Topic Highlight Open Access
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Jul 28, 2014; 20(28): 9330-9337
Published online Jul 28, 2014. doi: 10.3748/wjg.v20.i28.9330
Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations
Sandra Milić, Davorka Lulić, Davor Štimac, Division of Gastroenterology, Department of Internal Medicine, University Hospital Rijeka, Rijeka 51000, Croatia
Author contributions: Milić S, Lulić D and Štimac D performed data acquisition and wrote the manuscript; Milić S revised the manuscript; Štimac D approved the final manuscript version.
Correspondence to: Sandra Milić, MD, PhD, Professor, Division of Gastroenterology, Department of Internal Medicine, University Hospital Rijeka, Krešimirova 42, Rijeka 51000, Croatia. smilic05@gmail.com
Telephone: +385-51-658122 Fax: +385-51-658826
Received: October 29, 2013
Revised: January 26, 2014
Accepted: March 19, 2014
Published online: July 28, 2014

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Presentation of the disease ranges from simple steatosis to non-alcoholic steatohepatitis (NASH). NAFLD is a hepatic manifestation of metabolic syndrome that includes central abdominal obesity along with other components. Up to 80% of patients with NAFLD are obese, defined as a body mass index (BMI) > 30 kg/m2. However, the distribution of fat tissue plays a greater role in insulin resistance than the BMI. The large amount of visceral adipose tissue (VAT) in morbidly obese (BMI > 40 kg/m2) individuals contributes to a high prevalence of NAFLD. Free fatty acids derived from VAT tissue, as well as from dietary sources and de novo lipogenesis, are released to the portal venous system. Excess free fatty acids and chronic low-grade inflammation from VAT are considered to be two of the most important factors contributing to liver injury progression in NAFLD. In addition, secretion of adipokines from VAT as well as lipid accumulation in the liver further promotes inflammation through nuclear factor kappa B signaling pathways, which are also activated by free fatty acids, and contribute to insulin resistance. Most NAFLD patients are asymptomatic on clinical presentation, even though some may present with fatigue, dyspepsia, dull pain in the liver and hepatosplenomegaly. Treatment for NAFLD and NASH involves weight reduction through lifestyle modifications, anti-obesity medication and bariatric surgery. This article reviews the available information on the biochemical and metabolic phenotypes associated with obesity and fatty liver disease. The relative contribution of visceral and liver fat to insulin resistance is discussed, and recommendations for clinical evaluation of affected individuals is provided.

Key Words: Fatty liver, Insulin resistance, Intra-abdominal fat, Metabolism, Non-alcoholic fatty liver disease, Obesity

Core tip: This article reviews biochemical, metabolic and clinical relationships between non-alcoholic fatty liver disease and obesity. Visceral adipose tissue influences hepatic steatosis to a greater extent than the body mass index, despite evidence that liver fat may develop independent of skeletal muscle and adipose tissue insulin resistance. Obese individuals with non-alcoholic fatty liver disease usually present with symptoms of metabolic syndrome or its components.



INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide[1]. It is comprised of a spectrum of disorders characterized by liver steatosis with > 5% of hepatocytes infiltrated with fat in individuals with no history of alcohol abuse (< 30 g/d in men and < 20 g/d in women) and no competing etiologies for hepatic steatosis[2,3]. The presentation of the disease ranges from what can be considered as “silent liver disease”, or fatty steatosis, to non-alcoholic steatohepatitis (NASH)[4]. Approximately 10%-25% of patients with silent liver disease develop NASH, and 5%-8% of those will develop liver cirrhosis within 5 years[2,5]. Furthermore, 12.8% of patients with liver cirrhosis will develop hepatocellular carcinoma (HCC) within 3 years[6]. NASH is considered to be a major cause of cryptogenic cirrhosis as 70% of patients have risk factors for NAFLD[7], including metabolic syndrome and its components, a sedentary lifestyle and a high-fat diet (HFD)[8,9]. NAFLD is also associated with an increased risk for developing cardiovascular disease, insulin resistance (IR), type 2 diabetes (T2D), obesity, chronic kidney disease, post-operative complications after major liver surgery and colorectal cancer[10-12]. The prevalence of NAFLD is influenced by age, gender, ethnicity, and the presence of sleep apnea and endocrine dysfunctions (hypothyroidism, hypopituitarism, hypogonadsim, and polycystic ovary syndrome)[13,14].

Obesity is a chronic disease defined by a body mass index (BMI) > 30 kg/m2, and morbid obesity, one of the most rapidly growing subgroups, is defined as a BMI > 40 kg/m2[15]. Its prevalence is increasing in adults and children, and has been described by the World Health Organization as a global epidemic with an estimated 500 million obese adults and 1.5 billion overweight or obese individuals worldwide[16,17]. Obesity is associated with an overall increase in mortality and a decrease in lifespan of up to 20 years[18]. Considered as a state of chronic low-grade inflammation, obesity has been associated with complications such as T2D, cardiovascular disease, hypertension, stroke, gallbladder disease, osteoarthritis, and psychosocial problems[18,19]. Obesity has also been associated with a spectrum of cancer types (colon, breast, endometrium, kidney, esophagus, stomach, pancreas and gallbladder), and together with IR, represents a risk factor for developing HCC[20].

NAFLD is strongly linked to obesity, with a reported prevalence as high as 80% in obese patients and only 16% in individuals with a normal BMI and without metabolic risk factors[21,22]. Fatty liver severity in the morbidly obese also correlates with the degree of impaired glycemic status[23]. Hepatic steatosis is correlated with BMI, but is more closely associated with visceral adiposity (measured as waist circumference), as visceral adipose tissue (VAT) is more lipolitically active on a per unit weight basis than subcutaneous fat[24-26]. However, Stefan et al[27] identified a form of metabolically benign obesity where insulin sensitive obese individuals have a lower percentage of accumulated liver fat compared to IR obese subjects. This implies that the prevention and reduction of hepatic fat accumulation may lower IR even in subjects with increased adiposity[27,28].

BIOCHEMICAL PRESENTATION

Both the liver and VAT contain hepatocytes and adipocytes in close proximity to immune cells (natural killer and natural killer T cells), hepatic stellate cells, Kupffer cells, endothelial cells and macrophages, with prompt access to blood vessels and similar biochemical signaling pathways[29,30]. In the liver, the inhibitor of nuclear factor kappa-B kinase subunit beta/nuclear factor kappa-B (IKK-β/NF-κB) signaling pathway is activated by obesity and a HFD. This pathway is associated with the chronic inflammation that occurs in hepatic steatosis, as transgenic mice selectively expressing constitutively active IKK-â in hepatocytes demonstrated subacute inflammation in a study by Cai et al[31]. Furthermore, the hepatic production of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and IL-1 β were increased in these mice to a similar extent as those induced by a HFD in wildtype mice, indicating that lipid accumulation in the liver leads to subacute hepatic inflammation through NF-êB activation and downstream cytokine production. Free fatty acids (FFAs) are able to activate this pathway in the liver, and increase hepatic diacylglycerol (DAG) content, the activity of protein kinase C-delta and plasma levels of monocyte chemoattractant protein-1 (MCP-1), thus explaining the VAT-induced FFA increase in hepatic circulation that leads to chronic low-grade inflammation and IR in fatty liver[32]. Overexpression in mice of MCP-1, a high-affinity ligand for the C-C motif chemokine receptor-2, contributes to macrophage infiltration into adipose tissue, IR, and hepatic steatosis associated with obesity[33].

Increased lipid metabolites such as DAG can cause IR by interfering with the ability of insulin to phosphorylate insulin receptor substrate-2 through activation of protein kinase C-epsilon[34]. In a murine model of HFD-induced NAFLD, paradoxical lowering of hepatic DAG content by the inhibition of diglyceride acyltransferase 2, an enzyme that catalyzes the formation of triglycerides from DAG and acyl-CoA, protected against fat-induced hepatic IR and improved hepatic steatosis, hepatic insulin signaling, and in vivo hepatic insulin sensitivity[35]. However, this inhibition increases circulating levels of FFAs, cytochrome P4502E1, and other markers of lipid peroxidation/oxidant stress, resulting in lobular necroinflammation and fibrosis, suggesting that the accumulation of triglycerides may be a protective mechanism to prevent progressive liver damage in NAFLD[36]. Also, inhibition of suppressors of cytokine signaling (SOCS) in obese subjects with persistently elevated cytokine levels improves insulin sensitivity, normalizes increased expression of sterol regulatory element binding protein-1c, the key regulator of fatty acid synthesis in liver, and dramatically ameliorates hepatic steatosis and hypertriglyceridemia[37]. Furthermore, FFAs activate c-Jun N-terminal kinase 1, resulting in the secretion of IL-6 by adipose tissue, which may lead to increased expression of liver SOCS-3[38,39].

VAT is also a source of a number of secreted adipocyte-derived cytokines called adipokines[40]. The most well described adipokines are adiponectin, an insulin sensitizer, and leptin, a hormone mainly secreted by adipocytes[41], which play functional roles in NAFLD pathogenesis. Obesity is considered a state of central and peripheral leptin resistance, and obese individuals, as well as individuals with NAFLD and NASH, have higher circulating levels of leptin[42-44]. Leptin regulates energy intake and energy expenditure, metabolism and reproductive function[45], and also prevents lipid accumulation in non-adipose tissues, such as liver[41]. Leptin may play an important role in improving hepatic IR as it suppresses stearoyl-CoA desaturase activity, an enzyme that plays an important role in metabolism and catalyzes the rate-limiting reaction of monounsaturated FA synthesis[46]. Leptin indirectly mediates hepatic stellate cell activation and liver fibrosis in animals by inducing the production of transforming growth factor-β and connective tissue growth factor in Kupffer cells[45].

Adipose tissue macrophages secrete high amounts of TNF-α and IL-6, which suppress the production of adiponectin[47,48]. The decreased levels of circulating adiponectin in NAFLD are related to hepatic IR and to the amount of liver fat[49]. Adiponectin acts as a modulator of the inflammatory response, as it increases liver fat oxidation by inactivating acetyl-CoA carboxylase and activating AMP-activated protein kinase, and by enhancing expression of the peroxisome proliferator-activated receptor-α gene[49,50]. Adiponectin also decreases the activity of another enzyme involved in FA synthesis, FA synthase[51]. An additional source of inflammatory mediators has been described that may play a role in NAFLD pathogenesis, such as from gut-derived portal endotoxemia[52]. Consumption of high amounts of refined sugar and saturated fat may cause derangement of the gut flora[53]. Small intestinal bacterial overgrowth and translocation result in excessive ethanol production and release of bacterial lipopolysaccharides[54,55]. Both ethanol and lipopolysaccharides induce hepatic inflammation by activating TNF-α production in Kupffer cells[56].

Other adipokines have more recently been implicated in NAFLD. A study by Pagano et al[57] found higher levels of circulating resistin in one group of patients with NAFLD compared with lean and obese controls, though other studies report varying levels. Visfatin, a protein preferentially expressed in VAT, can predict the presence of portal inflammation in NAFLD patients[58]. In addition, circulating levels of omentin and adipoline, released by VAT stromovascular cells, are increased in patients with NAFLD and predict hepatocyte ballooning[59].

METABOLIC PRESENTATION

The liver plays a central role in lipid metabolism and imports serum FFAs and manufactures, stores and exports lipids and lipoproteins[60]. In the hepatocytes, FFAs can be metabolized by β-oxidation for the generation of ATP[61], or by esterification for the production of triglycerides that are either stored in lipid droplets within hepatocytes, or packaged and released into the blood as very low-density lipoprotein particles. FFAs are derived from three distinct sources: dietary sources, de novo lipogenesis (DNL) from carbohydrates or amino acids, and release from lipids stored in VAT or subcutaneous fat[34,62]. Hepatic fat from adipose tissue lipolysis, or from lipoproteins hydrolyzed above a rate that can be taken up by adipose tissue, accounts for 60% of FFAs, with 25% from DNL, and 15% from dietary sources[63].

The increased lipolysis in VAT results in release of excess FFAs into the portal vein[64]. Isotope dilution/hepatic vein catheterization techniques to measure this release showed that the lipolytic contribution of FFA was 5%-10% in subjects with a normal BMI and up to 30% in individuals with greater amounts of VAT[65]. In the fasting state, hepatic FFAs are predominantly delivered by systemic circulation[63], with an increase in portal supply after a meal[66]. When released into portal circulation, FFAs are then taken up by hepatocytes[64] mainly through long chain fatty acid synthetase activity provided by members of the FA transporter protein family[67]. Once within the hepatocyte, FFAs are bound to coenzyme A as fatty acyl-CoAs to form hepatic triglycerides and stimulate the reduction of insulin-induced glucose uptake and induce intracellular inflammation[64,68,69]. However, high levels of FFAs can induce intracellular inflammation and IR without being converted to fatty acyl-CoAs[70].

In the process of DNL, excess glucose is released into the hepatic acetyl-CoA pool by glycolysis of carbohydrates for the production and storage of triglycerides[71]. DNL provides 5%-10% of the hepatic triglyceride pool in the fasting state, with an increased contribution in IR individuals[65,72]. DNL is modified by total energy intake, dietary fat to carbohydrate ratio, and glucose and insulin concentration[73]. Thus, the hyperinsulinemia and hyperglycemia that occur with IR create an imbalance in lipid input relative to output and promote hepatic steatosis[61]. The potent suppressive effect of insulin on hormone-sensitive lipase, the principal regulator of FFA release from VAT, is impaired in IR resulting in an increased efflux of FFAs[74]. Hyperinsulinemia leads to an upregulation of transcription factors regulating DNL and an inhibition of FFA β-oxidation, further promoting hepatic fat accumulation[35,64]. However, it has not yet been determined whether fatty liver results from IR of adipose tissue and skeletal muscle or from alteration of hepatic insulin signaling[64]. Despite the role of VAT in liver fat accumulation through direct hepatic exposure to excess FFAs in the portal circulation, liver fat may be involved in IR in the absence of VAT, presumably by the secretion of hepatokines[75]. Seppälä-Lindroos et al[76] concluded that liver fat correlates with IR independent of BMI and visceral adiposity. Fatty liver has also been observed in IR mice lacking VAT and subcutaneous fat and in IR humans with lipodystrophies[77,78]. Furthermore, metabolic syndrome was more strongly associated with VAT at lower levels of obesity, and with liver fat at higher obesity levels, independent of each other and of overall adiposity[75]. Hepatic fat accumulation is a major determinant in T2D, which further contributes not only to hepatic steatosis level, but also to progressive liver damage in NASH, fibrosis, cirrhosis and HCC[79].

Similar to the adipose tissue inflammation after adipocyte lipid accumulation, subacute inflammatory response in the liver might be induced by hepatic steatosis, involving oxidative stress in the endoplasmic reticulum (ER)[64,80,81]. ER stress in liver and adipose tissue is induced by nutrient fluctuations and excess lipid levels in genetically or HFD-induced obese mice[64,82]. Subacute inflammation, together with IR, hepatic steatosis, oxidative stress and impaired adipocytokine ratios, provide a favorable environment for HCC development by promoting cell growth kinetics and DNA damage[79]. Furthermore, hepatocyte apoptosis induction, inflammatory cell invasion and activation, and fibrogenesis lead to cirrhosis, and possibly to NASH-related HCC[20].

FA β-oxidation, which occurs in liver mitochondria[61], may be impaired by the increased FFA load in NAFLD, resulting in the generation of reactive oxygen species[83]. The resulting oxidative stress leads to liver injury, inflammation and the initiation and progression of fibrosis[32]. Insufficient mitochondrial function along with structural abnormalities such as enlarged mitochondria, loss of mitochondrial cristae and presence of paracrystalline inclusion bodies, have been observed at all successive steps leading to NASH[84].

CLINICAL PRESENTATION

NAFLD was initially thought to be more prevalent in women, though opposing results have been reported[85]. Affected patients typically present between the fourth and sixth decade of life and are often overweight or obese[40]. The majority of NAFLD patients are clinically asymptomatic, though some may present with fatigue, dyspepsia, dull pain in the liver and hepatosplenomegaly[86]. Elevated liver enzymes are detected in approximately 20% of NAFLD patients[86]. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels can be normal or moderately elevated (1.5 to 2 times the upper normal limit) with an AST/ALT ratio < 1, indicating that these enzymes are poor markers of fatty liver[87,88]. In a large study by Marchesini et al[89] including 799 obese subjects, median ALT and AST levels increased with obesity class and exceeded normal limits in 21% of subjects. Furthermore, alkaline phosphatase and gamma-glutamyl transpeptidase levels may vary, but independently of BMI[90]. Stranges et al[91] also concluded that BMI was not a reliable indicator, and found that abdominal height was consistently a better correlate of ALT and gammaglutamyl transpeptidase levels in unrecognized fatty liver.

Low adiponectin levels are closely associated with non-alcoholic hepatic steatosis in healthy obese individuals[92]. Shimada et al[93] reported that the combined evaluation of the serum adiponectin level, homeostasis assessment model-insulin resistance score, and serum type IV collagen 7S level can predict 90% of early-stage NASH cases. Other metabolic markers that should be evaluated include the pro-atherogenic serum lipid profile, uric acid (20% of patients with NAFLD have hyperuricemia), urine microalbumin, high-sensitivity C-reactive protein, serum ferritin levels (1.5 times higher than normal in NASH), as well as fasting glucose, insulin, proinsulin and C-peptide levels[40,87]. Targher et al[94] have found that plasma concentrations of high-sensitivity C-reactive protein, fibrinogen, and plasminogen activator inhibitor-1 activity are lower in non-obese healthy individuals, intermediate in overweight non-steatotic subjects, and highest in overweight patients with biopsy-proven NASH. In addition, variations in the intestinal microbiota have recently been linked both to obesity and NAFLD[87]. A study by Mouzaki et al[95] identified a greater fecal level of Clostridium coccoides and a lower percentage of Bacteroidetes in NASH patients as compared to both simple steatosis and healthy control groups with lower BMIs.

Hepatic steatosis can be detected using noninvasive methods such as ultrasonography, computed tomographic scanning, magnetic resonance tomography and proton magnetic resonance spectroscopy, which is considered more accurate for measuring liver fat as it is a quantitative rather than qualitative or semiquantitative method[96]. The most available method, ultrasonography, has sensitivity of 100% and specificity of 90% when fat on liver biopsy ≥ 20%[97], though technical difficulties lead to unreliable results in morbidly obese patients[40]. Transient elastography (fibroscan) can be used to measure liver stiffness, which is a surrogate marker for fibrosis[87]. However, as noninvasive procedures cannot distinguish simple steatosis from NASH, liver biopsy is considered the gold standard for NAFLD diagnosis[87].

A study by Ciupińska-Kajor et al[98] reported that morbid obesity is associated with a higher prevalence of more advanced fibrosis, confirming that severe fibrosis and cirrhosis are more common among morbidly obese individuals with NAFLD. Accordingly, the treatment for NAFLD and NASH is focused on weight reduction through lifestyle modifications, anti-obesity medication and bariatric surgery[99]. In addition to significant weight loss, bariatric surgery promotes improvement in symptoms of metabolic syndrome in most obese patients with NAFLD, including T2D and pathological liver histological features such as grade of steatosis, hepatic inflammation, and fibrosis[99-101].

CONCLUSION

Obesity reflects a generalized proinflammatory state with high risk for metabolic comorbidities, such as NAFLD, that are highly influenced by the distribution of adipose tissue. Evidence suggests that VAT is directly associated with the development and progression of NAFLD. The most important pathological mechanisms in hepatic steatosis involve increased VAT secretion of proinflammatory cytokines and adipokines and release of FFAs into the portal system and systemic circulation, causing dyslipidemia and systemic IR. Obese patients with NAFLD usually do not present with specific symptoms besides a high BMI, metabolic syndrome manifestations and normal or moderately elevated liver enzyme levels. These patients should be followed in clinical practice for the development of diabetes and HCC, via ultrasound and alpha-fetoprotein every six months. Treatment should be centered on weight loss, exercise, diet and lifestyle changes, which should also be evaluated after six months. Furthermore, blood and platelet counts, as well as liver biochemical tests and prothrombin time should be evaluated twice per year, with screening for cardiovascular risk every one to two years. Importantly, staging of liver damage by liver biopsy, or newer non-invasive methods like transient elastography, if available, should be performed every three to five years.

Footnotes

P- Reviewer: Krupp D, Lonardo A S- Editor: Qi Y L- Editor: A E- Editor: Ma S

References
1.  Mavrogiannaki AN, Migdalis IN. Nonalcoholic Fatty liver disease, diabetes mellitus and cardiovascular disease: newer data. Int J Endocrinol. 2013;2013:450639.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 48]  [Cited by in F6Publishing: 55]  [Article Influence: 5.0]  [Reference Citation Analysis (1)]
2.  Milić S, Stimac D. Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Dig Dis. 2012;30:158-162.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 129]  [Cited by in F6Publishing: 138]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
3.  Petta S, Muratore C, Craxì A. Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis. 2009;41:615-625.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 188]  [Cited by in F6Publishing: 192]  [Article Influence: 12.8]  [Reference Citation Analysis (1)]
4.  Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, Ratziu V, McCullough A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology. 2011;54:344-353.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 514]  [Cited by in F6Publishing: 537]  [Article Influence: 41.3]  [Reference Citation Analysis (0)]
5.  Ekstedt M, Franzén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, Kechagias S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865-873.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1647]  [Cited by in F6Publishing: 1624]  [Article Influence: 90.2]  [Reference Citation Analysis (0)]
6.  White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012;10:1342-1359.e2.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
7.  Caldwell SH, Oelsner DH, Iezzoni JC, Hespenheide EE, Battle EH, Driscoll CJ. Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease. Hepatology. 1999;29:664-669.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 781]  [Cited by in F6Publishing: 727]  [Article Influence: 29.1]  [Reference Citation Analysis (0)]
8.  Ortiz-Lopez C, Lomonaco R, Orsak B, Finch J, Chang Z, Kochunov VG, Hardies J, Cusi K. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care. 2012;35:873-878.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 176]  [Cited by in F6Publishing: 178]  [Article Influence: 14.8]  [Reference Citation Analysis (0)]
9.  Souza MR, Diniz Mde F, Medeiros-Filho JE, Araújo MS. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease. Arq Gastroenterol. 2012;49:89-96.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 121]  [Cited by in F6Publishing: 136]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
10.  Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330-344.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1066]  [Cited by in F6Publishing: 1163]  [Article Influence: 105.7]  [Reference Citation Analysis (0)]
11.  Lonardo A, Sookoian S, Chonchol M, Loria P, Targher G. Cardiovascular and systemic risk in nonalcoholic fatty liver disease - atherosclerosis as a major player in the natural course of NAFLD. Curr Pharm Des. 2013;19:5177-5192.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
12.  Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H, Svegliati-Baroni G. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 2010;42:320-330.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 330]  [Cited by in F6Publishing: 344]  [Article Influence: 24.6]  [Reference Citation Analysis (0)]
13.  Loria P, Carulli L, Bertolotti M, Lonardo A. Endocrine and liver interaction: the role of endocrine pathways in NASH. Nat Rev Gastroenterol Hepatol. 2009;6:236-247.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 97]  [Cited by in F6Publishing: 108]  [Article Influence: 7.2]  [Reference Citation Analysis (0)]
14.  Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274-285.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2065]  [Cited by in F6Publishing: 2143]  [Article Influence: 164.8]  [Reference Citation Analysis (0)]
15.  Kubik JF, Gill RS, Laffin M, Karmali S. The impact of bariatric surgery on psychological health. J Obes. 2013;2013:837989.  [PubMed]  [DOI]  [Cited in This Article: ]
16.  Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253.  [PubMed]  [DOI]  [Cited in This Article: ]
17.  Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 2011;377:557-567.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2897]  [Cited by in F6Publishing: 2832]  [Article Influence: 217.8]  [Reference Citation Analysis (1)]
18.  Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289:187-193.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1546]  [Cited by in F6Publishing: 1371]  [Article Influence: 65.3]  [Reference Citation Analysis (0)]
19.  Kaplan MS, Huguet N, Newsom JT, McFarland BH, Lindsay J. Prevalence and correlates of overweight and obesity among older adults: findings from the Canadian National Population Health Survey. J Gerontol A Biol Sci Med Sci. 2003;58:1018-1030.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 92]  [Cited by in F6Publishing: 100]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
20.  Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56:952-964.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 593]  [Cited by in F6Publishing: 633]  [Article Influence: 52.8]  [Reference Citation Analysis (0)]
21.  Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140:124-131.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1522]  [Cited by in F6Publishing: 1520]  [Article Influence: 116.9]  [Reference Citation Analysis (1)]
22.  Bellentani S, Saccoccio G, Masutti F, Crocè LS, Brandi G, Sasso F, Cristanini G, Tiribelli C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med. 2000;132:112-117.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 842]  [Cited by in F6Publishing: 840]  [Article Influence: 35.0]  [Reference Citation Analysis (0)]
23.  Silverman JF, O’Brien KF, Long S, Leggett N, Khazanie PG, Pories WJ, Norris HT, Caro JF. Liver pathology in morbidly obese patients with and without diabetes. Am J Gastroenterol. 1990;85:1349-1355.  [PubMed]  [DOI]  [Cited in This Article: ]
24.  Hsiao TJ, Chen JC, Wang JD. Insulin resistance and ferritin as major determinants of nonalcoholic fatty liver disease in apparently healthy obese patients. Int J Obes Relat Metab Disord. 2004;28:167-172.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 76]  [Cited by in F6Publishing: 79]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
25.  Thamer C, Machann J, Haap M, Stefan N, Heller E, Schnödt B, Stumvoll M, Claussen C, Fritsche A, Schick F. Intrahepatic lipids are predicted by visceral adipose tissue mass in healthy subjects. Diabetes Care. 2004;27:2726-2729.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 54]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
26.  Mårin P, Andersson B, Ottosson M, Olbe L, Chowdhury B, Kvist H, Holm G, Sjöström L, Björntorp P. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism. 1992;41:1242-1248.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 227]  [Cited by in F6Publishing: 227]  [Article Influence: 7.1]  [Reference Citation Analysis (0)]
27.  Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, Balletshofer B, Machicao F, Fritsche A, Häring HU. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168:1609-1616.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 744]  [Cited by in F6Publishing: 741]  [Article Influence: 46.3]  [Reference Citation Analysis (1)]
28.  Stefan N, Häring HU. The metabolically benign and malignant fatty liver. Diabetes. 2011;60:2011-2017.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 136]  [Cited by in F6Publishing: 134]  [Article Influence: 10.3]  [Reference Citation Analysis (0)]
29.  Wree A, Kahraman A, Gerken G, Canbay A. Obesity affects the liver - the link between adipocytes and hepatocytes. Digestion. 2011;83:124-133.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 146]  [Cited by in F6Publishing: 149]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
30.  Lonardo A, Caldwell SH, Loria P. Clinical physiology of NAFLD: a critical overview of pathogenesis and treatment. Expert Rev Endocrinol Metab. 2010;5:403-423.  [PubMed]  [DOI]  [Cited in This Article: ]
31.  Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183-190.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1612]  [Cited by in F6Publishing: 1671]  [Article Influence: 87.9]  [Reference Citation Analysis (0)]
32.  Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54:3458-3465.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 387]  [Cited by in F6Publishing: 377]  [Article Influence: 19.8]  [Reference Citation Analysis (0)]
33.  Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116:1494-1505.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1843]  [Cited by in F6Publishing: 1909]  [Article Influence: 106.1]  [Reference Citation Analysis (0)]
34.  Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest. 2008;118:829-838.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 838]  [Cited by in F6Publishing: 877]  [Article Influence: 54.8]  [Reference Citation Analysis (0)]
35.  Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K, Kim S, Distefano A, Samuel VT, Neschen S. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem. 2007;282:22678-22688.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 278]  [Cited by in F6Publishing: 289]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
36.  Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366-1374.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 730]  [Cited by in F6Publishing: 736]  [Article Influence: 43.3]  [Reference Citation Analysis (0)]
37.  Ueki K, Kondo T, Tseng YH, Kahn CR. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA. 2004;101:10422-10427.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 287]  [Cited by in F6Publishing: 282]  [Article Influence: 14.1]  [Reference Citation Analysis (0)]
38.  Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, Barrett T, Kim JK, Davis RJ. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322:1539-1543.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 440]  [Cited by in F6Publishing: 453]  [Article Influence: 28.3]  [Reference Citation Analysis (0)]
39.  Quehenberger O, Dennis EA. The human plasma lipidome. N Engl J Med. 2011;365:1812-1823.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 345]  [Cited by in F6Publishing: 309]  [Article Influence: 23.8]  [Reference Citation Analysis (0)]
40.  Monsour HP, Frenette CT, Wyne K. Fatty liver: a link to cardiovascular disease--its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8:21-25.  [PubMed]  [DOI]  [Cited in This Article: ]
41.  Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17:2801-2811.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 98]  [Reference Citation Analysis (0)]
42.  Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med. 1999;130:671-680.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 381]  [Cited by in F6Publishing: 363]  [Article Influence: 14.5]  [Reference Citation Analysis (0)]
43.  Chitturi S, Farrell G, Frost L, Kriketos A, Lin R, Fung C, Liddle C, Samarasinghe D, George J. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36:403-409.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 247]  [Cited by in F6Publishing: 257]  [Article Influence: 11.7]  [Reference Citation Analysis (0)]
44.  Huang XD, Fan Y, Zhang H, Wang P, Yuan JP, Li MJ, Zhan XY. Serum leptin and soluble leptin receptor in non-alcoholic fatty liver disease. World J Gastroenterol. 2008;14:2888-2893.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 56]  [Cited by in F6Publishing: 60]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
45.  Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM, Brigstock D, George J. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 2009;137:713-723.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
46.  Biddinger SB, Miyazaki M, Boucher J, Ntambi JM, Kahn CR. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes. 2006;55:2032-2041.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 79]  [Cited by in F6Publishing: 83]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
47.  Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796-1808.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 268]  [Cited by in F6Publishing: 3491]  [Article Influence: 174.6]  [Reference Citation Analysis (0)]
48.  Zoico E, Garbin U, Olioso D, Mazzali G, Fratta Pasini AM, Di Francesco V, Sepe A, Cominacini L, Zamboni M. The effects of adiponectin on interleukin-6 and MCP-1 secretion in lipopolysaccharide-treated 3T3-L1 adipocytes: role of the NF-kappaB pathway. Int J Mol Med. 2009;24:847-851.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 42]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
49.  Bugianesi E, Pagotto U, Manini R, Vanni E, Gastaldelli A, de Iasio R, Gentilcore E, Natale S, Cassader M, Rizzetto M. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. J Clin Endocrinol Metab. 2005;90:3498-3504.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 302]  [Cited by in F6Publishing: 308]  [Article Influence: 16.2]  [Reference Citation Analysis (0)]
50.  Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc Cc, Itani SI, Lodish HF, Ruderman NB. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci USA. 2002;99:16309-16313.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 724]  [Cited by in F6Publishing: 706]  [Article Influence: 32.1]  [Reference Citation Analysis (0)]
51.  Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91-100.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 36]  [Cited by in F6Publishing: 377]  [Article Influence: 18.0]  [Reference Citation Analysis (0)]
52.  Day CP. From fat to inflammation. Gastroenterology. 2006;130:207-210.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 292]  [Cited by in F6Publishing: 295]  [Article Influence: 16.4]  [Reference Citation Analysis (0)]
53.  Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 1998;42:2-7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 285]  [Cited by in F6Publishing: 296]  [Article Influence: 11.4]  [Reference Citation Analysis (0)]
54.  Mezey E, Imbembo AL, Potter JJ, Rent KC, Lombardo R, Holt PR. Endogenous ethanol production and hepatic disease following jejunoileal bypass for morbid obesity. Am J Clin Nutr. 1975;28:1277-1283.  [PubMed]  [DOI]  [Cited in This Article: ]
55.  Billiar TR, Maddaus MA, West MA, Curran RD, Wells CA, Simmons RL. Intestinal gram-negative bacterial overgrowth in vivo augments the in vitro response of Kupffer cells to endotoxin. Ann Surg. 1988;208:532-540.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 48]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
56.  Solga SF, Diehl AM. Non-alcoholic fatty liver disease: lumen-liver interactions and possible role for probiotics. J Hepatol. 2003;38:681-687.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 132]  [Cited by in F6Publishing: 143]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
57.  Pagano C, Soardo G, Pilon C, Milocco C, Basan L, Milan G, Donnini D, Faggian D, Mussap M, Plebani M. Increased serum resistin in nonalcoholic fatty liver disease is related to liver disease severity and not to insulin resistance. J Clin Endocrinol Metab. 2006;91:1081-1086.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 132]  [Cited by in F6Publishing: 133]  [Article Influence: 7.4]  [Reference Citation Analysis (0)]
58.  Aller R, de Luis DA, Izaola O, Sagrado MG, Conde R, Velasco MC, Alvarez T, Pacheco D, González JM. Influence of visfatin on histopathological changes of non-alcoholic fatty liver disease. Dig Dis Sci. 2009;54:1772-1777.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 47]  [Cited by in F6Publishing: 44]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
59.  Yilmaz Y, Yonal O, Kurt R, Alahdab YO, Eren F, Ozdogan O, Celikel CA, Imeryuz N, Kalayci C, Avsar E. Serum levels of omentin, chemerin and adipsin in patients with biopsy-proven nonalcoholic fatty liver disease. Scand J Gastroenterol. 2011;46:91-97.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 77]  [Cited by in F6Publishing: 85]  [Article Influence: 6.5]  [Reference Citation Analysis (0)]
60.  Mirza MS. Obesity, Visceral Fat, and NAFLD: Querying the Role of Adipokines in the Progression of Nonalcoholic Fatty Liver Disease. ISRN Gastroenterol. 2011;2011:592404.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 79]  [Cited by in F6Publishing: 96]  [Article Influence: 7.4]  [Reference Citation Analysis (0)]
61.  Asaoka Y, Terai S, Sakaida I, Nishina H. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech. 2013;6:905-914.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 64]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
62.  Koutsari C, Jensen MD. Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity. J Lipid Res. 2006;47:1643-1650.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 141]  [Cited by in F6Publishing: 135]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
63.  Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343-1351.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2112]  [Cited by in F6Publishing: 2336]  [Article Influence: 122.9]  [Reference Citation Analysis (0)]
64.  Stefan N, Kantartzis K, Häring HU. Causes and metabolic consequences of Fatty liver. Endocr Rev. 2008;29:939-960.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 383]  [Cited by in F6Publishing: 389]  [Article Influence: 24.3]  [Reference Citation Analysis (0)]
65.  Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113:1582-1588.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 586]  [Cited by in F6Publishing: 595]  [Article Influence: 29.8]  [Reference Citation Analysis (0)]
66.  Parks EJ, Hellerstein MK. Thematic review series: patient-oriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J Lipid Res. 2006;47:1651-1660.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 65]  [Cited by in F6Publishing: 68]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
67.  Ehehalt R, Füllekrug J, Pohl J, Ring A, Herrmann T, Stremmel W. Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins. Mol Cell Biochem. 2006;284:135-140.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 89]  [Cited by in F6Publishing: 90]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
68.  Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55 Suppl 2:S9-S15.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 625]  [Cited by in F6Publishing: 587]  [Article Influence: 32.6]  [Reference Citation Analysis (0)]
69.  Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111-1119.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1714]  [Cited by in F6Publishing: 2246]  [Article Influence: 118.2]  [Reference Citation Analysis (0)]
70.  Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015-3025.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2565]  [Cited by in F6Publishing: 2597]  [Article Influence: 144.3]  [Reference Citation Analysis (0)]
71.  Knebel B, Haas J, Hartwig S, Jacob S, Köllmer C, Nitzgen U, Muller-Wieland D, Kotzka J. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One. 2012;7:e31812.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
72.  Schwarz JM, Linfoot P, Dare D, Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr. 2003;77:43-50.  [PubMed]  [DOI]  [Cited in This Article: ]
73.  Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J Clin Invest. 1999;104:1087-1096.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 247]  [Cited by in F6Publishing: 248]  [Article Influence: 9.9]  [Reference Citation Analysis (0)]
74.  Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23:201-229.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 239]  [Cited by in F6Publishing: 208]  [Article Influence: 9.5]  [Reference Citation Analysis (0)]
75.  Kim LJ, Nalls MA, Eiriksdottir G, Sigurdsson S, Launer LJ, Koster A, Chaves PH, Jonsdottir B, Garcia M, Gudnason V. Associations of visceral and liver fat with the metabolic syndrome across the spectrum of obesity: the AGES-Reykjavik study. Obesity (Silver Spring). 2011;19:1265-1271.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 44]  [Cited by in F6Publishing: 46]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
76.  Seppälä-Lindroos A, Vehkavaara S, Häkkinen AM, Goto T, Westerbacka J, Sovijärvi A, Halavaara J, Yki-Järvinen H. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab. 2002;87:3023-3028.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 239]  [Cited by in F6Publishing: 198]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
77.  Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, Feigenbaum L, Lee E, Aoyama T, Eckhaus M. Life without white fat: a transgenic mouse. Genes Dev. 1998;12:3168-3181.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 604]  [Cited by in F6Publishing: 562]  [Article Influence: 21.6]  [Reference Citation Analysis (0)]
78.  Agarwal AK, Garg A. Congenital generalized lipodystrophy: significance of triglyceride biosynthetic pathways. Trends Endocrinol Metab. 2003;14:214-221.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 131]  [Cited by in F6Publishing: 131]  [Article Influence: 6.2]  [Reference Citation Analysis (0)]
79.  Loria P, Lonardo A, Anania F. Liver and diabetes. A vicious circle. Hepatol Res. 2013;43:51-64.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 136]  [Cited by in F6Publishing: 149]  [Article Influence: 13.5]  [Reference Citation Analysis (1)]
80.  Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860-867.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5683]  [Cited by in F6Publishing: 5906]  [Article Influence: 347.4]  [Reference Citation Analysis (1)]
81.  Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793-1801.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2726]  [Cited by in F6Publishing: 2867]  [Article Influence: 159.3]  [Reference Citation Analysis (0)]
82.  Muoio DM, Newgard CB. Biomedicine. Insulin resistance takes a trip through the ER. Science. 2004;306:425-426.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 32]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]
83.  Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183-1192.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1458]  [Cited by in F6Publishing: 1436]  [Article Influence: 62.4]  [Reference Citation Analysis (0)]
84.  Pessayre D, Fromenty B. NASH: a mitochondrial disease. J Hepatol. 2005;42:928-940.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 310]  [Cited by in F6Publishing: 310]  [Article Influence: 16.3]  [Reference Citation Analysis (0)]
85.  Lonardo A, Carani C, Carulli N, Loria P. ‘Endocrine NAFLD’ a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J Hepatol. 2006;44:1196-1207.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 95]  [Cited by in F6Publishing: 98]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
86.  Gao X, Fan JG. Diagnosis and management of non-alcoholic fatty liver disease and related metabolic disorders: consensus statement from the Study Group of Liver and Metabolism, Chinese Society of Endocrinology. J Diabetes. 2013;5:406-415.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 88]  [Cited by in F6Publishing: 87]  [Article Influence: 7.9]  [Reference Citation Analysis (0)]
87.  Attar BM, Van Thiel DH. Current concepts and management approaches in nonalcoholic fatty liver disease. ScientificWorldJournal. 2013;2013:481893.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 47]  [Cited by in F6Publishing: 54]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
88.  Kotronen A, Westerbacka J, Bergholm R, Pietiläinen KH, Yki-Järvinen H. Liver fat in the metabolic syndrome. J Clin Endocrinol Metab. 2007;92:3490-3497.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 314]  [Cited by in F6Publishing: 308]  [Article Influence: 18.1]  [Reference Citation Analysis (0)]
89.  Marchesini G, Avagnina S, Barantani EG, Ciccarone AM, Corica F, Dall’Aglio E, Dalle Grave R, Morpurgo PS, Tomasi F, Vitacolonna E. Aminotransferase and gamma-glutamyltranspeptidase levels in obesity are associated with insulin resistance and the metabolic syndrome. J Endocrinol Invest. 2005;28:333-339.  [PubMed]  [DOI]  [Cited in This Article: ]
90.  Thamer C, Tschritter O, Haap M, Shirkavand F, Machann J, Fritsche A, Schick F, Häring H, Stumvoll M. Elevated serum GGT concentrations predict reduced insulin sensitivity and increased intrahepatic lipids. Horm Metab Res. 2005;37:246-251.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 82]  [Cited by in F6Publishing: 79]  [Article Influence: 4.2]  [Reference Citation Analysis (0)]
91.  Stranges S, Dorn JM, Muti P, Freudenheim JL, Farinaro E, Russell M, Nochajski TH, Trevisan M. Body fat distribution, relative weight, and liver enzyme levels: a population-based study. Hepatology. 2004;39:754-763.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 169]  [Cited by in F6Publishing: 177]  [Article Influence: 8.9]  [Reference Citation Analysis (0)]
92.  Targher G, Bertolini L, Scala L, Poli F, Zenari L, Falezza G. Decreased plasma adiponectin concentrations are closely associated with nonalcoholic hepatic steatosis in obese individuals. Clin Endocrinol (Oxf). 2004;61:700-703.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 81]  [Cited by in F6Publishing: 90]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
93.  Shimada M, Kawahara H, Ozaki K, Fukura M, Yano H, Tsuchishima M, Tsutsumi M, Takase S. Usefulness of a combined evaluation of the serum adiponectin level, HOMA-IR, and serum type IV collagen 7S level to predict the early stage of nonalcoholic steatohepatitis. Am J Gastroenterol. 2007;102:1931-1938.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 108]  [Cited by in F6Publishing: 114]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
94.  Targher G, Bertolini L, Rodella S, Lippi G, Franchini M, Zoppini G, Muggeo M, Day CP. NASH predicts plasma inflammatory biomarkers independently of visceral fat in men. Obesity (Silver Spring). 2008;16:1394-1399.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 144]  [Cited by in F6Publishing: 158]  [Article Influence: 9.9]  [Reference Citation Analysis (0)]
95.  Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology. 2013;58:120-127.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 496]  [Cited by in F6Publishing: 503]  [Article Influence: 45.7]  [Reference Citation Analysis (0)]
96.  Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab. 2005;288:E462-E468.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1119]  [Cited by in F6Publishing: 1113]  [Article Influence: 58.6]  [Reference Citation Analysis (0)]
97.  Dasarathy S, Dasarathy J, Khiyami A, Joseph R, Lopez R, McCullough AJ. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J Hepatol. 2009;51:1061-1067.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
98.  Ciupińska-Kajor M, Hartleb M, Kajor M, Kukla M, Wyleżoł M, Lange D, Liszka L. Hepatic angiogenesis and fibrosis are common features in morbidly obese patients. Hepatol Int. 2013;7:233-240.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 18]  [Article Influence: 1.4]  [Reference Citation Analysis (0)]
99.  Hafeez S, Ahmed MH. Bariatric surgery as potential treatment for nonalcoholic fatty liver disease: a future treatment by choice or by chance? J Obes. 2013;2013:839275.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 82]  [Cited by in F6Publishing: 81]  [Article Influence: 7.4]  [Reference Citation Analysis (0)]
100.  Vargas V, Allende H, Lecube A, Salcedo MT, Baena-Fustegueras JA, Fort JM, Rivero J, Ferrer R, Catalán R, Pardina E. Surgically induced weight loss by gastric bypass improves non alcoholic fatty liver disease in morbid obese patients. World J Hepatol. 2012;4:382-388.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 44]  [Cited by in F6Publishing: 41]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
101.  Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679-689.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1303]  [Cited by in F6Publishing: 1369]  [Article Influence: 97.8]  [Reference Citation Analysis (1)]