Basic Study
Copyright ©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Apr 7, 2019; 25(13): 1580-1591
Published online Apr 7, 2019. doi: 10.3748/wjg.v25.i13.1580
Plasma microRNAs as potential new biomarkers for early detection of early gastric cancer
Xiao-Liang Zhu, Long-Fei Ren, Hai-Ping Wang, Zhong-Tian Bai, Lei Zhang, Wen-Bo Meng, Ke-Xiang Zhu, Fang-Hui Ding, Long Miao, Jun Yan, Yan-Ping Wang, Yu-Qin Liu, Wen-Ce Zhou, Xun Li
Xiao-Liang Zhu, Long-Fei Ren, Lei Zhang, Fang-Hui Ding, Xun Li, The Fifth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
Hai-Ping Wang, The Key Laboratory of Biological Therapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
Zhong-Tian Bai, Ke-Xiang Zhu, Long Miao, Jun Yan, Wen-Ce Zhou, The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
Wen-Bo Meng, The Department of Minimally invasive surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
Yan-Ping Wang, The Pharmacy Department, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
Yu-Qin Liu, Cancer Epidemiology Research Center, Gansu Cancer Hospital, Lanzhou 730050, Gansu Province, China
Author contributions: Zhu XL, Wang YP, Zhou WC and Li X contributed to conceptualization and design of the study, and Liu YQ suggested the study location. Zhu XL, Zhang L, Meng WB, Zhu KX, Ding FH and Miao L performed all gastroscopy and collected the blood and biopsy samples. Ren LF, Wang HP, Bai ZT and Yan J performed the majority of the experiments and analyzed the data. All authors drafted the article and made revisions related to the intellectual content of the manuscript, and approved the final version of the article to be published.
Supported by the Health Industry Research Project of Gansu Province, No. GSWSKY2017-26; the Gansu Province Science Foundation for Distinguished Young Scholars, No. 1606RJDA317; the Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, No. zdsyskfkt-201704; and the Foundation of The First Hospital of Lanzhou University, No. ldyyyn2015-16.
Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the First Hospital of Lanzhou University. Informed consent was obtained from all individual participants included in the study.
Conflict-of-interest statement: The authors declare no conflicts of interest.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Xun Li, MD, Chief Doctor, The Fifth Department of General Surgery, The First Hospital of Lanzhou University, No.1 DongGang West Road, Lanzhou 730000, Gansu Province, China. lxdr21@126.com
Telephone: +86-931-8356821 Fax: +86-931-8619797
Received: January 9, 2019
Peer-review started: January 9, 2019
First decision: February 13, 2019
Revised: March 1, 2019
Accepted: March 11, 2019
Article in press: March 12, 2019
Published online: April 7, 2019
Abstract
BACKGROUND

Early gastric cancer (EGC), compared with advanced gastric cancer (AGC), has a higher 5-year survival rate. However, due to the lack of typical symptoms and the difficulty in diagnosing EGC, no effective biomarkers exist for the detection of EGC, and gastroscopy is the only detection method.

AIM

To provide new biomarkers with high specificity and sensitivity through analyzed the differentially expressed microRNAs (miRNAs) in EGC and AGC and compared them with those in benign gastritis (BG).

METHODS

We examined the differentially expressed miRNAs in the plasma of 30 patients with EGC, AGC, and BG by miRNA chip analysis. Then, we analyzed and selected the significantly different miRNAs using bioinformatics. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) confirmed the relative transcription level of these miRNAs in another 122 patients, including patients with EGC, AGC, Helicobacter pylori (H. pylori)-negative gastritis (Control-1), and H. pylori-positive atrophic gastritis (Control-2). To establish a diagnostic model for the detection of plasma miRNA in EGC, we chose miRNAs that can be used to determine EGC and AGC from Control-1 and Control-2 and miRNAs in EGC from all other groups.

RESULTS

Among the expression profiles of the miRNA chips in the three groups in the discovery set, of 117 aberrantly expressed miRNAs, 30 confirmed target prediction, whereas 14 were included as potential miRNAs. The RT-qPCR results showed that 14 potential miRNAs expression profiles in the two groups exhibited no differences in terms of H. pylori-negative gastritis (Control-1) and H. pylori-positive atrophic gastritis (Control-2). Hence, these two groups were incorporated into the Control group. A combination of four types of miRNAs, miR-7641, miR-425-5p, miR-1180-3p and miR-122-5p, were used to effectively distinguish the Cancer group (EGC + AGC) from the Control group [area under the curve (AUC) = 0.799, 95% confidence interval (CI): 0.691-0.908, P < 0.001]. Additionally, miR-425-5p, miR-24-3p, miR-1180-3p and miR-122-5p were utilized to distinguish EGC from the Control group (AUC = 0.829, 95%CI: 0.657-1.000, P = 0.001). Moreover, the miR-24-3p expression level in EGC was lower than that in the AGC (AUC = 0.782, 95%CI: 0.571-0.993, P = 0.029), and the miR-4632-5p expression level in EGC was significantly higher than that in AGC (AUC = 0.791, 95%CI: 0.574-1.000, P = 0.024).

CONCLUSION

The differentially expressed circulatory plasma miR-425-5p, miR-1180-3p, miR-122-5p, miR-24-3p and miR-4632-5p can be regarded as a new potential biomarker panel for the diagnosis of EGC. The prediction and early diagnosis of EGC can be considerably facilitated by combining gastroscopy with the use of these miRNA biomarkers, thereby optimizing the strategy for effective detection of EGC. Nevertheless, larger-scale human experiments are still required to confirm our findings.

Keywords: Biomarker, MicroRNA, Plasma, Early gastric cancer

Core tip: Early gastric cancer (EGC) has no typical symptoms and difficulty to diagnosis. We filtrated the differentially expressed microRNAs (miRNAs) in the plasma of EGC, advanced gastric cancer and benign gastritis by miRNA chip analysis. Then, reverse transcription quantitative real-time polymerase chain reaction confirmed the relative transcription level of target miRNAs. The 5 plasma miRNAs can be used as new potential biomarkers for the diagnosis of EGC.