total n = 355 (train 251 + internal 62 + external 42); 2 centers | Proliferative HCC prediction; fusion model improves recurrence stratification | DL + clinical + radiologic model AUC: Training 0.99/internal 0.87/external 0.80 | Qu et al[67] |
DenseNet169 + MLP | Multiphase 25D CT + clinical features + RNA-seq; multicenter retrospective | Total n = 620 (TCIA + 3 centers); internal + 2 external test sets | Stratified RFS/OS (P < 0.001); high score links WNT/MYC/KRAS activation | DLER MLP 0.891 vs DLER 0.797 vs clinical model 0.752 | Guo et al[68] |
scSE-CatBoost | Multi-site endoscopic images; CNN + scSE feature extraction | Total n = 302 (An Nan Hospital); RUT validation | Real-time Helicobacter pylori detection; NPV 100% | Acc 0.90; sensitivity 1.00/specificity 0.81; AUC = 0.88 | Lin et al[69] |
Transformer + MIL | HE WSIs; dual-task (subtype + TMB prediction) | EC = 529/918; CRC = 594/1495; vs 7 SOTA methods | Strong subtype-TMB association (fisher P < 0.001); guides immunotherapy | Outperformed SOTA in both tasks | Wang et al[70] |
GAN + ViT distillation | HE/HPS staining; multi-task prognosis (OS/TTR/TRG) | Internal = 258 CLM; two public datasets | TRG dichotomization. Acc 86.9-90.3%; 3-class Acc 78.5-82.1% | OS C-index 0.804 (± 0.014); TTR C-index 0.735 (± 0.016) | Elforaici et al[71] |
Transfer learning | HE WSIs analysis | Segmentation = 100 WSI; validation: 4 cohorts (3 internal +1 external) + 6-month series = 217 | Fine-tuning improved F1 0.797-0.949 (P < 0.00001); 100% visual overlay accuracy | Detection model AUC 0.959-0.978 (P < 0.00001) | Khan et al[72] |
DBMIA-Net | GIA + EIA modules; adaptive channel graph convolution | 5 public datasets (CVC-Clinic DB); vs SOTA methods | Enhanced generalization | 94.12% dice (vs PraNet + 4.22%); leading in 6 metrics | Zhang et al[73] |
UC-former vision transformer | Multicenter retrospective study; mayo endoscopic score prediction | Total n = 768 UC patients/15120 images; internal + 3 external validations | Surpassed senior endoscopists; strong multicenter stability | Internal Acc 90.8%; external Acc 82.4%-85.0% | Qi et al[74] |
MIST | Self-supervised contrastive learning + dual-stream MIL | Total n = 480/666 WSI (Drum Tower); external = 273 WSI (Nanjing First) | Acc comparable to pathologists (0.784 vs 0.806) | External Acc 0.784 | Cai et al[75] |
ResTransUNet | Global context (transformer) + local features (CNN); LiTS2017/3Dircadb/Chaos/Sliver07 | LiTS2017/3Dircadb/Chaos/Sliver07 | Solved small/discontinuous region segmentation; outperformed SOTA | LiTS2017 dice 09535/VOE 0.0804/RVD -0.0007 | Ou et al[76] |
GCN | Pathological micronecrosis analysis + multicenter datasets; GCN feature fusion | Total n = 752/3622 slides; internal (FAH-ZJUMS) + external (TCGA-LIHC) | Improved prognostic stratification; precise necrosis localization | Internal + 8.18%; External + 9.02%; superior C-index vs baseline | Deng et al[77] |
- Citation: Chen ZL, Wang C, Wang F. Revolutionizing gastroenterology and hepatology with artificial intelligence: From precision diagnosis to equitable healthcare through interdisciplinary practice. World J Gastroenterol 2025; 31(24): 108021
- URL: https://www.wjgnet.com/1007-9327/full/v31/i24/108021.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i24.108021