1
|
Parker AL, Johnstone TC. Carbon monoxide poisoning: A problem uniquely suited to a medicinal inorganic chemistry solution. J Inorg Biochem 2024; 251:112453. [PMID: 38100903 DOI: 10.1016/j.jinorgbio.2023.112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide poisoning is one of the most common forms of poisoning in the world. Although the primary mode of treatment, oxygen therapy, is highly effective in many cases, there are instances in which it is inadequate or inappropriate. Whereas oxygen therapy relies on high levels of a low-affinity ligand (O2) to displace a high-affinity ligand (CO) from metalloproteins, an antidote strategy relies on introducing a molecule with a higher affinity for CO than native proteins (Kantidote,CO > Kprotein,CO). Based on the fundamental chemistry of CO, such an antidote is most likely required to be an inorganic compound featuring an electron-rich transition metal. A review is provided of the protein-, supramolecular complex-, and small molecule-based CO poisoning antidote platforms that are currently under investigation.
Collapse
Affiliation(s)
- A Leila Parker
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States..
| |
Collapse
|
2
|
Romano G, Insero G, Marrugat SN, Fusi F. Innovative light sources for phototherapy. Biomol Concepts 2022; 13:256-271. [DOI: 10.1515/bmc-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The use of light for therapeutic purposes dates back to ancient Egypt, where the sun itself was an innovative source, probably used for the first time to heal skin diseases. Since then, technical innovation and advancement in medical sciences have produced newer and more sophisticated solutions for light-emitting sources and their applications in medicine. Starting from a brief historical introduction, the concept of innovation in light sources is discussed and analysed, first from a technical point of view and then in the light of their fitness to improve existing therapeutic protocols or propose new ones. If it is true that a “pure” technical advancement is a good reason for innovation, only a sub-system of those advancements is innovative for phototherapy. To illustrate this concept, the most representative examples of innovative light sources are presented and discussed, both from a technical point of view and from the perspective of their diffusion and applications in the clinical field.
Collapse
Affiliation(s)
- Giovanni Romano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
| | - Giacomo Insero
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
- National Research Council, National Institute of Optics (CNR-INO) , Via Carrara 1 , 50019 Sesto Fiorentino , FI , Italy
| | - Santi Nonell Marrugat
- Institut Quimic de Sarria, Universidad Ramon Llull , Via Augusta 390 , 08017 Barcelona , Spain
| | - Franco Fusi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
| |
Collapse
|
3
|
Suhaimi NF, Jalaludin J, Abu Bakar S. The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157995. [PMID: 34360284 PMCID: PMC8345469 DOI: 10.3390/ijerph18157995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the association between traffic-related air pollution (TRAP) exposure and histone H3 modification among school children in high-traffic (HT) and low-traffic (LT) areas in Malaysia. Respondents' background information and personal exposure to traffic sources were obtained from questionnaires distributed to randomly selected school children. Real-time monitoring instruments were used for 6-h measurements of PM10, PM2.5, PM1, NO2, SO2, O3, CO, and total volatile organic compounds (TVOC). Meanwhile, 24-h measurements of PM2.5-bound black carbon (BC) were performed using air sampling pumps. The salivary histone H3 level was captured using an enzyme-linked immunosorbent assay (ELISA). HT schools had significantly higher PM10, PM2.5, PM1, BC, NO2, SO2, O3, CO, and TVOC than LT schools, all at p < 0.001. Children in the HT area were more likely to get higher histone H3 levels (z = -5.13). There were positive weak correlations between histone H3 level and concentrations of NO2 (r = 0.37), CO (r = 0.36), PM1 (r = 0.35), PM2.5 (r = 0.34), SO2 (r = 0.34), PM10 (r = 0.33), O3 (r = 0.33), TVOC (r = 0.25), and BC (r = 0.19). Overall, this study proposes the possible role of histone H3 modification in interpreting the effects of TRAP exposure via non-genotoxic mechanisms.
Collapse
Affiliation(s)
- Nur Faseeha Suhaimi
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +603-97692401
| | - Suhaili Abu Bakar
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
4
|
Liu CC, Hsu CS, He HC, Cheng YY, Chang ST. Effects of intravascular laser phototherapy on delayed neurological sequelae after carbon monoxide intoxication as evaluated by brain perfusion imaging: A case report and review of the literature. World J Clin Cases 2021; 9:3048-3055. [PMID: 33969090 PMCID: PMC8080739 DOI: 10.12998/wjcc.v9.i13.3048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Delayed neurological sequelae (DNS) caused by carbon monoxide (CO) intoxication poses considerable treatment challenges for clinical practitioners. In this report, we used nuclear medicine imaging and the Mini-Mental State Examination (MMSE) to evaluate the effectiveness of intravascular laser irradiation of blood (ILIB) therapy for the management of DNS.
CASE SUMMARY A 51-year-old woman presented to our medical center experiencing progressive bradykinesia, rigidity of limbs, gait disturbance, and cognitive impairment. Based on her neurological deficits, laboratory tests and imaging findings, the patient was diagnosed with delayed neurological sequelae of CO intoxication. She received intensive rehabilitation and ILIB therapy during 30 sessions over 2 mo after diagnosis. Brain single-photon emission computed tomography was performed both prior to and after ILIB therapy. The original hypoperfusion area in bilateral striata, bilateral frontal lobe, right parietal lobe, and bilateral cerebellum showed considerable improvement after completion of therapy. The patient’s MMSE score also increased markedly from 6/30 to 25/30. Symptoms of DNS became barely detectable, and the woman was able to carry out her daily living activities independently.
CONCLUSION ILIB therapy could facilitate recovery from delayed neurological sequelae in patients with CO intoxication, as demonstrated by improved cerebral blood flow and functional outcomes in our patient.
Collapse
Affiliation(s)
- Chuan-Ching Liu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chun-Sheng Hsu
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Hsin-Chen He
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yuan-Yang Cheng
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
5
|
Adach W, Błaszczyk M, Olas B. Carbon monoxide and its donors - Chemical and biological properties. Chem Biol Interact 2020; 318:108973. [PMID: 32035862 DOI: 10.1016/j.cbi.2020.108973] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/31/2022]
Abstract
Carbon monoxide (CO) is an inorganic chemical compound that can bind with hemoglobin with highly toxic effects. In living organisms, it is produced endogenously during the degradation of heme by oxygenase, which occurs in three isoforms: HO-1, HO-2 and HO-3. CO can play an important role in the regulation of many physiological functions. Carbon Oxide Releasing Molecules (CORMs) are a novel group of chemical compounds capable of controlled CO release directly in tissues or organs. This release depends on concentration, pH, solvent type and temperature. The biological role and the therapeutic potential of different CORMs is not always well demonstrated. However, this mini review summarizes the various function of these compounds.
Collapse
Affiliation(s)
- Weronika Adach
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Mateusz Błaszczyk
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Beata Olas
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
6
|
Goldstein SR, Liu C, Safo MK, Nakagawa A, Zapol WM, Winkler JD. Design, Synthesis, and Biological Evaluation of Allosteric Effectors That Enhance CO Release from Carboxyhemoglobin. ACS Med Chem Lett 2018; 9:714-718. [PMID: 30034606 PMCID: PMC6047046 DOI: 10.1021/acsmedchemlett.8b00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 11/29/2022] Open
Abstract
Carbon monoxide (CO) poisoning causes between 5,000-6,000 deaths per year in the US alone. The development of small molecule allosteric effectors of CO binding to hemoglobin (Hb) represents an important step toward making effective therapies for CO poisoning. To that end, we have found that the synthetic peptide IRL 2500 enhances CO release from COHb in air, but with concomitant hemolytic activity. We describe herein the design, synthesis, and biological evaluation of analogs of IRL 2500 that enhance the release of CO from COHb without hemolysis. These novel structures show improved aqueous solubility and reduced hemolytic activity and could lead the way to the development of small molecule therapeutics for the treatment of CO poisoning.
Collapse
Affiliation(s)
- Sara R. Goldstein
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chen Liu
- Anesthesia
Center for Critical Care Research, Department of Anesthesia, Critical
Care, and Pain Medicine, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Martin K. Safo
- Department
of Medicinal Chemistry, The Institute for Structural Biology, Drug
Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Akito Nakagawa
- Anesthesia
Center for Critical Care Research, Department of Anesthesia, Critical
Care, and Pain Medicine, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Warren M. Zapol
- Anesthesia
Center for Critical Care Research, Department of Anesthesia, Critical
Care, and Pain Medicine, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jeffrey D. Winkler
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Rose JJ, Wang L, Xu Q, McTiernan CF, Shiva S, Tejero J, Gladwin MT. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am J Respir Crit Care Med 2017; 195:596-606. [PMID: 27753502 PMCID: PMC5363978 DOI: 10.1164/rccm.201606-1275ci] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide (CO) poisoning affects 50,000 people a year in the United States. The clinical presentation runs a spectrum, ranging from headache and dizziness to coma and death, with a mortality rate ranging from 1 to 3%. A significant number of patients who survive CO poisoning suffer from long-term neurological and affective sequelae. The neurologic deficits do not necessarily correlate with blood CO levels but likely result from the pleiotropic effects of CO on cellular mitochondrial respiration, cellular energy utilization, inflammation, and free radical generation, especially in the brain and heart. Long-term neurocognitive deficits occur in 15-40% of patients, whereas approximately one-third of moderate to severely poisoned patients exhibit cardiac dysfunction, including arrhythmia, left ventricular systolic dysfunction, and myocardial infarction. Imaging studies reveal cerebral white matter hyperintensities, with delayed posthypoxic leukoencephalopathy or diffuse brain atrophy. Management of these patients requires the identification of accompanying drug ingestions, especially in the setting of intentional poisoning, fire-related toxic gas exposures, and inhalational injuries. Conventional therapy is limited to normobaric and hyperbaric oxygen, with no available antidotal therapy. Although hyperbaric oxygen significantly reduces the permanent neurological and affective effects of CO poisoning, a portion of survivors still have substantial morbidity. There has been some early success in therapies targeting the downstream inflammatory and oxidative effects of CO poisoning. New methods to directly target the toxic effect of CO, such as CO scavenging agents, are currently under development.
Collapse
Affiliation(s)
- Jason J. Rose
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| | - Ling Wang
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| | - Qinzi Xu
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
| | | | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Department of Pharmacology and Chemical, and
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pennsylvania
| | - Jesus Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine
| |
Collapse
|