1
|
Gomez GVB, Lourenço GJ, Monteiro LMO, Rocha RS, Fernández KAM, Recio JA, Torricelli C, Coser LO, Oliveira ALR, Carron J, Moraes AM, Lima CSP. Association of JAK/STAT genetic variants with cutaneous melanoma. Front Oncol 2022; 12:943483. [PMID: 35982955 PMCID: PMC9379289 DOI: 10.3389/fonc.2022.943483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway regulates cutaneous melanoma (CM) development and progression. The JAK1, JAK2, and STAT3 proteins are encoded by polymorphic genes. This study aimed to verify whether single-nucleotide variants (SNVs) in JAK1 (c.1648+1272G>A, c.991-27C>T), JAK2 (c.-1132G>T, c.-139G>A), and STAT3 (c.*1671T>C, c.-1937C>G) altered the risk, clinicopathological aspects, and survival of CM patients as well as protein activity. Methods CM patients (N = 248) and controls (N = 274) were enrolled in this study. Genotyping was performed by real-time polymerase chain reaction (PCR), and JAK1, JAK2, and STAT3 expression was assessed by quantitative PCR (qPCR). STAT3 c.-1937C>G SNV was investigated by luciferase, qPCR, western blot, apoptosis, and cell cycle assays in SKMEL-28 cells with CC or GG genotype. Results Individuals with STAT3 c.*1671TT and c.-1937CC genotypes and TC haplotype of both SNVs were under about 2.0-fold increased risk of CM. Specific JAK1, JAK2, and STAT3 combined genotypes were associated with up to 4.0-fold increased risk of CM. Higher luciferase activity [4,013.34 vs. 2,463.32 arbitrary units (AU); p = 0.004], STAT3 expression by qPCR (649.20 vs. 0.03 AU; p = 0.003) and western blot (1.69 vs. 1.16 AU; p = 0.01), and percentage of cells in the S phase of the cell cycle (57.54 vs. 30.73%; p = 0.04) were more frequent in SKMEL-28 with STAT3 c.-1937CC than with GG genotype. CM cell line with CC genotype presented higher STAT3 protein levels than the one with GG genotype (1.93 versus 1.27 AU, p = 0.0027). Conclusion Our data present preliminary evidence that inherited abnormalities in the JAK/STAT pathway can be used to identify individuals at a high risk of CM, who deserve additional attention for tumor prevention and early detection.
Collapse
Affiliation(s)
- Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Lummy Maria Oliveira Monteiro
- Department of Cellular and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rafael Silva Rocha
- Department of Cellular and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kimberly Anne McGrail Fernández
- Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Juan Angel Recio
- Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Lilian Oliveira Coser
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Alexandre Leite Rodrigues Oliveira
- Laboratory of Nerve Regeneration, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Juliana Carron
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Aparecida Machado Moraes
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
- *Correspondence: Carmen Silvia Passos Lima,
| |
Collapse
|
2
|
Barek MA, Begum M, Noor F, Aziz MA, Islam MS. The link between IL-6 rs2069840 SNP and cancer risk: Evidence from a systematic review and meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
3
|
Xu Y, Xu W, Lu Z, Cheung MH, Lin M, Liang C, Lou J, Chen Y. Anti-Gastric Cancer Effect of Purified Omphalia lapidescens Protein via Regulating the JAK/STAT3 Signaling Pathway. Nutr Cancer 2021; 74:1780-1791. [PMID: 34601984 DOI: 10.1080/01635581.2021.1960385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gastric cancer is the leading cause of cancer-related death worldwide. The aim of present study was to investigate the anti-tumor effect of purified Omphalia lapidescens protein (pPeOp) in gastric cancer. Microarray analysis was performed to find out differentially expressed genes in pPeOp-treated MC-4 gastric cancer cells. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) three signaling pathway was most likely to be altered based on bioinformatics analysis. Interleukin-6 (IL-6) and NSC74859 were used as the agonist and inhibitor of the JAK/STAT3 signaling pathway, respectively. Flow cytometry and MTS assay were used for cell proliferation and viability analysis in pPeOp-treated gastric cancer cell lines with IL-6 or NSC74859. The anti-tumor effect was increased when pPeOp were co-treated with IL-6, while decreased in inhibitor treatment. The expression of the crucial members in the pathway of MC-4 cells, including glycoprotein 130 (GP130), JAK1, JAK2, STAT3, p-STAT3, suppressor of cytokine signaling SOCS1 and SOCS3, was detected by western blotting. pPeOp exhibited promising anticancer effect in the xenograft nude mice model, established by STAT3 knock down gastric cancer cells.Thus, JAK/STAT3 inhibition partially contributed to the anticancer effect of pPeOp, which may serve as a novel strategy for gastric cancer.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1960385.
Collapse
Affiliation(s)
- Yuqin Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenjun Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongxia Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,School of Medicine and Pharmacy, Ocean University of China, QingDao, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meiai Lin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun Liang
- School of Medicine and Pharmacy, Ocean University of China, QingDao, China.,EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| | - Jianshu Lou
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, School of medicine, Hangzhou Normal University, Hangzhou, China
| | - Yitao Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neural Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
4
|
Wang K, Zhang FL, Jia W. Glutathione S‑transferase ω 1 promotes the proliferation, migration and invasion, and inhibits the apoptosis of non‑small cell lung cancer cells, via the JAK/STAT3 signaling pathway. Mol Med Rep 2021; 23:71. [PMID: 33236161 PMCID: PMC7716429 DOI: 10.3892/mmr.2020.11709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
Glutathione S‑transferase ω 1 (GSTO1) expression levels have been discovered to be upregulated in various types of cancer. However, to the best of our knowledge, the role of GSTO1 in non‑small cell lung cancer (NSCLC) has not been investigated. The present study aimed to investigate the role of GSTO1 in NSCLC and to determine the potential molecular mechanism. GSTO1 expression levels in A549 cells were knocked down using short hairpin RNA and GSTO1 overexpression in H2122 cells was achieved using cDNA constructs. Reverse transcription‑quantitative PCR was used to analyze the mRNA expression levels of GSTO1. Cell proliferation was determined using a Cell Counting Kit‑8 assay, whereas cell migration and invasion were analyzed using Transwell assays. Flow cytometric analysis was performed to determine the levels of cell apoptosis. The expression levels of GSTO1, Bax, caspase 3, JAK and STAT3 were analyzed using western blotting. The results revealed that GSTO1 overexpression significantly promoted the proliferation, migration and invasion, and inhibited the apoptosis of H2122 cells, whereas the opposite trend was achieved in A549 cells with GSTO1 knockdown. GSTO1 overexpression also significantly increased the phosphorylation levels of JAK and STAT3, whereas the knockdown of GSTO1 promoted the opposite effects. In conclusion, the findings of the present study indicated that GSTO1 may serve as an oncogene in NSCLC. The results suggested that GSTO1 may have an important role in NSCLC by regulating the JAK/STAT3 signaling pathway. Therefore, inhibiting the expression levels of GSTO1 may represent a potential novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Fu-Lian Zhang
- Integrated TCM and Western Medicine Department, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300134, P.R. China
| | - Wei Jia
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| |
Collapse
|
5
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
6
|
Wu S, Wang MG, Wang Y, He JQ. Polymorphisms of cytokine genes and tuberculosis in two independent studies. Sci Rep 2019; 9:2507. [PMID: 30792445 PMCID: PMC6385216 DOI: 10.1038/s41598-019-39249-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Cytokine gene single nucleotide polymorphisms (SNPs) can influence cytokine levels, which may be associated with tuberculosis (TB) susceptibility. There is evidence that interleukin 1B (IL1B), tumor necrosis factor-alpha (TNF-alpha), and IL6 may be involved in the progression of TB. Using a self-validating case-control design, we selected eleven functional SNPs in IL1B, TNF and IL6 to detect their association with TB in Chinese Han and Tibetan populations. The associations between SNPs and TB were estimated by computing the odds ratios (ORs) and 95% confidence intervals (95% CI) using logistic regression analyses. We found that the IL1B rs16944 polymorphism was associated with decreased risk of TB in the two studies. The G allele at rs2069837 of IL6 was significantly more common in controls than in TB patients in the Han population. Moreover, TNF rs1799964 and rs1800630 were risk factors for susceptibility to TB, which were validated in the Chinese Tibetan population. In addition, TNF rs1799724 and rs1800629 were associated with TB, but only in the Tibetan population. In conclusion, SNPs of the IL1B and TNF gene were associated with TB susceptibility in Chinese Han and Tibetan populations. IL6 polymorphism may be considered as a protective factor for TB in the Chinese Han population, but not the Tibetan population.
Collapse
Affiliation(s)
- Shouquan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Gong WJ, Ma LY, Hu L, Lv YN, Huang H, Xu JQ, Huang DD, Liu RJ, Han Y, Zhang Y, Shi SJ, Wu SL. STAT3 rs4796793 contributes to lung cancer risk and clinical outcomes of platinum-based chemotherapy. Int J Clin Oncol 2019; 24:476-484. [PMID: 30689078 DOI: 10.1007/s10147-018-01386-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) 3 plays a vital role in carcinogenesis and drug response. Platinum-based chemotherapy is the first-line treatment for lung cancer patients, especially those in advanced stages. In the present study, we investigated the association of STAT3 polymorphism rs4796793 with lung cancer susceptibility, platinum-based chemotherapy response, and toxicity. METHODS A total of 498 lung cancer patients and 213 healthy controls were enrolled in the study. 467 of them received at least 2-cycle platinum-based chemotherapy. Unconditional logistical regression analysis was used to assess the associations. RESULTS STAT3 rs4769793 G allele carriers had an increased susceptibility of lung cancer [additive model: adjusted OR (95% CI) 1.376 (1.058-1.789), P = 0.017; recessive model: adjusted OR (95% CI) 1.734 (1.007-2.985), P = 0.047]. Rs4769793 was not significantly associated with platinum-based chemotherapy response in lung cancer patients. STAT3 rs4796793 was associated with an increased risk of severe overall toxicity [additive model: adjusted OR (95% CI) 1.410 (1.076-1.850), P = 0.013; dominant model: adjusted OR (95% CI) 1.638 (1.091-2.459), P = 0.017], especially hematological toxicity [additive model: adjusted OR (95% CI) 1.352 (1.001-1.826), P = 0.049]. CONCLUSIONS STAT3 rs4796793 may be considered as a potential candidate biomarker for the prediction of susceptibility and prognosis in Chinese lung cancer patients. However, well-designed studies with larger sample sizes are required to verify the results.
Collapse
Affiliation(s)
- Wei-Jing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, 100044, Beijing, China
| | - Yong-Ning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Huang
- Wuhan Highway Management Office, Wuhan, 430000, China
| | - Jia-Qiang Xu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan-Dan Huang
- Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui-Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shao-Jun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - San-Lan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Li J, Xu L, Run ZC, Feng W, Liu W, Zhang PJ, Li Z. Multiple cytokine profiling in serum for early detection of gastric cancer. World J Gastroenterol 2018; 24:2269-2278. [PMID: 29881236 PMCID: PMC5989241 DOI: 10.3748/wjg.v24.i21.2269] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/27/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the value of multiparameter joint analysis in the early diagnosis of gastric cancer (GC) in clinical practice.
METHODS Concentrations of CEA, CA724 and three kinds of cytokines (TNF-α, IL-6 and IL-8) in 176 GC patients, 117 atypical hyperplasia patients, and 204 healthy control individuals were used for building the diagnostic model, then 58 GC patients, 41 atypical hyperplasia patients, and 66 healthy control individuals were enrolled independently. The joints of the indicators were analyzed by binary logistic regression analysis method.
RESULTS For discriminating the healthy control group and the GC group, IL-6 had the best diagnostic value, and the area under curve (AUC) of joint analysis was 0.95 (0.93-0.97). For the early stage and advanced stage GC, the AUC were 0.95 (0.92-0.98) and 0.95 (0.92-0.97). For discriminating the atypical hyperplasia group and GC group, CA724 had the best diagnostic value, and the AUC of joint analysis was 0.97 (0.95-0.99). For the early stage and advanced stage GC groups, the AUC were 0.98 (0.96-0.99) and 0.96 (0.94-0.98). After evaluation, for discriminating the GC, early stage GC and advanced cancer group from the healthy control group, the diagnostic sensitivity was 89.66%, 84.21% and 92.31%, respectively, and the specificity was 92.42%, 90.91% and 90.91%. For discriminating the GC, early stage GC and advanced cancer groups from the atypical hyperplasia group, the diagnostic sensitivity was 87.93%, 78.95% and 92.31%, respectively, and the specificity was 87.80%, 85.37% and 90.24%.
CONCLUSION We have built a diagnostic model including CEA, CA724, IL-6, IL-8, and TNF-α. It may provide potential assistance as a screening method for the early detection of GC.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Liang Xu
- Department of Oncology, General Hospital of Liaohe Oil Field, Panjin 124010, Liaoning Province, China
| | - Zeng-Ci Run
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Wen Feng
- Department of Pathology, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Wen Liu
- Department of Central Laboratory, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Li
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
9
|
Genetic Polymorphisms of IL1B, IL6, and TNFα in a Chinese Han Population with Pulmonary Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3010898. [PMID: 29888256 PMCID: PMC5977055 DOI: 10.1155/2018/3010898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 02/05/2023]
Abstract
Background The factors that predispose to pulmonary tuberculosis (PTB) are not fully understood. Previous studies have shown that cytokine gene polymorphisms were associated with PTB. Objectives In this study, we have investigated the relationship between ILB, IL6, and TNFα polymorphisms and a predisposition to Mycobacterium tuberculosis (MTB) infection and PTB. Methods A total of 209 cases of PTB, 201 subjects with latent TB infection (LTBI), and 204 healthy controls (HCS) were included in this study. Logistic regression analyses under allelic, homozygous, and heterozygous models were used to calculate P values, odds ratios (ORs), and 95% confidence intervals (CIs) for assessing the association between single nucleotide polymorphisms (SNPs) and disease risk, adjusting for sex and age. Genotyping was conducted using the improved multiplex ligase detection reaction (iMLDR) method. Results When comparing PTB patients with LTBI subjects, significant associations with disease development were observed for SNPs of IL6 and TNFα. When comparing LTBI subjects with HCS, IL1B polymorphisms were significantly associated with LIBI. Haplotype analyses suggested that the CGG haplotype of IL1B was associated with an increased risk of PTB (P = 0.039, OR = 1.34, 95% CI: 1.01–1.76), while the TTGCG haplotype of TNFα was a protective factor against PTB (P = 0.039, OR = 0.66, 95% CI: 0.44–0.98). Conclusion Our study demonstrated that IL1B variants were related to LTBI and IL6 and TNFα variants were associated with PTB.
Collapse
|
10
|
Tao Y, Yang S, Wu Y, Fang X, Wang Y, Song Y, Han T. MicroRNA-216a inhibits the metastasis of gastric cancer cells by targeting JAK2/STAT3-mediated EMT process. Oncotarget 2017; 8:88870-88881. [PMID: 29179483 PMCID: PMC5687653 DOI: 10.18632/oncotarget.21488] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a group of small, non-protein coding, endogenous RNAs, play critical roles in the tumorigenesis and progression of human cancer. miR-216a has recently been reported to play an oncogenic role in human cancer. While, the expression of miR-216a, its biological function and underlying molecular mechanisms in gastric cancer (GC) are largely unknown. In this study, we revealed that miR-216a was underexpressed in GC tissues compared to matched noncancerous tissues. Decreased levels of miR-216a were confirmed in GC cell lines compared with a normal gastric epithelium cell line. miR-216a underexpression was associated with malignant prognostic features including lymph node metastasis, venous infiltration, invasive depth and advanced TNM stage. GC patients with low miR-216a level showed an obvious shorter overall survival. miR-216a overexpression restrained migration and invasion of MGC-803 cells, while its knockdown exerted opposite effects on metastatic behaviors of SGC-7901 cells. In vivo experiments found that miR-216a restoration reduced metastatic nodes of GC cells in nude mice liver. miR-216a notably suppressed epithelial-mesenchymal transition (EMT) of GC cells. Janus kinase 2 (JAK2) was recognized as a direct target and downstream mediator of miR-216a in GC cells. Interestingly, JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was prominently inactivated by miR-216a and probably mediated the role of miR-216a in the regulation of migration, invasion and EMT process of GC cells. In conclusion, these data suggest that miR-216a functions as a tumor suppressive miRNA in the development of GC possibly by targeting JAK2/STAT3-mediated EMT.
Collapse
Affiliation(s)
- Youmao Tao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Songbai Yang
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Yannan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Yan Song
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Tao Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| |
Collapse
|
11
|
Gruzieva O, Merid SK, Gref A, Gajulapuri A, Lemonnier N, Ballereau S, Gigante B, Kere J, Auffray C, Melén E, Pershagen G. Exposure to Traffic-Related Air Pollution and Serum Inflammatory Cytokines in Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067007. [PMID: 28669936 PMCID: PMC5714301 DOI: 10.1289/ehp460] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Long-term exposure to ambient air pollution can lead to adverse health effects in children; however, underlying biological mechanisms are not fully understood. OBJECTIVES We evaluated the effect of air pollution exposure during different time periods on mRNA expression as well as circulating levels of inflammatory cytokines in children. METHODS We measured a panel of 10 inflammatory markers in peripheral blood samples from 670 8-y-old children in the Barn/Child, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) birth cohort. Outdoor concentrations of nitrogen dioxide (NO2) and particulate matter (PM) with aerodynamic diameter <10 μm (PM10) from road traffic were estimated for residential, daycare, and school addresses using dispersion modeling. Time-weighted average exposures during infancy and at biosampling were linked to serum cytokine levels using linear regression analysis. Furthermore, gene expression data from 16-year-olds in BAMSE (n=238) were used to evaluate links between air pollution exposure and expression of genes coding for the studied inflammatory markers. RESULTS A 10 μg/m3 increase of NO2 exposure during infancy was associated with a 13.6% (95% confidence interval (CI): 0.8; 28.1%) increase in interleukin-6 (IL-6) levels, as well as with a 27.8% (95% CI: 4.6, 56.2%) increase in IL-10 levels, the latter limited to children with asthma. However, no clear associations were observed for current exposure. Results were similar using PM10, which showed a high correlation with NO2. The functional analysis identified several differentially expressed genes in response to air pollution exposure during infancy, including IL10, IL13, and TNF;. CONCLUSION Our results indicate alterations in systemic inflammatory markers in 8-y-old children in relation to early-life exposure to traffic-related air pollution. https://doi.org/10.1289/EHP460.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gref
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ashwini Gajulapuri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Bruna Gigante
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Sachs’ Children’s Hospital, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
12
|
Mao Y, Zhao Q, Yin S, Ding X, Wang H. Genome-wide expression profiling and bioinformatics analysis of deregulated genes in human gastric cancer tissue after gastroscopy. Asia Pac J Clin Oncol 2017; 14:e29-e36. [PMID: 28374495 DOI: 10.1111/ajco.12688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to analyze the gene expression profile and biological processes enriched in gastric cancer. METHODS We collected five human advanced gastric cancer tissues by gastroscopy and five peritumor normal tissues as controls and examined the gene expression changes by microarray. KEGG Orthology Based Annotation System annotation was used to identify pathways and biological processes regulated by the deregulated genes. Protein-protein interaction network analysis identified protein complex and functional modules. We also selected 14 genes for further verification by real-time quantitative Polymerase Chain Reaction (PCR). RESULTS Human gene expression profile analysis showed that 2028 deregulated genes were detected in gastric cancer compared with the control group (at least a 2.0-fold change and P < 0.05), among which there were 689 upregulated and 1339 downregulated genes. Interestingly, we identified some important genes, such as CXCL17, OTX1 and CCDC125, which have not previously been reported in gastric cancer. Real-time quantitative PCR results verified that CXCL8, OTX1, CEBPB, FOSL1, FOXS1, ARFRP1 and IRF9 were upregulated in gastric cancer and CCDC125, PPP1R36, SOX2, JUN and MIA2 were downregulated. Moreover, bioinformatics analysis demonstrated that the biological processes of inflammatory response, angiogenesis, cell migration and pathways of chemokine signaling pathway, TNF signaling pathway were enriched. We also selected the top 30 significant Gene Ontology terms and select pathways for a brief summary. CONCLUSION We performed a global analysis of the mRNA landscape in gastric cancer. Our results may stimulate a deeper understanding of the disease, and lead to the development of potential therapies and the identification of novel biomarkers.
Collapse
Affiliation(s)
- Yudi Mao
- Department of Gastroenterology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Xiping Ding
- Department of Gastroenterology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China.,Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Hou JY, Wang YG, Ma SJ, Yang BY, Li QP. Identification of a prognostic 5-Gene expression signature for gastric cancer. J Cancer Res Clin Oncol 2017; 143:619-629. [PMID: 28035468 DOI: 10.1007/s00432-016-2324-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Gastric cancer (GC) is a major tumor throughout the world with remaining high morbidity and mortality. The aim is to generate a gene model to assess the prognoses risk of patients with GC. METHODS Gene expression profiling of gastric cancer patients, GSE62254 (300 samples) and GSE26253 (432 samples), was downloaded from Gene Expression Omnibus (GEO) database. Univariate survival analysis and LASSO (Least Absolute Shrinkage and Selectionator operator) (1000 iterations) of differentially expressed genes in GSE62254 was assessed using survival and glmnet in R package, respectively. Kaplan-Meier analysis on the clustering algorithm from each regression model was performed to calculate the influence to the prognosis. Random samples in GSE26253 were analyzed in multivariate and univariate survival analysis for one thousand times to calculate statistical stability of each regression model. RESULTS A total of 854 Genes were identified differentially expressed in GSE62254, among which 367 Genes were found influencing the prognoses. Six gene clusters were selected with good stability. Hereinto, five or more genes in 11-Gene model, TRPC1, SGCE, TNFRSF11A, LRRN1, HLF, CYS1, PPP1R14A, NOV, NBEA, CES1 and RGN, was available to evaluate the prognostic risk of GC patients in GSE26253 (P = 0.00445). The validity and reliability was validated. CONCLUSION In conclusion, we successfully generated a stable 5-Gene model, which could be utilized to predict prognosis of GC patients and would contribute to postoperational treatment and follow-up strategies.
Collapse
Affiliation(s)
- Jun-Yi Hou
- Department of Gastroenterology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Yu-Gang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Jie Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Bing-Yin Yang
- Department of Gastroenterology, The Second People's Hospital of Huai'an and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China.
| | - Qian-Ping Li
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China.
| |
Collapse
|
14
|
Zhou F, Qiu LX, Cheng L, Wang MY, Li J, Sun MH, Yang YJ, Wang JC, Jin L, Wang YN, Wei QY. Associations of genotypes and haplotypes of IL-17 with risk of gastric cancer in an eastern Chinese population. Oncotarget 2016; 7:82384-82395. [PMID: 27577072 PMCID: PMC5347698 DOI: 10.18632/oncotarget.11616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
Interleukin-17 plays a crucial role in inflammation-related carcinogenesis. We hypothesize that genetic variants in IL-17 are associated with gastric cancer (GCa) risk, and we genotyped five potentially functional single nucleotide polymorphisms (SNPs) (rs1974226 G > A, rs2275913 A > G, rs3819024 A > G, rs4711998 A > G, and rs8193036 C > T) of IL-17 in 1121 GCa patients and 1216 cancer-free controls in an eastern Chinese population. Logistic regression analysis was used to calculate odds ratios (OR) and 95% confidence intervals (CI). Meta-analysis and genotype-mRNA expression correlation were performed to further validate positive associations. We found that an increased GCa risk was independently associated with rs1974226 (adjusted OR = 2.60, 95% CI = 1.27-5.32 for AA vs. GG + GA) and rs2275913 (adjusted OR = 1.33, 95% CI = 1.03-1.72 for GA + AA vs. GG), while a decreased GCa risk was independently associated with rs3819024 (adjusted OR = 0.72, 95% CI = 0.54-0.96 for GG vs. AA + AG). Additional meta-analyses confirmed the observed risk association with rs2275913. We also found that two IL-17 haplotypes (G-G-G-A-C) and (A-G-G-A-C) (in the order of rs1974226, rs2275913, rs3819024, rs4711998 and rs8193036) were associated with a reduced GCa risk (adjusted OR = 0.64, 95% CI = 0.46-0.89 and adjusted OR = 0.38, 95% CI = 0.17-0.81, respectively). However, the expression Quantitative Trait Locus (eQTL) analysis for the genotype-phenotype correlation did not find mRNA expression changes associated with either the genotypes. In conclusions, genetic variants of IL-17 are likely to be associated with risk of GCa, and additional larger studies with functional validation are needed to explore the molecular mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Fei Zhou
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Jiaotong University Affiliated Shanghai First People's Hospital, Shanghai, China
| | - Li-Xin Qiu
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Cheng
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng-Yun Wang
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng-Hong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ya-Jun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Jiu-Cun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Ya-Nong Wang
- Department of Gastric Cancer and Soft Tissue Sarcoma Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing-Yi Wei
- Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|