Search Article Keyword:  



PubMed Submission Abstract PDF Feed Back  Click Count: 1585 DownLoad Count: 872 



ISSN 1007-9327 CN 14-1219/R  World J Gastroenterol  2007 March 14;13(10): 1585-1594

Risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma: Results from the FINBAR study

Lesley A Anderson, RG Peter Watson, Seamus J Murphy, Brian T Johnston, Harry Comber, Jim Mc Guigan, John V Reynolds, Liam J Murray





Lesley A Anderson, Liam J Murray, Seamus J Murphy, Centre for Clinical and Population Sciences, Queen’s University, Belfast, Northern Ireland

RG Peter Watson, Brian T Johnston, Jim Mc Guigan, Royal Group of Hospitals, Belfast, Northern Ireland

Harry Comber, National Cancer Registry, Cork, Ireland

John V Reynolds, St. James’s Hospital, Dublin, Ireland

Supported by an Ireland-Northern Ireland Co-operation Research Project Grant sponsored by the Northern Ireland Research & Development Office, and the Health Research Board, Ireland. The Ulster Cancer Foundation also funded a PhD student and Post-doctoral fellow to work within the FINBAR study

Correspondence to: Lesley A Anderson, Centre for Clinical and Population Sciences, Queen’s University, Mulhouse Building, Grosvenor Road, Belfast, BT12 6BJ,

Northern Ireland.

Telephone: +44-28-90635046     Fax: +44-28-90248017

Received: 2006-09-11               Accepted: 2007-03-14



AIM: To investigate risk factors associated with Barrett’s oesophagus and oesophageal adenocarcinoma.


METHODS: This all-Ireland population-based case-control study recruited 224 Barrett’s oesophagus patients, 227 oesophageal adenocarcinoma patients and 260 controls. All participants underwent a structured interview with information obtained about potential lifestyle and environmental risk factors.


RESULTS: Gastro-oesophageal reflux was associated with Barrett’s [OR 12.0 (95% CI 7.64-18.7)] and oesophageal adenocarcinoma [OR 3.48 (95% CI 2.25-5.41)]. Oesophageal adenocarcinoma patients were more likely than controls to be ex- or current smokers [OR 1.72 (95% CI 1.06-2.81) and OR 4.84 (95% CI 2.72-8.61) respectively] and to have a high body mass index [OR 2.69 (95% CI 1.62-4.46)]. No significant associations were observed between these risk factors and Barrett's oesophagus. Fruit but not vegetables were negatively associated with oesophageal adenocarcinoma [OR 0.50 (95% CI 0.30-0.86)].


CONCLUSION: A high body mass index, a diet low in fruit and cigarette smoking may be involved in the progression from Barrett’s oesophagus to oesophageal adenocarcinoma.


© 2007 The WJG Press. All rights reserved.


Key words: Barrett’s oesophagus; Oesophageal adenocarcinoma; Smoking; Gastro-oesophageal reflux; Body mass index; Diet; Case-control


Anderson LA, Watson RGP, Murphy SJ, Johnston BT, Comber H, Mc Guigan J, Reynolds JV, Murray LJ. Risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma: Results from the FINBAR study. World J Gastroenterol 2007; 13(10): 1585-1594



Barrett’s oesophagus, a condition of the distal oesophagus in which the normal stratified squamous epithelium is replaced by specialised intestinal metaplasia, is a recognized precursor of oesophageal adenocarcinoma[1], a cancer that has been increasing in incidence in many Western societies over recent decades[2-6]. It is unknown if all oesophageal adenocarcinomas arise from Barrett’s oesophagus but there is some evidence to suggest that this is the case[7]. In surveillance programs of Barrett’s oesophagus only a minority of patients develop oesophageal adenocarcinoma[8-12] raising the question of what factors are implicated in the development of oesophageal adenocarcinoma from Barrett’s oesophagus.

Several case-control studies have investigated lifestyle factors associated with oesophageal adenocarcinoma[13-19] but few studies of factors associated with Barrett’s oesophagus have been reported[20-22]. Gastro-oesophageal reflux is strongly associated with oesophageal adenocarcinoma[14-17,23,24] and is thought to be the main pre-disposing factor for Barrett’s oesophagus[20]. A small proportion of gastro-oesophageal reflux sufferers develop Barrett’s oesophagus[25-28] and approximately 0.5% of Barrett’s oesophagus patients progress to oesophageal adenocarcinoma each year[8,29-31] indicating that factors apart from gastro-oesophageal reflux are involved in the development of Barrett’s oesophagus and in its progression to oesophageal adenocarcinoma. Several risk factors for oesophageal adenocarcinoma have been established, including a high body mass index (BMI)[15,16,24,32-34], smoking[13,15,19,34,35] and possibly a diet low in fruit and vegetables[16,24,36-38]. Engel et al[39] estimated that these three factors, in combination with gastro-oesophageal reflux, have a population attributable risk for oesophageal adenocarcinoma of 78.7%. However, it is not clear at which stage along the oesophageal inflammation-metaplasia-adenocarcinoma sequence these factors exert their effect. Studies comparing risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma provide the opportunity to examine whether these risk factors are important in the development of Barrett’s oesophagus or in its progression to oesophageal adenocarcinoma. This is crucial to the targeting of preventive efforts aimed at reducing the morbidity and mortality associated with these conditions. We undertook a population-based case-control study of Barrett’s oesophagus and oesophageal adenocarcinoma within Ireland.



Study details have been described in detail elsewhere[40]. Briefly, the Factors Influencing the Barrett’s Adenocarcinoma Relationship (FINBAR) study recruited three groups of subjects: (1) patients with oesophageal adenocarcinoma, (2) patients with long-segment Barrett’s oesophagus, and (3) normal population controls between March 2002 and December 2004.

Oesophageal adenocarcinoma cases had histological confirmation of adenocarcinoma within the oesophagus. Northern Ireland cases were identified from electronic pathology records from all pathology laboratories within the province. Republic of Ireland cases were identified from the main hospitals involved in the diagnosis and treatment of oesophageal cancer. All available relevant clinical and histological records including endoscopy, surgical and radiological reports were reviewed by LAA, SJM, JM and a pathologist, to confirm that the tumour was located in the oesophagus and to assign tumours into two groups: (1) oesophageal tumours (including tumours encroaching on the esophagogastric junction) and (2) junctional tumours (tumours involving the oesophagus, esophagogastric junction and gastric cardia).

Barrett’s oesophagus patients were eligible for inclusion if 3 centimetres of typical Barrett’s mucosa were seen at endoscopy and the presence of specialised intestinal metaplasia was confirmed by histological examination of biopsy specimens. Incident and prevalent cases were included and subjects were frequency matched to the age and 5-year sex distribution of oesophageal adenocarcinoma patients. Patients with dysplasia on histological examination were excluded. In Northern Ireland, cases of Barrett’s oesophagus were initially identified from pathology reports gathered from throughout Northern Ireland. Endoscopy note review was necessary in most patients to confirm the length of the segment of Barrett’s oesophagus, as length was infrequently recorded on the pathology report. In the Republic of Ireland, clinicians in the Dublin and Cork areas sent details of Barrett’s oesophagus patients who met the inclusion criteria to the research personnel.

Eligible control subjects were adults without a history of oesophageal or other gastro-intestinal cancer or a known diagnosis of Barrett’s oesophagus and were frequency matched, by sex and 5-year age band, to the distribution of oesophageal adenocarcinoma patients. Northern Ireland controls were selected at random from the General Practice Master Index (a province-wide database of all persons registered with a general practitioner) and Republic of Ireland controls were selected at random from four General Practices (two urban and two rural) in the Dublin and Cork areas chosen by the researchers to reflect the urban/rural distribution of oesophageal adenocarcinoma patients in the Republic of Ireland.

Participants underwent a structured interview with trained interviewers after giving informed written consent. Information obtained included data on symptoms of gastro-oesophageal reflux (questions based on a translation of those used by Lagergren et al in their Swedish case-control study[14]), weight 5 years before the interview, height and weight at age 21, maximum and minimum weight during adulthood, smoking history, education, occupation and alcohol consumption. Anthropometric measures (height, weight, waist and hip circumference) were taken at the time of interview.

Frequent gastro-oesophageal reflux was defined as symptoms of heartburn and/or acid reflux occurring more than 50 times per year (at least once per week), more than 5 years prior to the interview. Frequent gastro-oesophageal reflux, which prevented subjects from going to sleep or awoke them from sleep, was classified as nocturnal gastro-oesophageal reflux symptoms. The reflux symptom score used by Lagergren et al[14] was applied to the FINBAR dataset but scores 1-4 were combined in the analyses because of the small number of subjects in the first 2 categories.

Current BMI and BMI 5 years before the interview date were calculated by dividing weight in kilograms (current measured and 5-year self-reported, respectively) by current height in metres squared. BMI at age 21 was calculated by dividing self-reported weight in kilograms at age 21 by self-reported height in meters at age 21 squared.

Current smoking status was defined as having smoked at least one cigarette per day for 6 mo or longer, 5 years before the interview date. Previous smokers were those who had quit smoking more than 5 years prior to the interview date. People who had never smoked, and those who had smoked less than 100 cigarettes in their lifetime, or less than one cigarette per day for 6 mo or longer were defined as never smokers. Pack years of smoking were calculated by multiplying the number of cigarettes smoked per day by the number of years of smoking, and dividing by 20. Cigar and pipe smokers were those who had ever smoked at least one cigar or one pipe-full of tobacco per week irrespective of whether they smoked cigarettes.

Fruit, vegetable and energy intake were measured using the European Prospective Investigation of Cancer (EPIC) food frequency questionnaire used in the Norfolk area of England[41] as part of a large European cancer cohort study. This validated questionnaire was modified for the Irish population by including foods commonly eaten in Ireland as identified in the recent North/South Food Consumption Survey[42]. Fruit and vegetable consumption 5 years prior to the interview date were quantified in terms of the sum of the frequencies that each item of fruit/vegetable was eaten per week.

Statistical analysis

Throughout the article exposures of interest are presented in tertiles. Tertiles of BMI, for example, were calculated from the normal control group with all subjects categorised according to these tertiles. Statistical analyses were performed using STATA 8.0[43]. Chi-square tests were used to examine differences between groups for categorical variables and t-tests were used for continuous variables. Unconditional maximum-likelihood multinomial (polytomous) logistic regression analyses were undertaken to examine the associations between the exposure variables of interest and case/control status adjusting for potential confounders; odds ratios (OR) with 95% confidence intervals (CI) were calculated. Analyses are shown adjusted for potential confounders, including sex, age at interview, job type (manual, non-manual work), education (years full-time) and alcohol consumption (grams per week). Further adjustment was made for gastro-oesophageal reflux symptoms (never, ever), smoking (current, ex-, never), BMI (5 years before diagnosis/interview) and total energy intake (in kilocalories) where appropriate.

Ethical approval for the FINBAR study was obtained from the Research Ethics Committee of the Queen’s University Belfast, the Clinical Research Ethics Committee of the Cork Teaching Hospitals and the Research Ethics Committee Board of St. James’s Hospital, Dublin.



Two hundred and twenty-four Barrett’s oesophagus patients, 227 oesophageal adenocarcinoma patients and 260 controls were recruited. One hundred and thirty-one (57.7%) of the oesophageal adenocarcinoma patients were classified as having oesophageal tumours, ninety-two (40.5%) were classified as junctional tumours and insufficient evidence was available to classify the position of 4 (1.8%) tumours. Characteristics of patients and controls are shown in Table 1.

The participation rate of eligible, alive oesophageal adenocarcinoma patients was 74.2% and the overall response rate was 63.9%. The participation rates among Barrett’s oesophagus patients and controls were 82.4% and 41.8%, respectively.


Gastro-oesophageal reflux

Symptoms of gastro-oesophageal reflux more than 5 years prior to the interview date were strongly associated with Barrett’s oesophagus and to a lesser extent with oesophageal adenocarcinoma (Table 2). In total 72.8% of Barrett’s patients, 48.5% of oesophageal adenocarcinoma patients and 18.9% of controls reported at least weekly symptoms of gastro-oesophageal reflux. Barrett’s oesophagus and oesophageal adenocarcinoma patients were more likely than controls to report nocturnal gastro-oesophageal reflux symptoms, although in the oesophageal adenocarcinoma group the association did not hold for those with junctional tumours (chi-square test, P = 0.001).

Using the symptom scoring system developed by Lagergren et al[14] Barrett’s patients were 18 times, and oesophageal adenocarcinoma patients more than 3 times, as likely as controls to have a score in the highest gastro-oesophageal reflux category. Patients defined as having oesophageal tumours experienced more severe gastro-oesophageal reflux than patients defined as having junctional tumours. Barrett’s oesophagus and oesophageal adenocarcinoma patients were more likely to have suffered from gastro-oesophageal reflux on a more frequent basis and for a longer duration of time than controls (Table 2).


Body mass index

The associations between BMI (in tertiles) and risk of Barrett’s oesophagus and oesophageal adenocarcinoma at the time of interview are displayed in Table 3. No associations were observed between Barrett’s oesophagus and BMI at any stage (current, at 5 years prior to the interview date or at age 21). Current BMI was significantly lower in oesophageal adenocarcinoma patients than in controls, most likely due to cancer-associated weight loss. However, high BMI 5 years prior to the interview date was associated with a more than 2-fold increased risk of oesophageal adenocarcinoma. The association was similar (highest tertile vs lowest) for tumours classified as oesophageal [OR 2.54 (95% CI 1.44 to 4.48)] or junctional [OR 2.95 (95% CI 1.52 to 5.72]. Oesophageal adenocarcinoma patients were also more likely than controls to be in the highest tertile of BMI at age 21 and to have a higher maximum and minimum weight than controls. Adjusting any of the BMI analyses for a history of gastro-oesophageal reflux symptoms did not significantly alter the observed associations (Table 3). 

Similar results were observed when BMI was categorised according to the World Health Organisation classification system[44]. Barrett’s oesophagus patients were no more likely than controls to be currently overweight (25-30 kg/m2) [OR 0.86 (95% CI 0.55 to 1.36)] or obese (> 30 kg/m2) [OR 1.06 (95% CI 0.62 to 1.81)] or to have been overweight or obese 5 years before the interview date [OR 0.95 (95% CI 0.62 to 1.45)] and OR 0.80 (95% CI 0.47 to 1.38) respectively]. Oesophageal adenocarcinoma patients were currently less overweight/obese than controls [OR 0.36 (95% CI 0.23 to 0.57) and OR 0.39 (95% CI 0.22 to 0.69), respectively], but were more likely to have been overweight or obese 5 years before the interview date [OR 1.55 (95% CI 0.96 to 2.50) and OR 2.55 (95% CI 1.47 to 4.41) respectively].

Waist-hip ratio was measured at the time of interview, and no relationship was observed between waist-hip ratio and oesophageal adenocarcinoma [(highest tertile vs lowest) OR 0.80 (95% CI 0.50 to 1.28)] or Barrett’s oesophagus [OR 1.09 (95% CI 0.68 to 1.73)].


Fruit and vegetable intake

Barrett’s oesophagus patients appeared to be less likely than controls to consume fruit and/or vegetables (Table 4). However, following adjustment for gastro-oesophageal reflux symptoms neither fruit nor vegetable intake alone was significantly associated with Barrett’s oesophagus. Compared to controls oesophageal adenocarcinoma patients had a lower intake of fruit, but not vegetables (Table 4). There was no significant difference in the consumption of fruit and vegetables between the oesophageal and junctional subgroups (chi-squared test, P = 0.691).



Cigarette Smoking was not significantly associated with Barrett's oesophagus; however there was a strong relationship between smoking and oesophageal adenocarcinoma (Table 5). The findings remained significant regardless of the method of smoking categorisation. Adjusting for symptoms of gastro-oesophageal reflux did not significantly alter the observed associations. Ex-smoking and current smoking status 5 years prior to interview were similar in both the oesophageal [OR 1.86 (95% CI 1.05 to 3.30) and OR 4.62 (95% CI 2.40 to 8.91) respectively] and junctional subgroups [OR 1.80 (95% CI 0.95 to 3.42) and OR 4.68 (95% CI 2.40 to 8.91) respectively, chi-square test, P = 0.951]. Neither pipe smoking nor cigar smoking was significantly associated with oesophageal adenocarcinoma or Barrett’s oesophagus (Table 5).



This is the first reported population-based case-control study to compare risk factors for both Barrett’s oesophagus and oesophageal adenocarcinoma. The study confirms established risk factors for oesophageal adenocarcinoma and demonstrates important differences between Barrett's oesophagus and oesophageal adenocarcinoma in their association with these factors. Gastro-oesophageal reflux symptoms were strongly associated with Barrett's oesophagus and to a lesser extent with oesophageal adenocarcinoma. A high BMI, 5 years prior to the interview date, and smoking were significantly associated with an increased risk of oesophageal adenocarcinoma but not Barrett’s oesophagus. Barrett’s oesophagus patients appeared to eat less fruit and vegetables than controls. A diet high in fruit but not in vegetables was associated with a reduced risk of oesophageal adenocarcinoma. These data may suggest that gastro-oesophageal reflux symptoms and possibly a diet low in fruit and vegetables are initially responsible for the development of Barrett’s oesophagus, and that obesity and smoking are involved in the progression of Barrett’s oesophagus to oesophageal adenocarcinoma.

The strengths of the FINBAR study are its population-based design, the rapid case ascertainment and stringent inclusion criteria for Barrett’s oesophagus (specialised intestinal metaplasia, length 3 centimetres) which minimise the inclusion of subjects with a biopsy from an unrecognized hiatus hernia.

In this study, cancers were divided into two subgroups: oesophageal tumours (which could encroach on, but not involve, the oesophagogastric junction) and tumours involving the oesophagus, oesophagogastric junction and gastric cardia (termed junctional tumours). There was a potential weakness for some misclassification of oesophageal adenocarcinoma patients in this study as it was impossible to determine whether junctional tumours are truly gastric or oesophageal in origin.

A potential weakness of the study was the low response rate amongst controls, which may have introduced selection bias. However, controls were similar to the general population with regards to symptoms of gastro-oesophageal reflux and BMI. In a study from Bristol, 15.6% of people aged 20-59 had weekly symptoms of heartburn[45] compared to 18.4% of controls within this age range in the FINBAR study. If gastro-oesophageal reflux symptoms were over-represented in controls then the actual associations between gastro-oesophageal reflux, Barrett’s oesophagus and oesophageal adenocarcinoma may be stronger than observed in this study. The mean weight and the proportion of the obese controls were similar to those seen in the all-Ireland Food Consumption Survey (1997 to 1999)[46]. Mean BMI in males aged 51-64 years in the survey was 27.6 kg/m2 (s.d. 3.6 kg/m2) and in FINBAR 28.0 kg/m2 (s.d. 4.5 kg/m2). Similarly, 20% of men were obese (BMI > 30.0 kg/m2) in the Food Consumption Survey compared to 22% of FINBAR male controls. However, in the 2001 Northern Ireland health and social wellbeing survey[47] 23.6% of males at the age of 55 years or over were current smokers, 53.1% ex-smokers and 23.3% non-smokers compared to 18.9%, 48% and 31.1% respectively in FINBAR controls. Non-smokers may be overrepresented among FINBAR controls which could lead to an overestimation of the positive association between oesophageal adenocarcinoma and smoking.

The main predisposing risk factor for Barrett’s oesophagus is gastro-oesophageal reflux. Our finding of a strong association between gastro-oesophageal reflux symptoms and Barrett’s oesophagus is in agreement with a previous case-control study by Conio et al[20]. Since the main presenting symptom for Barrett’s oesophagus is gastro-oesophageal reflux it is possible that diagnosed Barrett’s oesophagus patients are not representative of all Barrett’s patients with regards to gastro-oesophageal reflux symptoms. The association is likely causal in nature; however there may be an overestimation of the true association between gastro-oesophageal reflux and Barrett’s oesophagus. Although the exact mechanisms by which gastro-oesophageal reflux causes Barrett’s oesophagus are still not fully understood, reflux of acid and/or bile into the distal oesophagus is believed to damage the native squamous epithelium and result in re-epithelisation with columnar mucosa. The strength of the relationship between gastro-oesophageal reflux symptoms and oesophageal adenocarcinoma, is in keeping with the findings of several studies on Barrett’s oesophagus[17,23,48] except that of Lagergren et al[14] who reported an OR of 7.7. Our data suggest that although gastro-oesophageal reflux is common in patients with tumours classified as either oesophageal or junctional, those with junctional tumours seem to have less severe symptoms. In particular, nocturnal symptoms of gastro-oesophageal reflux are more strongly associated with oesophageal but not with junctional tumours.

Obesity has been linked with the development of gastro-oesophageal reflux[45,49,50], increased intra-abdominal pressures[54,55] and relaxation of the lower oesophageal sphincter[56] which may worsen gastro-oesophageal reflux symptoms. Obesity has been increasing in incidence[51-53], paralleling the increasing incidence of oesophageal adenocarcinoma[2-6].

Some studies have suggested that a high BMI is associated with an increased risk of Barrett’s oesophagus[22,57,58], although Caygill et al[58] suggested that obesity is only a risk factor for Barrett’s oesophagus in young people. No associations were observed between current BMI, BMI 5 years prior to the interview date, or BMI at age 21, and Barrett’s oesophagus in the FINBAR study. It is possible that the BMI of controls was higher than that of the population which could explain the fact that no association was observed. However, a high BMI 5 years prior to the interview date was associated with a 2.5 fold increased risk of oesophageal adenocarcinoma, which is similar to reports in other case-control studies[24,32-34,59]. If BMI is not associated with Barrett’s oesophagus then one possible mechanism for the association between BMI and oesophageal adenocarcinoma may be through the increased production of free insulin-like growth factor-1 in obese subjects, which stimulates cell proliferation and inhibits apoptosis[60,61]. Sohda et al[62] suggested that increased free insulin-like growth factor-1 may be associated with the development of oesophageal cancer. In Barrett’s patients increased expression of insulin-like growth factor-1 receptor is associated with neoplastic progression[63].

Fruit, although not vegetable intake was significantly associated with a reduced risk of oesophageal adenocarcinoma in this study. A diet high in fruit and vegetables has been shown to be able to protect against a number of cancers[64], including cancers of the digestive tract[65]. Several case-control studies have specifically reported positive associations between high fruit and/or vegetable intake and a reduced risk of oesophageal adenocarcinoma[16,24,36-38] and a cohort study recently reported a non-significant inverse association between oesophageal adenocarcinoma and vegetables and citrus fruit[66]. In the FINBAR study vegetable consumption was not associated with a reduced risk of oesophageal adenocarcinoma in fact the OR was raised [OR 1.49 (95% CI 0.89 to 2.48)]. One possible explanation for the apparent protective effect of fruit against oesophageal adenocarcinoma may be that patients with gastro-oesophageal reflux avoid certain fruits which can aggravate their symptoms. However, the protective association between fruit (and overall fruit/vegetable) consumption and oesophageal adenocarcinoma remains after adjustment for gastro-oesophageal reflux symptoms. Fruit and vegetables are high in anti-oxidants, especially in vitamin C, dietary intake of which is reduced in oesophageal adenocarcinoma patients[38,67-70]. Tissue levels of vitamin C are also lower in areas of specialised intestinal metaplasia than in squamous mucosa suggesting that oxidative stress may be implicated in the neoplastic progression of Barrett’s oesophagus[71]. Reflux of gastric contents into the oesophagus can enhance the production of free radicals which may cause damage to lipids, proteins and DNA through oxidative stress and may be implicated in the development of Barrett’s oesophagus and/or oesophageal adenocarcinoma.

Smoking has been associated with an increase in gastro-oesophageal reflux symptoms in some studies[50,72,73], but not in others[20,58,74,75]. Unlike Smith et al[57] we observed no significant association between smoking and Barrett’s oesophagus in the FINBAR study. There was a strong relationship between smoking and oesophageal adenocarcinoma with a slightly higher OR than observed in previous studies[13,15,16,18,19,35,76]. The under-representation of current smokers among FINBAR controls may tend to overestimate the association between smoking and oesophageal adenocarcinoma/Barrett’s oesophagus but should not affect the difference in ORs seen between the two conditions. Our data suggest that smoking may influence the progression of Barrett’s oesophagus to oesophageal adenocarcinoma and not the initiation of Barrett’s oesophagus. One possible explanation may be that the higher rate of cell division and proliferation of columnar epithelial cells[77] and the malignant potential that such cells possess[78], may be promoted by carcinogenic (or DNA damaging) compounds from cigarette smoke. Olliver et al[79] showed that Barrett’s mucosa has higher levels of DNA damage than squamous epithelium and smoking is associated with increased DNA damage in Barrett’s mucosa[80].

In conclusion, our data indicate that gastro-oesophageal reflux is a risk factor for oesophageal adenocarcinoma and demonstrate the high proportion of diagnosed Barrett's patients with gastro-oesophageal reflux symptoms. In the FINBAR study oesophageal adenocarcinoma differs from Barrett’s oesophagus by being associated with high BMI and smoking. These factors could be implicated in the development of oesophageal adenocarcinoma from Barrett’s oesophagus although further observational and interventional studies are required to confirm or refute our findings. It is hoped that these findings will help direct future research into the mechanisms underlying oesophageal adenocarcinoma and the development of prevention strategies.



We appreciate the contributions made by the study participants and their families. We would like to thank the clinicians who were contacted throughout the study period and their secretaries for administrative support. Thanks also to the research team including Siobhan Reynolds, Majella Gallagher, Carol Anderson and Martin McAnaespie and to Dr Damian McManus who helped in classifying the tumour sites. Thanks to the Northern Ireland Cancer Registry and National Cancer Registry Cork for their support and involvement in the research.



1         Ruol A, Parenti A, Zaninotto G, Merigliano S, Costantini M, Cagol M, Alfieri R, Bonavina L, Peracchia A, Ancona E.   Intestinal metaplasia is the probable common precursor of adenocarcinoma in barrett esophagus and adenocarcinoma   of the gastric cardia. Cancer 2000; 88: 2520-2528   PubMed

2         Hansson LE, Sparen P, Nyren O. Increasing incidence of both major histological types of esophageal carcinomas   among men in Sweden. Int J Cancer 1993; 54: 402-407   PubMed

3         Botterweck AA, Schouten LJ, Volovics A, Dorant E, van Den Brandt PA. Trends in incidence of adenocarcinoma of the   oesophagus and gastric cardia in ten European countries. Int J Epidemiol 2000; 29: 645-654   PubMed

4         Powell J, McConkey CC. The rising trend in oesophageal adenocarcinoma and gastric cardia. Eur J Cancer Prev 1992;   1: 265-269   PubMed

5         Moller H. Incidence of cancer of oesophagus, cardia and stomach in Denmark. Eur J Cancer Prev 1992; 1: 159-164     PubMed

6         Blot WJ, McLaughlin JK. The changing epidemiology of esophageal cancer. Semin Oncol 1999; 26: 2-8   PubMed

7         Theisen J, Stein HJ, Dittler HJ, Feith M, Moebius C, Kauer WK, Werner M, Siewert JR. Preoperative chemotherapy    unmasks underlying Barrett's mucosa in patients with adenocarcinoma of the distal esophagus. Surg Endosc 2002; 16:    671-673   PubMed

8         Murray L, Watson P, Johnston B, Sloan J, Mainie IM, Gavin A. Risk of adenocarcinoma in Barrett's oesophagus:   population based study. BMJ 2003; 327: 534-535   PubMed

9         Drewitz DJ, Sampliner RE, Garewal HS. The incidence of adenocarcinoma in Barrett's esophagus: a prospective study   of 170 patients followed 4.8 years. Am J Gastroenterol 1997; 92: 212-215   PubMed

10      Rana PS, Johnston DA. Incidence of adenocarcinoma and mortality in patients with Barrett's oesophagus diagnosed   between 1976 and 1986: implications for endoscopic surveillance. Dis Esophagus 2000; 13: 28-31   PubMed

11      O'Connor JB, Falk GW, Richter JE. The incidence of adenocarcinoma and dysplasia in Barrett's esophagus: report on   the Cleveland Clinic Barrett's Esophagus Registry. Am J Gastroenterol 1999; 94: 2037-2042   PubMed

12      Katz D, Rothstein R, Schned A, Dunn J, Seaver K, Antonioli D. The development of dysplasia and adenocarcinoma   during endoscopic surveillance of Barrett's esophagus. Am J Gastroenterol 1998; 93: 536-541   PubMed

13      Gammon MD, Schoenberg JB, Ahsan H, Risch HA, Vaughan TL, Chow WH, Rotterdam H, West AB, Dubrow R, Stanford   JL, Mayne ST, Farrow DC, Niwa S, Blot WJ, Fraumeni JF Jr. Tobacco, alcohol, and socioeconomic status and   adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1997; 89: 1277-1284   PubMed

14      Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal   adenocarcinoma. N Engl J Med 1999; 340: 825-831   PubMed

15      Wu AH, Wan P, Bernstein L. A multiethnic population-based study of smoking, alcohol and body size and risk of   adenocarcinomas of the stomach and esophagus (United States). Cancer Causes Control 2001; 12: 721-732   PubMed

16      Cheng KK, Sharp L, McKinney PA, Logan RF, Chilvers CE, Cook-Mozaffari P, Ahmed A, Day NE. A case-control study of   oesophageal adenocarcinoma in women: a preventable disease. Br J Cancer 2000; 83: 127-132   PubMed

17      Chow WH, Finkle WD, McLaughlin JK, Frankl H, Ziel HK, Fraumeni JF Jr. The relation of gastroesophageal reflux disease   and its treatment to adenocarcinomas of the esophagus and gastric cardia. JAMA 1995; 274: 474-477   PubMed

18      Brown LM, Silverman DT, Pottern LM, Schoenberg JB, Greenberg RS, Swanson GM, Liff JM, Schwartz AG, Hayes RB,   Blot WJ. Adenocarcinoma of the esophagus and esophagogastric junction in white men in the United States: alcohol,   tobacco, and socioeconomic factors. Cancer Causes Control 1994; 5: 333-340   PubMed

19      Kabat GC, Ng SK, Wynder EL. Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and   gastric cardia. Cancer Causes Control 1993; 4: 123-132   PubMed

20      Conio M, Filiberti R, Blanchi S, Ferraris R, Marchi S, Ravelli P, Lapertosa G, Iaquinto G, Sablich R, Gusmaroli R, Aste H,   Giacosa A. Risk factors for Barrett's esophagus: a case-control study. Int J Cancer 2002; 97: 225-229   PubMed

21      Ritenbaugh C, Sampliner R, Aickin M, Garewal H, Meyskens F. Risk factors for Barrett's oesophagus: a life history   approach to behavioural assessment in the distant past. Eur J Cancer Prev 1995; 4: 459-468   PubMed

22      El-Serag HB, Kvapil P, Hacken-Bitar J, Kramer JR. Abdominal obesity and the risk of Barrett's esophagus. Am J   Gastroenterol 2005; 100: 2151-2156   PubMed

23      Farrow DC, Vaughan TL, Sweeney C, Gammon MD, Chow WH, Risch HA, Stanford JL, Hansten PD, Mayne ST,   Schoenberg JB, Rotterdam H, Ahsan H, West AB, Dubrow R, Fraumeni JF Jr, Blot WJ. Gastroesophageal reflux disease,   use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control 2000; 11: 231-238     PubMed

24      Brown LM, Swanson CA, Gridley G, Swanson GM, Schoenberg JB, Greenberg RS, Silverman DT, Pottern LM, Hayes RB,   Schwartz AG. Adenocarcinoma of the esophagus: role of obesity and diet. J Natl Cancer Inst 1995; 87: 104-109     PubMed

25      Pera M. Trends in incidence and prevalence of specialized intestinal metaplasia, barrett's esophagus, and   adenocarcinoma of the gastroesophageal junction. World J Surg 2003; 27: 999-1008; discussion 1006-1008   PubMed

26      Lieberman DA, Oehlke M, Helfand M. Risk factors for Barrett's esophagus in community-based practice. GORGE   consortium. Gastroenterology Outcomes Research Group in Endoscopy. Am J Gastroenterol 1997; 92: 1293-1297     PubMed

27      Mann NS, Tsai MF, Nair PK. Barrett's esophagus in patients with symptomatic reflux esophagitis. Am J Gastroenterol   1989; 84: 1494-1496   PubMed

28      Cameron AJ, Zinsmeister AR, Ballard DJ, Carney JA. Prevalence of columnar-lined (Barrett's) esophagus. Comparison   of population-based clinical and autopsy findings. Gastroenterology 1990; 99: 918-922   PubMed

29      Bytzer P, Christensen PB, Damkier P, Vinding K, Seersholm N. Adenocarcinoma of the esophagus and Barrett's   esophagus: a population-based study. Am J Gastroenterol 1999; 94: 86-91   PubMed

30      Cameron AJ, Ott BJ, Payne WS. The incidence of adenocar-cinoma in columnar-lined (Barrett's) esophagus. N Engl J   Med 1985; 313: 857-859   PubMed

31      Dulai GS, Guha S, Kahn KL, Gornbein J, Weinstein WM. Preoperative prevalence of Barrett's esophagus in esophageal   adenocarcinoma: a systematic review. Gastroenterology 2002; 122: 26-33   PubMed

32      Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and   gastric cardia. Ann Intern Med 1999; 130: 883-890   PubMed

33      Chow WH, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow   DC, Ahsan H, West AB, Rotterdam H, Niwa S, Fraumeni JF Jr. Body mass index and risk of adenocarcinomas of the   esophagus and gastric cardia. J Natl Cancer Inst 1998; 90: 150-155   PubMed

34      Vaughan TL, Davis S, Kristal A, Thomas DB. Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus   and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 1995; 4: 85-  92   PubMed

35      Lagergren J, Bergstrom R, Lindgren A, Nyren O. The role of tobacco, snuff and alcohol use in the aetiology of cancer of   the oesophagus and gastric cardia. Int J Cancer 2000; 85: 340-346   PubMed

36      Terry P, Lagergren J, Hansen H, Wolk A, Nyren O. Fruit and vegetable consumption in the prevention of oesophageal   and cardia cancers. Eur J Cancer Prev 2001; 10: 365-369   PubMed

37      Chen H, Ward MH, Graubard BI, Heineman EF, Markin RM, Potischman NA, Russell RM, Weisenburger DD, Tucker KL.   Dietary patterns and adenocarcinoma of the esophagus and distal stomach. Am J Clin Nutr 2002; 75: 137-144   PubMed

38      Tzonou A, Lipworth L, Garidou A, Signorello LB, Lagiou P, Hsieh C, Trichopoulos D. Diet and risk of esophageal cancer   by histologic type in a low-risk population. Int J Cancer 1996; 68: 300-304   PubMed

39      Engel LS, Chow WH, Vaughan TL, Gammon MD, Risch HA, Stanford JL, Schoenberg JB, Mayne ST, Dubrow R,   Rotterdam H, West AB, Blaser M, Blot WJ, Gail MH, Fraumeni JF Jr. Population attributable risks of esophageal and   gastric cancers. J Natl Cancer Inst 2003; 95: 1404-1413   PubMed

40      Anderson LA, Johnston BT, Watson RG, Murphy SJ, Ferguson HR, Comber H, McGuigan J, Reynolds JV, Murray LJ.   Nonsteroidal anti-inflammatory drugs and the esophageal inflammation-metaplasia-adenocarcinoma sequence. Cancer   Res 2006; 66: 4975-4982   PubMed

41      Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, Wareham N. EPIC-Norfolk: study design and characteristics of   the cohort. European Prospective Investigation of Cancer. Br J Cancer 1999; 80 Suppl 1: 95-103   PubMed

42      Harrington KE, Robson PJ, Kiely M, Livingstone MB, Lambe J, Gibney MJ. The North/South Ireland Food Consumption   Survey: survey design and methodology. Public Health Nutr 2001; 4: 1037-1042   PubMed

43      StataCorp. Stata Statistical Software: Release 8.0. College Station, TX: Stata Corporation

44      Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World   Health Organ Tech Rep Ser 1995; 854: 1-452   PubMed

45      Murray L, Johnston B, Lane A, Harvey I, Donovan J, Nair P, Harvey R. Relationship between body mass and gastro-  oesophageal reflux symptoms: The Bristol Helicobacter Project. Int J Epidemiol 2003; 32: 645-650   PubMed

46      McCarthy SN, Harrington KE, Kiely M, Flynn A, Robson PJ, Livingstone MB, Gibney MJ. Analyses of the anthropometric   data from the North/South Ireland Food Consumption Survey. Public Health Nutr 2001; 4: 1099-1106   PubMed

47      Northern Ireland Statistics and Research Agency, Northern Ireland Health and Social Well-being Survey, 2001.   Available from URC: 

48      Wu AH, Tseng CC, Bernstein L. Hiatal hernia, reflux symptoms, body size, and risk of esophageal and gastric   adenocarcinoma. Cancer 2003; 98: 940-948   PubMed

49      Nilsson M, Johnsen R, Ye W, Hveem K, Lagergren J. Obesity and estrogen as risk factors for gastroesophageal reflux   symptoms. JAMA 2003; 290: 66-72   PubMed

50      Locke GR 3rd, Talley NJ, Fett SL, Zinsmeister AR, Melton LJ 3rd. Risk factors associated with symptoms of   gastroesophageal reflux. Am J Med 1999; 106: 642-649   PubMed

51      Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The spread of the obesity epidemic in the United   States, 1991-1998. JAMA 1999; 282: 1519-1522   PubMed

52      Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA   2002; 288: 1723-1727   PubMed

53      McCarthy SN, Gibney MJ, Flynn A. Overweight, obesity and physical activity levels in Irish adults: evidence from the   North/South Ireland food consumption survey. Proc Nutr Soc 2002; 61: 3-7   PubMed

54      Barak N, Ehrenpreis ED, Harrison JR, Sitrin MD. Gastro-oesophageal reflux disease in obesity: pathophysiological and   therapeutic considerations. Obes Rev 2002; 3: 9-15   PubMed

55      Sugerman HJ, DeMaria EJ, Felton WL 3rd, Nakatsuka M, Sismanis A. Increased intra-abdominal pressure and cardiac   filling pressures in obesity-associated pseudotumor cerebri. Neurology 1997; 49: 507-511   PubMed

56      Kouklakis G, Moschos J, Kountouras J, Mpoumponaris A, Molyvas E, Minopoulos G. Relationship between obesity and   gastroesophageal reflux disease as recorded by 3-hour esophageal pH monitoring. Rom J Gastroenterol 2005; 14: 117-  121   PubMed

57      Smith KJ, O'Brien SM, Smithers BM, Gotley DC, Webb PM, Green AC, Whiteman DC. Interactions among smoking,   obesity, and symptoms of acid reflux in Barrett's esophagus. Cancer Epidemiol Biomarkers Prev 2005; 14: 2481-2486     PubMed

58      Caygill CP, Johnston DA, Lopez M, Johnston BJ, Watson A, Reed PI, Hill MJ. Lifestyle factors and Barrett's esophagus.   Am J Gastroenterol 2002; 97: 1328-1331   PubMed

59      Mayne ST, Navarro SA. Diet, obesity and reflux in the etiology of adenocarcinomas of the esophagus and gastric cardia   in humans. J Nutr 2002; 132: 3467S-3470S   PubMed

60      Calle EE, Thun MJ. Obesity and cancer. Oncogene 2004; 23: 6365-6378   PubMed

61      Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev   Cancer 2004; 4: 579-591   PubMed

62      Sohda M, Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R, Fukai Y, Masuda N, Kuwano H. The role of insulin-like   growth factor 1 and insulin-like growth factor binding protein 3 in human esophageal cancer. Anticancer Res 2004; 24:   3029-3034   PubMed

63      Iravani S, Zhang HQ, Yuan ZQ, Cheng JQ, Karl RC, Jove R, Coppola D. Modification of insulin-like growth factor 1   receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett's neoplasia. Hum Pathol 2003; 34: 975-  982   PubMed

64      Riboli E, Norat T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr   2003; 78: 559S-569S   PubMed

65      Norat T, Riboli E. Fruit and vegetable consumption and risk of cancer of the digestive tract: meta-analysis of published   case-control and cohort studies. IARC Sci Publ 2002; 156: 123-125   PubMed

66      Gonzalez CA, Pera G, Agudo A, Bueno-de-Mesquita HB, Ceroti M, Boeing H, Schulz M, Del Giudice G, Plebani M,   Carneiro F, Berrino F, Sacerdote C, Tumino R, Panico S, Berglund G, Siman H, Hallmans G, Stenling R, Martinez C,   Dorronsoro M, Barricarte A, Navarro C, Quiros JR, Allen N, Key TJ, Bingham S, Day NE, Linseisen J, Nagel G, Overvad K,   Jensen MK, Olsen A, Tjonneland A, Buchner FL, Peeters PH, Numans ME, Clavel-Chapelon F, Boutron-Ruault MC, Roukos   D, Trichopoulou A, Psaltopoulou T, Lund E, Casagrande C, Slimani N, Jenab M, Riboli E. Fruit and vegetable intake and   the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition   (EPIC-EURGAST). Int J Cancer 2006; 118: 2559-2566   PubMed

67      Chen H, Tucker KL, Graubard BI, Heineman EF, Markin RS, Potischman NA, Russell RM, Weisenburger DD, Ward MH.   Nutrient intakes and adenocarcinoma of the esophagus and distal stomach. Nutr Cancer 2002; 42: 33-40   PubMed

68      Mayne ST, Risch HA, Dubrow R, Chow WH, Gammon MD, Vaughan TL, Farrow DC, Schoenberg JB, Stanford JL, Ahsan    H, West AB, Rotterdam H, Blot WJ, Fraumeni JF Jr. Nutrient intake and risk of subtypes of esophageal and gastric   cancer. Cancer Epidemiol Biomarkers Prev 2001; 10: 1055-1062   PubMed

69      Bollschweiler E, Wolfgarten E, Nowroth T, Rosendahl U, Monig SP, Holscher AH. Vitamin intake and risk of subtypes of   esophageal cancer in Germany. J Cancer Res Clin Oncol 2002; 128: 575-580   PubMed

70      Terry P, Lagergren J, Ye W, Nyren O, Wolk A. Antioxidants and cancers of the esophagus and gastric cardia. Int J   Cancer 2000; 87: 750-754   PubMed

71      Fountoulakis A, Martin IG, White KL, Dixon MF, Cade JE, Sue-Ling HM, Wild CP. Plasma and esophageal mucosal levels   of vitamin C: role in the pathogenesis and neoplastic progression of Barrett's esophagus. Dig Dis Sci 2004; 49: 914-  919    PubMed

72      Stanciu C, Bennett JR. Smoking and gastro-oesophageal reflux. Br Med J 1972; 3: 793-795   PubMed

73      Kahrilas PJ, Gupta RR. Mechanisms of acid reflux associated with cigarette smoking. Gut 1990; 31: 4-10   PubMed

74      Gerson LB, Shetler K, Triadafilopoulos G. Prevalence of Barrett's esophagus in asymptomatic individuals.   Gastroenterology 2002; 123: 461-467   PubMed

75      Reavis KM, Morris CD, Gopal DV, Hunter JG, Jobe BA. Laryngopharyngeal reflux symptoms better predict the presence   of esophageal adenocarcinoma than typical gastroesophageal reflux symptoms. Ann Surg 2004; 239: 849-56;   discussion 856-858   PubMed

76      Garidou A, Tzonou A, Lipworth L, Signorello LB, Kalapothaki V, Trichopoulos D. Life-style factors and medical conditions   in relation to esophageal cancer by histologic type in a low-risk population. Int J Cancer 1996; 68: 295-299   PubMed

77      Halm U, Tannapfel A, Breitung B, Breidert M, Wittekind CW, Mossner J. Apoptosis and cell proliferation in the   metaplasia-dysplasia-carcinoma-sequence of Barrett's esophagus. Hepatogastroenterology 2000; 47: 962-966   PubMed

78      Preston-Martin S, Pike MC, Ross RK, Jones PA, Henderson BE. Increased cell division as a cause of human cancer.   Cancer Res 1990; 50: 7415-7421   PubMed

79      Olliver JR, Hardie LJ, Gong Y, Dexter S, Chalmers D, Harris KM, Wild CP. Risk factors, DNA damage, and disease   progression in Barrett's esophagus. Cancer Epidemiol Biomarkers Prev 2005; 14: 620-625   PubMed

80      Olliver JR, Hardie LJ, Dexter S, Chalmers D, Wild CP. DNA damage levels are raised in Barrett's oesophageal mucosa   relative to the squamous epithelium of the oesophagus. Biomarkers 2003; 8: 509-521   PubMed


S- Editor  Liu Y    L- Editor  Wang XL    E- Editor  Chin GJ





Reviews Add


Related Articles:
VEGF165 antisense RNA suppresses oncogenic properties of human esophageal squamous cell carcinoma
Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite
Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide
Field Population-based blocking treatment of esophageal epithelia dysplasia
Identification of differentially expressed proteins between human esophageal immortalized and carcinomatous cell lines by two-dimensional electrophoresis and MALDI-TOF-mass spectrometry