1
|
Kamalian A, Masoudi M, Foroughmand I, Moghekar A. Diagnostic and Prognostic Biomarkers of Idiopathic Normal Pressure Hydrocephalus in Cerebrospinal Fluid and Blood. Neurosurg Clin N Am 2025; 36:207-231. [PMID: 40054974 DOI: 10.1016/j.nec.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a treatable condition marked by gait disturbances, cognitive decline, and urinary incontinence. Biomarkers play a crucial role in distinguishing iNPH from Alzheimer's disease (AD) and predicting shunt surgery outcomes. Aβ1-42, Aβ1-40, t-tau, and p-tau181 differentiate iNPH from AD, with iNPH showing a higher Aβ1-42/Aβ1-40 ratio and normal tau levels. Neurofilament light chain and soluble amyloid precursor protein derivatives provide prognostic insights with lower preoperative levels linked to better surgical outcomes. Elevated LRG-1 and MCP-1 in cerebrospinal fluid aid in diagnosis and predict favorable responses to shunt surgery, enhancing clinical decision making and patient care.
Collapse
Affiliation(s)
- Aida Kamalian
- Neurology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maryam Masoudi
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Foroughmand
- Neurology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Neurology Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nishida N, Nagata N, Shimoji K, Jingami N, Uemura K, Ozaki A, Takahashi M, Urade Y, Matsumoto S, Iwasaki K, Okumura R, Ishikawa M, Toda H. Lipocalin-type prostaglandin D synthase: a glymphopathy marker in idiopathic hydrocephalus. Front Aging Neurosci 2024; 16:1364325. [PMID: 38638193 PMCID: PMC11024442 DOI: 10.3389/fnagi.2024.1364325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Idiopathic normal pressure hydrocephalus in elderly people is considered a form of glymphopathy caused by malfunction of the waste clearance pathway, called the glymphatic system. Tau is a representative waste material similar to amyloid-β. During neurodegeneration, lipocalin-type prostaglandin D synthase (L-PGDS), a major cerebrospinal fluid (CSF) protein, is reported to act as a chaperone that prevents the neurotoxic aggregation of amyloid-β. L-PGDS is also a CSF biomarker in idiopathic normal pressure hydrocephalus and significantly correlates with tau concentration, age, and age-related brain white matter changes detected by magnetic resonance imaging. To investigate this glymphopathy, we aimed to analyze white matter changes and contributing factors in vivo and their interactions ex vivo. Cerebrospinal tap tests were performed in 60 patients referred for symptomatic ventriculomegaly. Patients were evaluated using an idiopathic normal pressure hydrocephalus grading scale, mini-mental state examination, frontal assessment battery, and timed up-and-go test. The typical morphological features of high convexity tightness and ventriculomegaly were measured using the callosal angle and Evans index, and parenchymal white matter properties were evaluated with diffusion tensor imaging followed by tract-based spatial statistics. Levels of CSF biomarkers, including tau, amyloid-β, and L-PGDS, were determined by ELISA, and their interaction, and localization were determined using immunoprecipitation and immunohistochemical analyses. Tract-based spatial statistics for fractional anisotropy revealed clusters that positively correlated with mini-mental state examination, frontal assessment battery, and callosal angle, and clusters that negatively correlated with age, disease duration, idiopathic normal pressure hydrocephalus grading scale, Evans index, and L-PGDS. Other parameters also indicated clusters that correlated with symptoms, microstructural white matter changes, and L-PGDS. Tau co-precipitated with L-PGDS, and colocalization was confirmed in postmortem specimens of neurodegenerative disease obtained from the human Brain Bank. Our study supports the diagnostic value of L-PGDS as a surrogate marker for white matter integrity in idiopathic normal pressure hydrocephalus. These results increase our understanding of the molecular players in the glymphatic system. Moreover, this study indicates the potential utility of enhancing endogenous protective factors to maintain brain homeostasis.
Collapse
Affiliation(s)
- Namiko Nishida
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Nanae Nagata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoto Jingami
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Ozaki
- Department of Neurology, Osaka Red Cross Hospital, Osaka, Japan
| | - Makio Takahashi
- Department of Neurodegenerative Disorders, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of Tokyo, Fukushima, Japan
| | - Sadayuki Matsumoto
- Department of Neurology, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Koichi Iwasaki
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Ryosuke Okumura
- Department of Diagnostic Radiology, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Masatsune Ishikawa
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Hiroki Toda
- Department of Neurosurgery, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, Osaka, Japan
| |
Collapse
|
3
|
Braun M, Boström G, Ingelsson M, Kilander L, Löwenmark M, Nyholm D, Burman J, Niemelä V, Freyhult E, Kultima K, Virhammar J. Levels of inflammatory cytokines MCP-1, CCL4, and PD-L1 in CSF differentiate idiopathic normal pressure hydrocephalus from neurodegenerative diseases. Fluids Barriers CNS 2023; 20:72. [PMID: 37833765 PMCID: PMC10571396 DOI: 10.1186/s12987-023-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Neuroinflammatory processes have been suggested to play a role in the pathophysiology of neurodegenerative diseases and post-hemorrhagic hydrocephalus, but have rarely been investigated in patients with idiopathic normal pressure hydrocephalus (iNPH). The aim of this study was to investigate whether levels of inflammatory proteins in CSF are different in iNPH compared to healthy controls and patients with selected neurodegenerative disorders, and whether any of these markers can aid in the differential diagnosis of iNPH. METHODS Lumbar CSF was collected from 172 patients from a single center and represented iNPH (n = 74), Alzheimer's disease (AD) (n = 21), mild cognitive impairment (MCI) due to AD (n = 21), stable MCI (n = 22), frontotemporal dementia (n = 13), and healthy controls (HC) (n = 21). Levels of 92 inflammatory proteins were analyzed using a proximity extension assay. As a first step, differences between iNPH and HC were investigated, and proteins that differed between iNPH and HC were then compared with those from the other groups. The linear regressions were adjusted for age, sex, and plate number. RESULTS Three proteins showed higher (MCP-1, p = 0.0013; CCL4, p = 0.0008; CCL11, p = 0.0022) and one lower (PD-L1, p = 0.0051) levels in patients with iNPH compared to HC. MCP-1 was then found to be higher in iNPH than in all other groups. CCL4 was higher in iNPH than in all other groups, except in MCI due to AD. PD-L1 was lower in iNPH compared to all other groups, except in stable MCI. Levels of CCL11 did not differ between iNPH and the differential diagnoses. In a model based on the four proteins mentioned above, the mean area under the receiver operating characteristic curve used to discriminate between iNPH and the other disorders was 0.91. CONCLUSIONS The inflammatory cytokines MCP-1 and CCL4 are present at higher-and PD-L1 at lower-levels in iNPH than in the other investigated diagnoses. These three selected cytokines may have diagnostic potential in the work-up of patients with iNPH.
Collapse
Affiliation(s)
- Madelene Braun
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Gustaf Boström
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västmanland County Hospital, Västerås, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Dag Nyholm
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Valter Niemelä
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Johan Virhammar
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Ishida T, Murayama T, Kobayashi S. Current research of idiopathic normal pressure hydrocephalus: Pathogenesis, diagnosis and treatment. World J Clin Cases 2023; 11:3706-3713. [PMID: 37383114 PMCID: PMC10294169 DOI: 10.12998/wjcc.v11.i16.3706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/18/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is caused by impaired cerebrospinal fluid absorption in the elderly; it is a surgically treatable form of dementia. Gait disturbance, dementia, and urinary incontinence are the triad of signs for iNPH. In addition to these clinical findings, imaging studies show characteristic ventricular enlargement. High Evans Index and 'disproportionately enlarged subarachnoid hydrocephalus' are other well-known imaging findings of iNPH. If the tap test shows improved symptoms, shunt surgery is performed. The disease was first described by Hakim and Adams in 1965, followed by the publication of the first, second, and third editions of the guidelines in 2004, 2012, and 2020, respectively. Recent studies signal the glymphatic system and classical cerebrospinal fluid (CSF) absorption from the dural lymphatics as aetiological mechanisms of CSF retention. Research is also underway on imaging test and biomarker developments for more precise diagnosis, shunting technique options with fewer sequelae and complications, and the influence of genetics. Particularly, the newly introduced 'suspected iNPH' in the third edition of the guidelines may be useful for earlier diagnosis. However, less well-studied areas remain, such as pharmacotherapy in non-operative indications and neurological findings other than the triadic signs. This review briefly presents previous research on these and future issues.
Collapse
Affiliation(s)
- Tetsuro Ishida
- Department of Psychiatry, Japan Health Care College, Sapporo 062-0053, Hokkaido, Japan
| | - Tomonori Murayama
- Department of Psychiatry, Asahikawa Keisenkai Hospital, Asahikawa 078-8208, Hokkaido, Japan
| | - Seiju Kobayashi
- Department of Psychiatry, Shinyukai Nakae Hospital, Sapporo 001-0022, Hokkaido, Japan
| |
Collapse
|
5
|
Lidén S, Farahmand D, Laurell K. Ventricular volume in relation to lumbar CSF levels of amyloid-β 1–42, tau and phosphorylated tau in iNPH, is there a dilution effect? Fluids Barriers CNS 2022; 19:59. [PMID: 35843939 PMCID: PMC9288679 DOI: 10.1186/s12987-022-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Levels of the biomarkers amyloid-β 1–42 (Aβ42), tau and phosphorylated tau (p-tau) are decreased in the cerebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). The mechanism behind this is unknown, but one potential explanation is dilution by excessive CSF volumes. The aim of this study was to investigate the presence of a dilution effect, by studying the relationship between ventricular volume (VV) and the levels of the CSF biomarkers.
Methods
In this cross-sectional observational study, preoperative magnetic resonance imaging (MRI) and lumbar CSF was acquired from 136 patients with a median age of 76 years, 89 men and 47 females, selected for surgical treatment for iNPH. The CSF volume of the lateral and third ventricles was segmented on MRI and related to preoperative concentrations of Aβ42, tau and p-tau.
Results
In the total sample VV (Median 140.7 mL) correlated weakly (rs = − 0.17) with Aβ42 (Median 534 pg/mL), but not with tau (Median 216 pg/mL) nor p-tau (Median 31 pg/mL). In a subgroup analysis, the correlation between VV and Aβ42 was only present in the male group (rs = − 0.22, p = 0.038). Further, Aβ42 correlated positively with tau (rs = 0.30, p = 0.004) and p-tau (rs = 0.26, p = 0.012) in males but not in females.
Conclusions
The findings did not support a major dilution effect in iNPH, at least not in females. The only result in favor for dilution was a weak negative correlation between VV and Aβ42 but not with the other lumbar CSF biomarkers. The different results between males and females suggest that future investigations of the CSF pattern in iNPH would gain from sex-based subgroup analysis.
Collapse
|
6
|
Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12122976. [PMID: 36552981 PMCID: PMC9777226 DOI: 10.3390/diagnostics12122976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neurological syndrome characterized by the clinical triad of gait disorder, cognitive impairment and urinary incontinence. It has attracted interest because of the possible reversibility of symptoms, especially with timely treatment. The main pathophysiological theory is based on a vicious circle of disruption in circulation of cerebrospinal fluid (CSF) that leads to the deceleration of its absorption. Data regarding CSF biomarkers in iNPH are contradictory and no definite CSF biomarker profile has been recognized as in Alzheimer's disease (AD), which often co-exists with iNPH. In this narrative review, we investigated the literature regarding CSF biomarkers in iNPH, both the established biomarkers total tau protein (t-tau), phosphorylated tau protein (p-tau) and amyloid peptide with 42 amino acids (Aβ42), and other molecules, which are being investigated as emerging biomarkers. The majority of studies demonstrate differences in CSF concentrations of Aβ42 and tau-proteins (t-tau and p-tau) among iNPH patients, healthy individuals and patients with AD and vascular dementia. iNPH patients present with lower CSF Aβ42 and p-tau concentrations than healthy individuals and lower t-tau and p-tau concentrations than AD patients. This could prove helpful for improving diagnosis, differential diagnosis and possibly prognosis of iNPH patients.
Collapse
|
7
|
White H, Webb R, McKnight I, Legg K, Lee C, Lee PH, Spicer OS, Shim JW. TRPV4 mRNA is elevated in the caudate nucleus with NPH but not in Alzheimer's disease. Front Genet 2022; 13:936151. [PMID: 36406122 PMCID: PMC9670164 DOI: 10.3389/fgene.2022.936151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023] Open
Abstract
Symptoms of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD) are somewhat similar, and it is common to misdiagnose these two conditions. Although there are fluid markers detectable in humans with NPH and AD, determining which biomarker is optimal in representing genetic characteristics consistent throughout species is poorly understood. Here, we hypothesize that NPH can be differentiated from AD with mRNA biomarkers of unvaried proximity to telomeres. We examined human caudate nucleus tissue samples for the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) and amyloid precursor protein (APP). Using the genome data viewer, we analyzed the mutability of TRPV4 and other genes in mice, rats, and humans through matching nucleotides of six genes of interest and one house keeping gene with two factors associated with high mutation rate: 1) proximity to telomeres or 2) high adenine and thymine (A + T) content. We found that TRPV4 and microtubule associated protein tau (MAPT) mRNA were elevated in NPH. In AD, mRNA expression of TRPV4 was unaltered unlike APP and other genes. In mice, rats, and humans, the nucleotide size of TRPV4 did not vary, while in other genes, the sizes were inconsistent. Proximity to telomeres in TRPV4 was <50 Mb across species. Our analyses reveal that TRPV4 gene size and mutability are conserved across three species, suggesting that TRPV4 can be a potential link in the pathophysiology of chronic hydrocephalus in aged humans (>65 years) and laboratory rodents at comparable ages.
Collapse
Affiliation(s)
- Hunter White
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ryan Webb
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Peter H.U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Olivia Smith Spicer
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States,*Correspondence: Joon W. Shim,
| |
Collapse
|
8
|
Jeppsson A, Bjerke M, Hellström P, Blennow K, Zetterberg H, Kettunen P, Wikkelsø C, Wallin A, Tullberg M. Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease. Front Neurol 2022; 13:839307. [PMID: 35309577 PMCID: PMC8927666 DOI: 10.3389/fneur.2022.839307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn this study, we examine similarities and differences between 52 patients with idiopathic normal pressure hydrocephalus (iNPH) and 17 patients with subcortical small vessel disease (SSVD), in comparison to 28 healthy controls (HCs) by a panel of cerebrospinal fluid (CSF) biomarkers.MethodsWe analyzed soluble amyloid precursor protein alpha (sAPPα) and beta (sAPPβ), Aβ isoforms −38, −40, and −42, neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), matrix metalloproteinases (MMP −1, −2, −3, −9, and −10), and tissue inhibitors of metalloproteinase 1 (TIMP1). Radiological signs of white matter damage were scored using the age-related white matter changes (ARWMC) scale.ResultsAll amyloid fragments were reduced in iNPH and SSVD (p < 0.05), although more in iNPH than in SSVD in comparison to HC. iNPH and SSVD showed comparable elevations of NFL, MBP, and GFAP (p < 0.05). MMPs were similar in all three groups except for MMP-10, which was increased in iNPH and SSVD. Patients with iNPH had larger ventricles and fewer WMCs than patients with SSVD.ConclusionThe results indicate that patients with iNPH and SSVD share common features of subcortical neuronal degeneration, demyelination, and astroglial response. The reduction in all APP-derived proteins characterizing iNPH patients is also present, indicating that SSVD encompasses similar pathophysiological phenomena as iNPH.
Collapse
Affiliation(s)
- Anna Jeppsson
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Anna Jeppsson
| | - Maria Bjerke
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Clinical Chemistry, Universitair Ziekenhuis Brussel and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Per Hellström
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Carsten Wikkelsø
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Mats Tullberg
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Braun M, Bjurnemark C, Seo W, Freyhult E, Nyholm D, Niemelä V, Blennow K, Zetterberg H, Fällmar D, Kultima K, Virhammar J. Higher levels of neurofilament light chain and total tau in CSF are associated with negative outcome after shunt surgery in patients with normal pressure hydrocephalus. Fluids Barriers CNS 2022; 19:15. [PMID: 35164790 PMCID: PMC8845290 DOI: 10.1186/s12987-022-00306-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background Lumbar punctures are a common examination in the work-up of patients with idiopathic normal pressure hydrocephalus (iNPH) and cerebrospinal fluid (CSF) biomarkers should therefore be available for use in selection of shunt candidates. The aim of this study was to investigate if CSF biomarkers are associated with outcome after shunt surgery alone or in combination with comorbidity and imaging markers, and investigate associations between CSF biomarkers and symptoms. Methods Preoperative CSF biomarkers were analyzed in 455 patients operated with shunt surgery for iNPH at a single center during 2011–2018. Symptoms before and 12 months after shunt surgery were graded with the Swedish iNPH scale. Neurofilament light chain protein (NfL), total tau (T-tau), phosphorylated tau (P-tau) and amyloid beta1-42 (Aβ1-42) CSF levels were measured. Evans’ index and disproportionately enlarged subarachnoid space hydrocephalus were measured on preoperative CT-scans. Preoperative evaluation and follow-up 12 months after shunt surgery were available in 376 patients. Results Higher levels of NfL and T-tau were associated with less improvement after shunt surgery (β = − 3.10, p = 0.016 and β = − 2.45, p = 0.012, respectively). Patients whose symptoms deteriorated after shunt surgery had higher preoperative levels of NfL (1250 ng/L [IQR:1020–2220] vs. 1020 [770–1649], p < 0.001) and T-tau (221 ng/L [IQR: 159–346] vs. 190 [135–261], p = 0.0039) than patients with postoperative improvement on the iNPH scale. Among the patients who improved ≥ 5 levels on the iNPH scale (55%), NfL was abnormal in 22%, T-tau in 14%, P-tau in 6% and Aβ1-42 in 45%, compared with normal reference limits. The inclusion of CSF biomarkers, imaging markers and comorbidity in multivariate predictive Orthogonal Projections to Latent Structures (OPLS) models to did not improve predictability in outcome after shunt surgery. Conclusions Higher levels of T-tau and NfL were associated with a less favorable response to shunt surgery, suggesting a more active neurodegeneration in this group of patients. However, CSF levels of these biomarkers can be elevated also in patients who respond to shunt surgery. Thus, none of these CSF biomarkers, alone or used in combination, are suitable for excluding patients from surgery. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00306-2.
Collapse
Affiliation(s)
- Madelene Braun
- Department of Neuroscience, Neurology, Uppsala University, Akademiska sjukhuset, ing 85, 751 85, Uppsala, Sweden
| | - Caroline Bjurnemark
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Woosung Seo
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dag Nyholm
- Department of Neuroscience, Neurology, Uppsala University, Akademiska sjukhuset, ing 85, 751 85, Uppsala, Sweden
| | - Valter Niemelä
- Department of Neuroscience, Neurology, Uppsala University, Akademiska sjukhuset, ing 85, 751 85, Uppsala, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - David Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Johan Virhammar
- Department of Neuroscience, Neurology, Uppsala University, Akademiska sjukhuset, ing 85, 751 85, Uppsala, Sweden.
| |
Collapse
|
10
|
NAKAJIMA M, YAMADA S, MIYAJIMA M, ISHII K, KURIYAMA N, KAZUI H, KANEMOTO H, SUEHIRO T, YOSHIYAMA K, KAMEDA M, KAJIMOTO Y, MASE M, MURAI H, KITA D, KIMURA T, SAMEJIMA N, TOKUDA T, KAIJIMA M, AKIBA C, KAWAMURA K, ATSUCHI M, HIRATA Y, MATSUMAE M, SASAKI M, YAMASHITA F, AOKI S, IRIE R, MIYAKE H, KATO T, MORI E, ISHIKAWA M, DATE I, ARAI H, The research committee of idiopathic normal pressure hydrocephalus. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): Endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021; 61:63-97. [PMID: 33455998 PMCID: PMC7905302 DOI: 10.2176/nmc.st.2020-0292] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023] Open
Abstract
Among the various disorders that manifest with gait disturbance, cognitive impairment, and urinary incontinence in the elderly population, idiopathic normal pressure hydrocephalus (iNPH) is becoming of great importance. The first edition of these guidelines for management of iNPH was published in 2004, and the second edition in 2012, to provide a series of timely, evidence-based recommendations related to iNPH. Since the last edition, clinical awareness of iNPH has risen dramatically, and clinical and basic research efforts on iNPH have increased significantly. This third edition of the guidelines was made to share these ideas with the international community and to promote international research on iNPH. The revision of the guidelines was undertaken by a multidisciplinary expert working group of the Japanese Society of Normal Pressure Hydrocephalus in conjunction with the Japanese Ministry of Health, Labour and Welfare research project. This revision proposes a new classification for NPH. The category of iNPH is clearly distinguished from NPH with congenital/developmental and acquired etiologies. Additionally, the essential role of disproportionately enlarged subarachnoid-space hydrocephalus (DESH) in the imaging diagnosis and decision for further management of iNPH is discussed in this edition. We created an algorithm for diagnosis and decision for shunt management. Diagnosis by biomarkers that distinguish prognosis has been also initiated. Therefore, diagnosis and treatment of iNPH have entered a new phase. We hope that this third edition of the guidelines will help patients, their families, and healthcare professionals involved in treating iNPH.
Collapse
Affiliation(s)
- Madoka NAKAJIMA
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shigeki YAMADA
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Shiga, Japan
| | - Masakazu MIYAJIMA
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Kazunari ISHII
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Nagato KURIYAMA
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Kyoto, Japan
| | - Hiroaki KAZUI
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Hideki KANEMOTO
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi SUEHIRO
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji YOSHIYAMA
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiro KAMEDA
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yoshinaga KAJIMOTO
- Department of Neurosurgery, Division of Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Mitsuhito MASE
- Department of Neurosurgery, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hisayuki MURAI
- Department of Neurosurgery, Chibaken Saiseikai Narashino Hospital, Narashino, Chiba, Japan
| | - Daisuke KITA
- Department of Neurosurgery, Noto General Hospital, Nanao, Ishikawa, Japan
| | - Teruo KIMURA
- Department of Neurosurgery, Kitami Red Cross Hospital, Kitami, Hokkaido, Japan
| | - Naoyuki SAMEJIMA
- Department of Neurosurgery, Tokyo Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Tokyo, Japan
| | - Takahiko TOKUDA
- Department of Functional Brain Imaging Research, National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, Japan
| | - Mitsunobu KAIJIMA
- Department of Neurosurgery, Hokushinkai Megumino Hospital, Eniwa, Hokkaido, Japan
| | - Chihiro AKIBA
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Kaito KAWAMURA
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masamichi ATSUCHI
- Normal Pressure Hydrocephalus Center, Jifukai Atsuchi Neurosurgical Hospital, Kagoshima, Kagoshima, Japan
| | - Yoshihumi HIRATA
- Department of Neurosurgery, Kumamoto Takumadai Hospital, Kumamoto, Kumamoto, Japan
| | - Mitsunori MATSUMAE
- Department of Neurosurgery at Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Makoto SASAKI
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Fumio YAMASHITA
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Shigeki AOKI
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryusuke IRIE
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroji MIYAKE
- Nishinomiya Kyoritsu Rehabilitation Hospital, Nishinomiya, Hyogo, Japan
| | - Takeo KATO
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata, Yamagata, Japan
| | - Etsuro MORI
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
| | - Masatsune ISHIKAWA
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Kyoto, Japan
| | - Isao DATE
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Hajime ARAI
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - The research committee of idiopathic normal pressure hydrocephalus
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Shiga, Japan
- Department of Neurosurgery, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
- Department of Radiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Kyoto, Japan
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- Department of Neurosurgery, Division of Surgery, Osaka Medical College, Takatsuki, Osaka, Japan
- Department of Neurosurgery, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Department of Neurosurgery, Chibaken Saiseikai Narashino Hospital, Narashino, Chiba, Japan
- Department of Neurosurgery, Noto General Hospital, Nanao, Ishikawa, Japan
- Department of Neurosurgery, Kitami Red Cross Hospital, Kitami, Hokkaido, Japan
- Department of Neurosurgery, Tokyo Kyosai Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Tokyo, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, Japan
- Department of Neurosurgery, Hokushinkai Megumino Hospital, Eniwa, Hokkaido, Japan
- Normal Pressure Hydrocephalus Center, Jifukai Atsuchi Neurosurgical Hospital, Kagoshima, Kagoshima, Japan
- Department of Neurosurgery, Kumamoto Takumadai Hospital, Kumamoto, Kumamoto, Japan
- Department of Neurosurgery at Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Nishinomiya Kyoritsu Rehabilitation Hospital, Nishinomiya, Hyogo, Japan
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine III, Yamagata University School of Medicine, Yamagata, Yamagata, Japan
- Department of Behavioral Neurology and Neuropsychiatry, Osaka University United Graduate School of Child Development, Suita, Osaka, Japan
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Kyoto, Japan
| |
Collapse
|
11
|
Yamada S, Ito H, Ishikawa M, Yamamoto K, Yamaguchi M, Oshima M, Nozaki K. Quantification of Oscillatory Shear Stress from Reciprocating CSF Motion on 4D Flow Imaging. AJNR Am J Neuroradiol 2021; 42:479-486. [PMID: 33478942 DOI: 10.3174/ajnr.a6941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Oscillatory shear stress could not be directly measured in consideration of direction, although cerebrospinal fluid has repetitive movements synchronized with heartbeat. Our aim was to evaluate the important of oscillatory shear stress in the cerebral aqueduct and foramen magnum in idiopathic normal pressure hydrocephalus by comparing it with wall shear stress and the oscillatory shear index in patients with idiopathic normal pressure hydrocephalus. MATERIALS AND METHODS By means of the 4D flow application, oscillatory shear stress, wall shear stress, and the oscillatory shear index were measured in 41 patients with idiopathic normal pressure hydrocephalus, 23 with co-occurrence of idiopathic normal pressure hydrocephalus and Alzheimer-type dementia, and 9 age-matched controls. These shear stress parameters at the cerebral aqueduct were compared with apertures and stroke volumes at the foramen of Magendie and cerebral aqueduct. RESULTS Two wall shear stress magnitude peaks during a heartbeat were changed to periodic oscillation by converting oscillatory shear stress. The mean oscillatory shear stress amplitude and time-averaged wall shear stress values at the dorsal and ventral regions of the cerebral aqueduct in the idiopathic normal pressure hydrocephalus groups were significantly higher than those in controls. Furthermore, those at the ventral region of the cerebral aqueduct in the idiopathic normal pressure hydrocephalus group were also significantly higher than those in the co-occurrence of idiopathic normal pressure hydrocephalus with Alzheimer-type dementia group. The oscillatory shear stress amplitude at the dorsal region of the cerebral aqueduct was significantly associated with foramen of Magendie diameters, whereas it was strongly associated with the stroke volume at the upper end of the cerebral aqueduct rather than that at the foramen of Magendie. CONCLUSIONS Oscillatory shear stress, which reflects wall shear stress vector changes better than the conventional wall shear stress magnitude and the oscillatory shear index, can be directly measured on 4D flow MR imaging. Oscillatory shear stress at the cerebral aqueduct was considerably higher in patients with idiopathic normal pressure hydrocephalus.
Collapse
Affiliation(s)
- S Yamada
- From the Department of Neurosurgery (S.Y., K.N.), Shiga University of Medical Science, Shiga, Japan .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center (S.Y., K.Y., M.Y.), Rakuwakai Otowa Hospital, Kyoto, Japan.,Interfaculty Initiative in Information Studies/Institute of Industrial Science (S.Y., M.O.), The University of Tokyo, Tokyo, Japan
| | - H Ito
- Medical System Research and Development Center (H.I.), Fujifilm Corporation, Tokyo, Japan
| | | | - K Yamamoto
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center (S.Y., K.Y., M.Y.), Rakuwakai Otowa Hospital, Kyoto, Japan
| | - M Yamaguchi
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center (S.Y., K.Y., M.Y.), Rakuwakai Otowa Hospital, Kyoto, Japan
| | - M Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science (S.Y., M.O.), The University of Tokyo, Tokyo, Japan
| | - K Nozaki
- From the Department of Neurosurgery (S.Y., K.N.), Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
12
|
Migliorati K, Panciani PP, Pertichetti M, Borroni B, Archetti S, Rozzini L, Padovani A, Terzi L, Bruscella S, Fontanella MM. P-Tau as prognostic marker in long term follow up for patients with shunted iNPH. Neurol Res 2020; 43:78-85. [PMID: 33059546 DOI: 10.1080/01616412.2020.1831300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: Diagnosis of idiopathic Normal Pressure Hydrocephalus (iNPH) relies solely on clinical and radiological criteria while, unlike other neurological diseases, the analysis of cerebrospinal fluid markers is not used in clinical practice. Nevertheless, the overlapping of neurodegenerative diseases affects the long-term shunt efficacy and this occurrence should be detected before surgery. Therefore, we performed this study in order to assess the correlation between pre-surgical levels of CSF Beta Amyloid protein, Total Tau protein and Phospho-Tau protein with long-term clinical outcome. Methods: Between March 2012 and May 2016 we prospective evaluated all patients with iNPH according to guidelines criteria and we analysed CSF concentration of these proteins before and during surgery. Two years after surgery we evaluated iNPH score for all patients, grouping them in shunt responders and non-responders. Results: A total of 117 patients were included: Tap Test non-responders were 58 and at two years we had 35 shunt responders and 15 shunt non-responders. We found a significative difference between shunt-responders and shunt non-responders for pre surgical T-Tau (p: 0.02) and for P-Tau (p: 0.01). All the proteins were significantly associated with clinical outcome after surgery with different cut-off values; in particular, having a 'low' value of T-Tau, P-Tau and Aβ1-42 resulted in favourable outcome after surgery. Conclusions: Low level of P-Tau is a useful CSF biochemical prognostic factor for good clinical outcome at least two years after shunt; meanwhile a lower Aβ1-42 might suggest that the pathophysiology of iNPH could have something in common with other neurodegenerative diseases of the elderly.
Collapse
Affiliation(s)
- Karol Migliorati
- Department of Neurosurgery, Spedali Civili University Hospital of Brescia , Brecia, Italy
| | - Pier Paolo Panciani
- Department of Neurosurgery, Spedali Civili University Hospital of Brescia , Brecia, Italy
| | - Marta Pertichetti
- Department of Neurosurgery, Spedali Civili University Hospital of Brescia , Brecia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia , Brescia, Italy
| | - Silvana Archetti
- Department of Laboratory Diagnostics, III Laboratory of Analysis, Brescia Hospital , Brescia, Italy
| | - Luca Rozzini
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia , Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia , Brescia, Italy
| | - Lodovico Terzi
- Department of Neurosurgery, Spedali Civili University Hospital of Brescia , Brecia, Italy
| | - Sara Bruscella
- Division of Neurosurgery, Università Degli Studi Di Napoli "Federico II" , Naples, Italy
| | - Marco Maria Fontanella
- Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia , Brescia, Italy
| |
Collapse
|
13
|
Manniche C, Hejl AM, Hasselbalch SG, Simonsen AH. Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus versus Alzheimer's Disease and Subcortical Ischemic Vascular Disease: A Systematic Review. J Alzheimers Dis 2020; 68:267-279. [PMID: 30741681 DOI: 10.3233/jad-180816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The diagnostic workup of idiopathic normal pressure hydrocephalus (iNPH) can be challenging due to an overlap in symptoms and neuroimaging features with other disorders. Despite a growing interest, a cerebrospinal fluid (CSF) biomarker profile in iNPH has not yet been identified. OBJECTIVE To determine the CSF biomarkers with the greatest evidence for differentiating iNPH from the most common differential diagnoses, Alzheimer's disease (AD) and subcortical ischemic vascular disease (SIVD). METHODS A systematic literature search was conducted in PubMed to identify relevant articles up to July 2018 using the following MESH-terms: "Cerebrospinal fluid", "diagnos*", "hydrocephalus, normal pressure". Relevant data were extracted to assess the risk of bias in the included studies. RESULTS Twenty-five studies including 664 patients with iNPH, 502 with AD, 57 with SIVD, 81 with other disorders, and 338 healthy controls (HC) were included. They investigated the diagnostic value of 92 CSF biomarkers. Most evidence existed for amyloid-β 42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau) in iNPH versus AD and HC: Aβ42 did not differ between iNPH and AD, but was lower than in HC subjects. T-tau and p-tau were lower in iNPH versus AD on a level comparable to HC subjects. There was moderate or limited evidence for 62 and 88 biomarkers, respectively. Several plausible biases characterize the literature including small sample sizes and inconsistent diagnostic criteria. CONCLUSION T-tau and p-tau may differentiate iNPH from AD and Aβ42 from HC. A combination of these biomarkers may improve the diagnostic accuracy in iNPH.
Collapse
Affiliation(s)
- Christina Manniche
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen OE, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg Hospital, Copenhagen NV, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen OE, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen OE, Denmark
| |
Collapse
|
14
|
Tang W, Wang Y, Cheng J, Yao J, Yao YY, Zhou Q, Guan SH. CSF sAPPα and sAPPβ levels in Alzheimer's Disease and Multiple Other Neurodegenerative Diseases: A Network Meta-Analysis. Neuromolecular Med 2020; 22:45-55. [PMID: 31414383 DOI: 10.1007/s12017-019-08561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
Abstract
The soluble amyloid protein procurer α (sAPPα) and β (sAPPβ) have been postulated as promising new cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) and multiple other neurodegenerative diseases, but have failed to meet expectations with their often discordant and even contradictory findings to date. The aim of the study was to systematically explore this issue. Cochrane Library, PubMed, and CNKI were systematically searched without language or date restrictions. This network meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and also adhered to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. Twenty studies, comprising ten groups, were eligible and included. Overall, 19 eligible studies with 1634 patients contributed to the analysis of CSF sAPPα levels and 16 eligible studies with 1684 patients contributed to the analysis of CSF sAPPβ levels. CSF sAPPβ levels are significantly higher in AD than in corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP); higher in Control than in Depression, CBS and PSP; higher in Parkinson's disease dementia (PDD) than in CBS and PSP; higher in mild cognitive impairment progressed to AD dementia during the follow-up period (pMCI) than in Depression and PSP; higher in stable mild cognitive impairment (sMCI) than in Depression. With regard to CSF sAPPα levels, there were no significant difference among groups. However, surprisingly, the resultant rankings graphically showed that pMCI populations have the highest levels of CSF sAPPα and sAPPβ. Furthermore, it seemed there was a positive correlation between CSF sAPPα and sAPPβ levels. The measurement of CSF sAPPα and sAPPβ levels may provide an alternative method for the diagnosis of early-stage AD, pMCI, which is conducive to preventive therapy.
Collapse
Affiliation(s)
- Wei Tang
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yan Wang
- Department of General Surgery, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Juan Cheng
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Jie Yao
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yu-You Yao
- Department of Clinical Laboratory Medicine, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiang Zhou
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Shi-He Guan
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
15
|
Nakajima M, Miyajima M, Akiba C, Ogino I, Kawamura K, Sugano H, Hara T, Tange Y, Fusegi K, Karagiozov K, Arai H. Lumboperitoneal Shunts for the Treatment of Idiopathic Normal Pressure Hydrocephalus: A Comparison of Small-Lumen Abdominal Catheters to Gravitational Add-On Valves in a Single Center. Oper Neurosurg (Hagerstown) 2019; 15:634-642. [PMID: 29688482 PMCID: PMC6373832 DOI: 10.1093/ons/opy044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/13/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Treating idiopathic normal pressure hydrocephalus (iNPH) with lumboperitoneal shunts (LPSs) may cause cerebrospinal fluid (CSF) overdrainage. OBJECTIVE To investigate whether LPSs, including gravitational “add-on” and programmable pressure valves (PPVs/+GVs), reduce complications and improve outcomes. METHODS We compared PPVs/+small lumen abdominal catheters (SLs) to PPVs/+GVs using different opening pressures for supine and standing positions. We analyzed 115 patients with iNPH in 2 consequent cohorts: 48 patients receiving LPSs with PPVs/+SLs and 67 patients receiving LPSs with PPVs/+GVs. The modified Rankin Scale (mRS), Japan iNPH grading scale, Mini Mental State Examination, Frontal Assessment Battery, and CSF biomarkers were evaluated. RESULTS Comparisons of postoperative clinical factors in 64 patients in the PPV/+SL and PPV/+GV groups using 1:1 propensity score matching revealed differences in the mean (±standard deviation) postoperative mRS (2.65 ± 1.07 vs 2.16 ± 1.02, P = .049) and gait disturbance scores (1.97 ± 1.03 vs 1.39 ± 0.92, P = .011). Thus, outcomes improved in the LPS group with the GV. Serious and nonserious adverse event rates for the PPV/+SL and PPV/+GV groups were 22.9% and 19.4% (P = .647) and 38% and 17.9% (P = .018), respectively, indicating higher rates of subdural collections for the PPV/+SL group. CONCLUSION This is the first study to examine LPS treatment for iNPH using a GV in tandem with a PPV. Our results suggest that the CSF shunt flow volume is restricted in the standing position and maintained in the supine position, thus improving iNPH symptoms. This may reduce intracranial CSF hypotension-related complications.
Collapse
Affiliation(s)
- Madoka Nakajima
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuichi Tange
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Keiko Fusegi
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Jeppsson A, Wikkelsö C, Blennow K, Zetterberg H, Constantinescu R, Remes AM, Herukka SK, Rauramaa T, Nagga K, Leinonen V, Tullberg M. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatry 2019; 90:1117-1123. [PMID: 31167811 PMCID: PMC6817981 DOI: 10.1136/jnnp-2019-320826] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To examine the differential diagnostic significance of cerebrospinal fluid (CSF) biomarkers reflecting Alzheimer's disease-related amyloid β (Aβ) production and aggregation, cortical neuronal damage, tau pathology, damage to long myelinated axons and astrocyte activation, which hypothetically separates patients with idiopathic normal pressure hydrocephalus (iNPH) from patients with other neurodegenerative disorders. METHODS The study included lumbar CSF samples from 82 patients with iNPH, 75 with vascular dementia, 70 with Parkinson's disease, 34 with multiple system atrophy, 34 with progressive supranuclear palsy, 15 with corticobasal degeneration, 50 with Alzheimer's disease, 19 with frontotemporal lobar degeneration and 54 healthy individuals (HIs). We analysed soluble amyloid precursor protein alpha (sAPPα) and beta (sAPPβ), Aβ species (Aβ38, Aβ40 and Aβ42), total tau (T-tau), phosphorylated tau, neurofilament light and monocyte chemoattractant protein 1 (MCP-1). RESULTS Patients with iNPH had lower concentrations of tau and APP-derived proteins in combination with elevated MCP-1 compared with HI and the non-iNPH disorders. T-tau, Aβ40 and MCP-1 together yielded an area under the curve of 0.86, differentiating iNPH from the other disorders. A prediction algorithm consisting of T-tau, Aβ40 and MCP-1 was designed as a diagnostic tool using CSF biomarkers. CONCLUSIONS The combination of the CSF biomarkers T-tau, Aβ40 and MCP-1 separates iNPH from cognitive and movement disorders with good diagnostic sensitivity and specificity. This may have important implications for diagnosis and clinical research on disease mechanisms for iNPH.
Collapse
Affiliation(s)
- Anna Jeppsson
- Hydrocephalus Research Unit, Department of clinical neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carsten Wikkelsö
- Hydrocephalus Research Unit, Department of clinical neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Radu Constantinescu
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Katarina Nagga
- Department of Acute Internal Medicine and Geriatrics, Linköping University, Linköping, Sweden
| | - Ville Leinonen
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Unit of Clinical Neuroscience, Neurosurgery, University of Oulu, Oulu, Finland.,Department of Neurosurgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Mats Tullberg
- Hydrocephalus Research Unit, Department of clinical neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Nakajima M, Miyajima M, Ogino I, Akiba C, Kawamura K, Kamohara C, Fusegi K, Harada Y, Hara T, Sugano H, Tange Y, Karagiozov K, Kasuga K, Ikeuchi T, Tokuda T, Arai H. Preoperative Phosphorylated Tau Concentration in the Cerebrospinal Fluid Can Predict Cognitive Function Three Years after Shunt Surgery in Patients with Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2019; 66:319-331. [PMID: 30248058 PMCID: PMC6218133 DOI: 10.3233/jad-180557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Idiopathic normal pressure hydrocephalus (iNPH) is commonly treated by cerebrospinal fluid (CSF) shunting. However, the long-term efficacy of shunt intervention in the presence of comorbid Alzheimer’s disease (AD) pathology is debated. Objective: To identify AD-associated CSF biomarkers predictive of shunting surgery outcomes in patients with iNPH. Methods: Preoperative levels of total and phosphorylated Tau (p-Tau) were measured in 40 patients with iNPH divided into low (<30 pg/mL) and high (≥30 pg/mL) p-Tau groups and followed up for three years after lumboperitoneal shunting. The modified Rankin Scale (mRS), Mini-Mental State Examination (MMSE), Frontal Assessment Battery, and iNPH Grading Scale scores were compared between the age-adjusted low (n = 24; mean age 75.7 years [SD 5.3]) and high (n = 11; mean age 76.0 years [SD 5.6]) p-Tau groups. Results: Cognitive function improved early in the low p-Tau group and was maintained thereafter (p = 0.005). In contrast, the high p-Tau group showed a gradual decline to baseline levels by the third postoperative year (p = 0.040). Although the p-Tau concentration did not correlate with the preoperative MMSE score, a negative correlation appeared and strengthened during follow-up (R2 = 0.352, p < 0.001). Furthermore, the low p-Tau group showed rapid and sustained mRS grade improvement, whereas mRS performance gradually declined in the high p-Tau group. Conclusions: Preoperative CSF p-Tau concentration predicted some aspects of cognitive function after shunt intervention in patients with iNPH. The therapeutic effects of shunt treatment were shorter-lasting in patients with coexisting AD pathology.
Collapse
Affiliation(s)
- Madoka Nakajima
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chihiro Kamohara
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Keiko Fusegi
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshinao Harada
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuichi Tange
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kostadin Karagiozov
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takahiko Tokuda
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Livingstone RW, Elder MK, Barrett MC, Westlake CM, Peppercorn K, Tate WP, Abraham WC, Williams JM. Secreted Amyloid Precursor Protein-Alpha Promotes Arc Protein Synthesis in Hippocampal Neurons. Front Mol Neurosci 2019; 12:198. [PMID: 31474829 PMCID: PMC6702288 DOI: 10.3389/fnmol.2019.00198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Secreted amyloid precursor protein-α (sAPPα) is a neuroprotective and memory-enhancing molecule, however, the mechanisms through which sAPPα promotes these effects are not well understood. Recently, we have shown that sAPPα enhances cell-surface expression of glutamate receptors. Activity-related cytoskeletal-associated protein Arc (Arg3.1) is an immediate early gene capable of modulating long-term potentiation, long-term depression and homeostatic plasticity through regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor localization. Accordingly, we hypothesized that sAPPα may enhance synaptic plasticity, in part, by the de novo synthesis of Arc. Using primary cortical and hippocampal neuronal cultures we found that sAPPα (1 nM, 2 h) enhances levels of Arc mRNA and protein. Arc protein levels were increased in both the neuronal somata and dendrites in a Ca2+/calmodulin-dependent protein kinase II-dependent manner. Additionally, dendritic Arc expression was dependent upon activation of mitogen-activated protein kinase and protein kinase G. The enhancement of dendritic Arc protein was significantly reduced by antagonism of N-methyl-D-aspartate (NMDA) and nicotinic acetylcholine (α7nACh) receptors, and fully eliminated by dual application of these antagonists. This effect was further corroborated in area CA1 of acute hippocampal slices. These data suggest sAPPα-regulated plasticity within hippocampal neurons is mediated by cooperation of NMDA and α7nACh receptors to engage a cascade of signal transduction molecules to enhance the transcription and translation of Arc.
Collapse
Affiliation(s)
- Rhys W Livingstone
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Maya C Barrett
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Courteney M Westlake
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Arighi A, Di Cristofori A, Fenoglio C, Borsa S, D’Anca M, Fumagalli GG, Locatelli M, Carrabba G, Pietroboni AM, Ghezzi L, Carandini T, Colombi A, Scarioni M, De Riz MA, Serpente M, Rampini PM, Scarpini E, Galimberti D. Cerebrospinal Fluid Level of Aquaporin4: A New Window on Glymphatic System Involvement in Neurodegenerative Disease? J Alzheimers Dis 2019; 69:663-669. [DOI: 10.3233/jad-190119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrea Arighi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Andrea Di Cristofori
- Azienda Socio Sanitaria Territoriale – Monza, Ospedale San Gerardo, Monza, Italy – U.O. Neurochirurgia
| | - Chiara Fenoglio
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Stefano Borsa
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOC Neurochirurgia, Milan, Italy
| | - Marianna D’Anca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Giorgio Giulio Fumagalli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOC Neurochirurgia, Milan, Italy
| | - Giorgio Carrabba
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOC Neurochirurgia, Milan, Italy
| | - Anna Margherita Pietroboni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Laura Ghezzi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Annalisa Colombi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Marta Scarioni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Milena Alessandra De Riz
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Maria Serpente
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Paolo Maria Rampini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOC Neurochirurgia, Milan, Italy
| | - Elio Scarpini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, UOSD Neurologia – Malattie Neurodegenerative, Milan, Italy
- Centro Dino Ferrari, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
20
|
MURAKAMI Y, SAITO K, ITO H, HASHIMOTO Y. Transferrin isoforms in cerebrospinal fluid and their relation to neurological diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:198-210. [PMID: 31080188 PMCID: PMC6742728 DOI: 10.2183/pjab.95.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 05/12/2023]
Abstract
Iron plays many important roles in the brain, including involvement in myelination, neurotransmission and electron transfer in the respiratory chain. Transferrin (Tf), an iron transporter, is mainly biosynthesized in the liver, but can also be biosynthesized in the brain; i.e., by oligodendrocytes and the choroid plexus, a cerebrospinal fluid (CSF) producing tissue. The CSF contains two Tf isoforms, brain-type Tf and serum-type Tf, which differ in their glycan structures. Brain-type Tf is uniquely glycolsylated with biantennary asialo- and agalacto-complex type N-glycans that carry bisecting β1,4-GlcNAc and core α1,6-Fuc. The glycans of serum-type Tf in the CSF are similar to those of Tf in serum. Biochemical analyses reveal that the apparent molecular size of brain-type Tf is smaller than that of serum-type Tf, and that hydrophobic patches are exposed on brain-type Tf as demonstrated by hydrophobic probe binding studies. We found that brain-type Tf levels were decreased in idiopathic normal pressure hydrocephalus, in which CSF production is suspected to decrease, while brain-type Tf increased in spontaneous intracranial hypotension, in which CSF production is suspected to increase. These results suggest that brain-type Tf could be a biomarker of altered CSF production.
Collapse
Affiliation(s)
- Yuta MURAKAMI
- Department of Neurosurgery, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kiyoshi SAITO
- Department of Neurosurgery, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiromi ITO
- Department of Biochemistry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhiro HASHIMOTO
- Department of Human Life Science, School of Nursing, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
21
|
Murakami Y, Matsumoto Y, Hoshi K, Ito H, Fuwa TJ, Yamaguchi Y, Nakajima M, Miyajima M, Arai H, Nollet K, Kato N, Nishikata R, Kuroda N, Honda T, Sakuma J, Saito K, Hashimoto Y. Rapid increase of 'brain-type' transferrin in cerebrospinal fluid after shunt surgery for idiopathic normal pressure hydrocephalus: a prognosis marker for cognitive recovery. J Biochem 2018; 164:205-213. [PMID: 29701803 DOI: 10.1093/jb/mvy043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/01/2018] [Indexed: 01/05/2025] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a dementia-inducing disorder. Primary cause of iNPH is speculated to be a reduction of cerebrospinal fluid (CSF) absorption, which secondarily induces hydrocephalus, compression of brain, and reduction of CSF production. Patients are treated by surgically inserting a shunt to deliver excess CSF to the abdominal cavity. The prognosis for cognitive improvement after shunt surgery has been difficult to predict. We therefore investigated various CSF proteins, hoping to find a biomarker predictive of cognitive performance one to two years after shunt surgery. CSF proteins of 34 iNPH and 15 non-iNPH patients were analysed by Western blotting, revealing two glycan isoforms of transferrin (Tf); 'brain-type' Tf with N-acetylglucosaminylated glycans and 'serum-type' Tf with α2, 6-sialylated glycans. Brain-type Tf levels decreased in iNPH but rapidly returned to normal levels within 1-3 months after shunt surgery. This change was positively correlated with recovery from dementia, per Mini-Mental State Examination and Frontal Assessment Battery scores at 11.8 ± 7.7 months post-operation, suggesting that brain-type Tf is a prognostic marker for recovery from dementia after shunt surgery for iNPH. Histochemical staining with anti-Tf antibody and an N-acetylglucosamine-binding lectin suggests that brain-type Tf is secreted from choroid plexus, CSF-producing tissue.
Collapse
Affiliation(s)
- Yuta Murakami
- Departments of Neurosurgery, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Yuka Matsumoto
- Departments of Neurosurgery, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Kyoka Hoshi
- Biochemistry, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Hiromi Ito
- Biochemistry, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Takashi J Fuwa
- Biochemistry, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
| | | | - Hajime Arai
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
| | - Kenneth Nollet
- Departments of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Naho Kato
- Forensic Medicine, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Rie Nishikata
- Forensic Medicine, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Naohito Kuroda
- Forensic Medicine, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Takashi Honda
- Human Life Science, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Jun Sakuma
- Departments of Neurosurgery, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Kiyoshi Saito
- Departments of Neurosurgery, Fukushima Medical University, Fukushima City, Fukushima, Japan
| | - Yasuhiro Hashimoto
- Biochemistry, Fukushima Medical University, Fukushima City, Fukushima, Japan
| |
Collapse
|
22
|
Santangelo R, Cecchetti G, Bernasconi MP, Cardamone R, Barbieri A, Pinto P, Passerini G, Scomazzoni F, Comi G, Magnani G. Cerebrospinal Fluid Amyloid-β 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer's Disease. J Alzheimers Dis 2018; 60:183-200. [PMID: 28826180 DOI: 10.3233/jad-170186] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Co-existence of Alzheimer's disease (AD) in normal pressure hydrocephalus (NPH) is a frequent finding, thus a common pathophysiological basis between AD and NPH has been postulated. We measured CSF amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) concentrations in a sample of 294 patients with different types of dementia and 32 subjects without dementia. We then compared scores on neuropsychological tests of NPH patients with pathological and normal CSF Aβ42 values. Aβ42 levels were significantly lower in NPH than in control patients, with no significant differences between AD and NPH. On the contrary, t-tau and p-tau levels were significantly lower in NPH than in AD, with no differences between NPH and controls. NPH patients with pathological Aβ42 levels did not perform worse than NPH patients with normal Aβ42 levels in any cognitive domains. Our data seem to support the hypothesis of amyloid accumulation in brains of NPH patients. Nevertheless, amyloid does not seem to play a pathogenetic role in the development of cognitive deficits in NPH.
Collapse
Affiliation(s)
- Roberto Santangelo
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giordano Cecchetti
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Maria Paola Bernasconi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Rosalinda Cardamone
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Alessandra Barbieri
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Patrizia Pinto
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | - Francesco Scomazzoni
- Department of Neuroradiology, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| | - Giuseppe Magnani
- Department of Neurology, INSPE, Vita-Salute University and IRCCS-San Raffaele Hospital, Milan, Italy
| |
Collapse
|
23
|
Murakami Y, Takahashi K, Hoshi K, Ito H, Kanno M, Saito K, Nollet K, Yamaguchi Y, Miyajima M, Arai H, Hashimoto Y, Mima T. Spontaneous intracranial hypotension is diagnosed by a combination of lipocalin-type prostaglandin D synthase and brain-type transferrin in cerebrospinal fluid. Biochim Biophys Acta Gen Subj 2018; 1862:1835-1842. [PMID: 29621631 DOI: 10.1016/j.bbagen.2018.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Spontaneous intracranial hypotension (SIH) is caused by cerebrospinal fluid (CSF) leakage. Definitive diagnosis can be difficult by clinical examinations and imaging studies. METHODS SIH was diagnosed with the following criteria: (i) evidence of CSF leakage by cranial magnetic resonance imaging (MRI) findings of intracranial hypotension and/or low CSF opening pressure; (ii) no recent history of dural puncture. We quantified CSF proteins by ELISA or Western blotting. RESULTS Comparing with non-SIH patients, SIH patients showed significant increase of brain-derived CSF glycoproteins such as lipocalin-type prostaglandin D synthase (L-PGDS), soluble protein fragments generated from amyloid precursor protein (sAPP) and "brain-type" transferrin (Tf). Serum-derived proteins such as albumin, immunoglobulin G, and serum Tf were also increased. A combination of L-PGDS and brain-type Tf differentiated SIH from non-SIH with sensitivity 94.7% and specificity 72.6%. CONCLUSION L-PGDS and brain-type Tf can be biomarkers for diagnosing SIH. GENERAL SIGNIFICANCE L-PGDS and brain-type Tf biosynthesized in the brain appears to be markers for abnormal metabolism of CSF.
Collapse
Affiliation(s)
- Yuta Murakami
- Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Koichi Takahashi
- Department of Neurosurgery, Sanno Hospital, Minato-ku, Tokyo, Japan
| | - Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Hiromi Ito
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Mayumi Kanno
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Kenneth Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | | | - Hajime Arai
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
| | - Yasuhiro Hashimoto
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan.
| | - Tatsuo Mima
- Department of Neurosurgery, Sanno Hospital, Minato-ku, Tokyo, Japan.
| |
Collapse
|
24
|
Jurjević I, Miyajima M, Ogino I, Akiba C, Nakajima M, Kondo A, Kikkawa M, Kanai M, Hattori N, Arai H. Decreased Expression of hsa-miR-4274 in Cerebrospinal Fluid of Normal Pressure Hydrocephalus Mimics with Parkinsonian Syndromes. J Alzheimers Dis 2018; 56:317-325. [PMID: 27911315 PMCID: PMC5240577 DOI: 10.3233/jad-160848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Patients presenting with the classical idiopathic normal pressure hydrocephalus (iNPH) triad often show additional parkinsonian spectrum signs. Accurate differential diagnosis strongly influences the long-term outcome of cerebrospinal fluid (CSF) shunting. Objective: The aim of this study was to find potential CSF microRNA (miRNA) biomarkers for NPH mimics with parkinsonian syndromes that can reliably distinguish them from iNPH patients. Methods: Two cohorts of 81 patients (cohort 1, n = 55; cohort 2, n = 26) with possible iNPH who were treated in two centers between January 2011 and May 2014 were studied. In both cohorts, CSF samples were obtained from patients clinically diagnosed with iNPH (n = 21 and n = 10, respectively), possible iNPH with parkinsonian spectrum (PS) (n = 18, n = 10, respectively), possible iNPH with Alzheimer’s disease (AD) (n = 16), and non-affected elderly individuals (NC) (n = 6). A three-step qRT-PCR analysis of the CSF samples was performed to detect miRNAs that were differentially expressed in the groups. Results: The expression of hsa-miR-4274 in CSF was decreased in both cohorts of PS group patients (cohort 1: p < 0.0001, cohort 2: p < 0.0001), and was able to distinguish PS from iNPH with high accuracy (area under the curve = 0.908). The CSF concentration of hsa-miR-4274 also correlated with the specific binding ratio of ioflupane (123I) dopamine transporter scan (r = –0.494, p = 0.044). By contrast, the level of hsa-miR-4274 was significantly increased in the PS group after CSF diversion. Conclusion: Levels of CSF hsa-miR-4274 can differentiate PS from patients with iNPH, AD, and NC. This may be clinically useful for diagnostic purposes and predicting shunt treatment responses.
Collapse
Affiliation(s)
- Ivana Jurjević
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Pharmacology and Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mika Kikkawa
- Division of Proteomics and Bio Molecular Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyasu Kanai
- Department of Neurology, Takasaki General Medical Center, Gunma, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Schirinzi T, Sancesario GM, Di Lazzaro G, D'Elia A, Imbriani P, Scalise S, Pisani A. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm (Vienna) 2018; 125:673-679. [PMID: 29353355 DOI: 10.1007/s00702-018-1842-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/08/2018] [Indexed: 01/24/2023]
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a disabling neurological disorder whose potential treatability is significantly limited by diagnostic uncertainty. In fact, typical clinical presentation occurs at late phases of disease, when CSF shunting could be ineffective. In recent years, measurement of different CSF proteins, whose concentration directly reflects neuropathological changes of CNS, has significantly improved both diagnostic timing and accuracy of neurodegenerative disease. Unfortunately iNPH lacks neuropathological hallmarks allowing the identification of specific disease biomarkers. However, neuropathology of iNPH is so rich and heterogeneous that many processes can be tracked in CSF, including Alzheimer's disease core pathology, subcortical degeneration, neuroinflammation and vascular dysfunction. Indeed, a huge number of CSF biomarkers have been analyzed in iNPH patients, but a unifying profile has not been provided yet. In this brief survey, we thus attempted to summarize the main findings in the field of iNPH CSF biomarkers, aimed at outlining a synthetic model. Although defined cut-off values for biomarkers are not available, a better knowledge of CSF characteristics may definitely assist in diagnosing the disease.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.
| | - Giulia Maria Sancesario
- Department of Experimental Medicine and Surgery, University of Roma Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Di Lazzaro
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alessio D'Elia
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paola Imbriani
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Scalise
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Antonio Pisani
- Neurology Unit, Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
26
|
Cerebrospinal Fluid Biomarkers as Predictors of Shunt Response in Idiopathic Normal Pressure Hydrocephalus: A Systematic Review. Can J Neurol Sci 2017; 45:3-10. [PMID: 29125088 DOI: 10.1017/cjn.2017.251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The widely accepted treatment for idiopathic normal-pressure hydrocephalus (iNPH) is a cerebrospinal fluid (CSF) diversion shunt procedure, to which approximately 80% of patients will respond. The purpose of this systematic review was to identify which CSF biomarkers have been investigated in predicting shunt responsiveness in iNPH patients, and to analyze the level of evidence for each. METHODS To find all relevant articles, a comprehensive search of Medline, Embase, and PsycINFO was conducted. RESULTS The literature search identified 344 unique citations, of which 13 studies satisfied the inclusion criteria and were analyzed in our review. These 13 studies reported on 37 unique biomarkers. CONCLUSIONS The available studies suggest that there is evidence for the utility of CSF biomarkers in predicting shunt responsiveness in iNPH patients, though none have been shown to predict shunt response with both high sensitivity and specificity. We found that there is no available evidence for the use of Aβ38, Aβ40, Aβ43, APL1β25, APL1β27, APL1β28, sAPP, aAPPα, sAPPβ, TNF-α, MCP-1, sCD40L, sulfatide, MBP, L-PGDS, cystatin C, transthyretin, TGF-β2, or YKL-40 in predicting shunt response. There is minimal evidence for the use of TGF-β1, TBR-II, homocysteine, and interleukins (particularly IL-1β, IL-6, and IL-10). However, the available evidence suggests that these biomarkers warrant further investigation. Aβ42, tau, p-tau, NFL, and LRG have the greatest amount of evidence for their predictive value in determining shunt responsiveness in iNPH patients. Future research should be guided by, but not limited to, these biomarkers.
Collapse
|
27
|
Morales DM, Silver SA, Morgan CD, Mercer D, Inder TE, Holtzman DM, Wallendorf MJ, Rao R, McAllister JP, Limbrick DD. Lumbar Cerebrospinal Fluid Biomarkers of Posthemorrhagic Hydrocephalus of Prematurity: Amyloid Precursor Protein, Soluble Amyloid Precursor Protein α, and L1 Cell Adhesion Molecule. Neurosurgery 2017; 80:82-90. [PMID: 27571524 DOI: 10.1227/neu.0000000000001415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) is the most frequent, severe neurological complication of prematurity and is associated with posthemorrhagic hydrocephalus (PHH) in up to half of cases. PHH requires lifelong neurosurgical care and is associated with significant cognitive and psychomotor disability. Cerebrospinal fluid (CSF) biomarkers may provide both diagnostic information for PHH and novel insights into its pathophysiology. OBJECTIVE To explore the diagnostic ability of candidate CSF biomarkers for PHH. METHODS Concentrations of amyloid precursor protein (APP), soluble APPα (sAPPα), soluble APPβ, neural cell adhesion molecule-1 (NCAM-1), L1 cell adhesion molecule (L1CAM), tau, phosphorylated tau, and total protein (TP) were measured in lumbar CSF from neonates in 6 groups: (1) no known neurological disease (n = 33); (2) IVH grades I to II (n = 13); (3) IVH grades III to IV (n = 12); (4) PHH (n = 12); (5) ventricular enlargement without hydrocephalus (n = 10); and (6) hypoxic ischemic encephalopathy (n = 13). CSF protein levels were compared using analysis of variance, and logistic regression was performed to examine the predictive ability of each marker for PHH. RESULTS Lumbar CSF levels of APP, sAPPα, L1CAM, and TP were selectively increased in PHH compared with all other conditions (all P < .001). The sensitivity, specificity, and odds ratios of candidate CSF biomarkers for PHH were determined for APP, sAPPα, and L1CAM; cut points of 699, 514, and 113 ng/mL yielded odds ratios for PHH of 80.0, 200.0, and 68.75, respectively. CONCLUSION Lumbar CSF APP, sAPPα, L1CAM, and TP were selectively increased in PHH. These proteins, and sAPPα, in particular, hold promise as biomarkers of PHH and provide novel insight into PHH-associated neural injury and repair.
Collapse
Affiliation(s)
- Diego M Morales
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Shawgi A Silver
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Clinton D Morgan
- Depart-ment of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Deanna Mercer
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Terri E Inder
- Department of Pediatrics, Harvard University School of Medicine, Boston, Massachusetts
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medi-cine, St. Louis, Missouri.,Knight Alzheimer's Disease Research Center, Washing-ton University School of Medicine, St. Louis, Missouri
| | - Michael J Wallendorf
- Division of Biostat-istics, Washington University School of Medicine, St. Louis, Missouri
| | - Rakesh Rao
- Depart-ment of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - James P McAllister
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medi-cine, St. Louis, Missouri.,Depart-ment of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Chen Z, Liu C, Zhang J, Relkin N, Xing Y, Li Y. Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids Barriers CNS 2017; 14:13. [PMID: 28486988 PMCID: PMC5424383 DOI: 10.1186/s12987-017-0062-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022] Open
Abstract
Objectives The purpose of this systematic review and meta-analysis was to evaluate the performance of cerebrospinal fluid (CSF) beta amyloid 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau) as potential diagnostic biomarkers for idiopathic normal-pressure hydrocephalus (iNPH) and to assess their utility indistinguishing patients with iNPH from those with Alzheimer disease (AD) and healthy normal controls. Methods Studies were identified by searching PubMed, Embase, the Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure (CNKI), Wanfang Chinese Periodical Database, VIP Chinese database, and Chinese Bio-medicine Database (CBM) before August 2016. The standardized mean difference (SMD) and 95% confidence interval (CI), comparing CSF Aβ42, t-tau, and p-tau levels between iNPH, AD and healthy controls, were calculated using random-effects models. Subgroup analyses were created according to ethnicity (Caucasian or Asian) and CSF type (lumbar or ventricular), and the publication bias was estimated using Egger’s test and the Begg’s test. Results A total of 10 studies including 413 patients with iNPH, 186 patients with AD and 147 healthy controls were included in this systematic review and meta-analysis. The concentrations of CSF t-tau, and p-tau were significantly lower in iNPH patients compared to AD (SMD = −1.26, 95% CI −1.95 to −0.57, P = 0.0004; SMD = −1.54, 95% CI −2.34 to −0.74, P = 0.0002, respectively) and lower than healthy controls (SMD = −0.80, 95% CI −1.50 to −0.09, P = 0.03; SMD = −1.12, 95% CI −1.38 to −0.86, P < 0.00001, respectively). Patients with iNPH had significantly lower Aβ42 levels compared with controls (SMD = −1.14, 95% CI −1.74 to −0.55, P = 0.0002), and slightly higher Aβ42 levels compared with AD patients (SMD = 0.32, 95% CI 0.00–0.63, P = 0.05). Subgroup analyses showed that the outcomes may have been influenced by ethnicity and CSF source. Compared to AD, overall sensitivity in differentiating iNPH was 0.813 (95% CI 0.636–0.928) for Aβ42, 0.828 (95% CI 0.732–0.900) for t-tau, 0.943 (95% CI 0.871–0.981) for p-tau. Relative to AD, overall specificity in differentiating iNPH was 0.506 (95% CI 0.393–0.619) for Aβ42, 0.842 (95% CI 0.756–0.907) for t-tau, 0.851 (95% CI 0.767–0.914) for p-tau. Conclusion The results of our meta-analysis suggest that iNPH may be associated with significantly reduced levels of CSF Aβ42, t-tau and p-tau compared to the healthy normal state. Compared to AD, both t-tau and p-tau were significantly decreased in iNPH, but CSF Aβ42 was slightly increased. Prospective studies are needed to further assess the clinical utility of these and other CSF biomarkers in assisting in the diagnosis of iNPH and differentiating it from AD and other neurodegenerative disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12987-017-0062-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, No. 3 Anwai Beiyuan Road, Chaoyang District, Beijing, 100012, China
| | - Chunyan Liu
- Department of Neurology, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, No. 3 Anwai Beiyuan Road, Chaoyang District, Beijing, 100012, China
| | - Jie Zhang
- Department of Neurology, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, No. 3 Anwai Beiyuan Road, Chaoyang District, Beijing, 100012, China
| | - Norman Relkin
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, Cornell Memory Disorders Program, 428 East 72 Street, Suite 500, New York, NY, 10021, USA
| | - Yan Xing
- Department of Neurology, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, No. 3 Anwai Beiyuan Road, Chaoyang District, Beijing, 100012, China.
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
29
|
Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 2017; 12:e0172353. [PMID: 28212403 PMCID: PMC5315300 DOI: 10.1371/journal.pone.0172353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Hydrocephalus is a complex neurological disorder with a pervasive impact on the central nervous system. Previous work has demonstrated derangements in the biochemical profile of cerebrospinal fluid (CSF) in hydrocephalus, particularly in infants and children, in whom neurodevelopment is progressing in parallel with concomitant neurological injury. The objective of this study was to examine the CSF of children with congenital hydrocephalus (CHC) to gain insight into the pathophysiology of hydrocephalus and identify candidate biomarkers of CHC with potential diagnostic and therapeutic value. Methods CSF levels of amyloid precursor protein (APP) and derivative isoforms (sAPPα, sAPPβ, Aβ42), tau, phosphorylated tau (pTau), L1CAM, NCAM-1, aquaporin 4 (AQP4), and total protein (TP) were measured by ELISA in 20 children with CHC. Two comparative groups were included: age-matched controls and children with other neurological diseases. Demographic parameters, ventricular frontal-occipital horn ratio, associated brain malformations, genetic alterations, and surgical treatments were recorded. Logistic regression analysis and receiver operating characteristic curves were used to examine the association of each CSF protein with CHC. Results CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or TP were increased in untreated CHC. CSF TP and normalized L1CAM levels were associated with FOR in CHC subjects, while normalized CSF tau levels were associated with FOR in control subjects. Predictive ability for CHC was strongest for sAPPα, especially in subjects ≤12 months of age (p<0.0001 and AUC = 0.99), followed by normalized sAPPβ (p = 0.0001, AUC = 0.95), tau, APP, and L1CAM. Among subjects ≤12 months, a normalized CSF sAPPα cut-point of 0.41 provided the best prediction of CHC (odds ratio = 528, sensitivity = 0.94, specificity = 0.97); these infants were 32 times more likely to have CHC. Conclusions CSF proteins such as sAPPα and related proteins hold promise as biomarkers of CHC in infants and young children, and provide insight into the pathophysiology of CHC during this critical period in neurodevelopment.
Collapse
|
30
|
Somers C, Goossens J, Engelborghs S, Bjerke M. Selecting Aβ isoforms for an Alzheimer's disease cerebrospinal fluid biomarker panel. Biomark Med 2017; 11:169-178. [PMID: 28111962 DOI: 10.2217/bmm-2016-0276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the core cerebrospinal fluid Alzheimer's disease (AD) biomarkers amyloid-β (Aβ1-42) and tau show a high diagnostic accuracy, there are still limitations due to overlap in the biomarker levels with other neurodegenerative and dementia disorders. During Aβ1-42 production and clearance in the brain, several other Aβ peptides and amyloid precursor protein fragments are formed that could potentially serve as biomarkers for this ongoing disease process. Therefore, this review will present the current status of the findings for amyloid precursor protein and Aβ peptide isoforms in AD and clinically related disorders. In conclusion, adding new Aβ isoforms to the AD biomarker panel may improve early differential diagnostic accuracy and increase the cerebrospinal fluid biomarker concordance with AD neuropathological findings in the brain.
Collapse
Affiliation(s)
- Charisse Somers
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Joery Goossens
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology & Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim & Hoge Beuken, Antwerp, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res 2016; 95:973-991. [PMID: 27531392 DOI: 10.1002/jnr.23823] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Soluble amyloid precursor protein α (sAPPα), a secreted proteolytic fragment of nonamyloidogenic amyloid precursor protein (APP) processing, is known for numerous neuroprotective functions. These functions include but are not limited to proliferation, neuroprotection, synaptic plasticity, memory formation, neurogenesis, and neuritogenesis in cell culture and animal models. In addition, sAPPα influences amyloid-β (Aβ) production by direct modulation of APP β-secretase proteolysis as well as Aβ-related or unrelated tau pathology, hallmark pathologies of Alzheimer's disease (AD). Thus, the restoration of sAPPα levels and functions in the brain by increasing nonamyloidogenic APP processing and/or manipulation of its signaling could reduce AD pathology and cognitive impairment. It is likely that identification and characterization of sAPPα receptors in the brain, downstream effectors, and signaling pathways will pave the way for an attractive therapeutic target for AD prevention or intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
32
|
Laiterä T, Kurki MI, Pursiheimo JP, Zetterberg H, Helisalmi S, Rauramaa T, Alafuzoff I, Remes AM, Soininen H, Haapasalo A, Jääskeläinen JE, Hiltunen M, Leinonen V. The Expression of Transthyretin and Amyloid-β Protein Precursor is Altered in the Brain of Idiopathic Normal Pressure Hydrocephalus Patients. J Alzheimers Dis 2016; 48:959-68. [PMID: 26444765 DOI: 10.3233/jad-150268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Idiopathic normal pressure hydrocephalus (iNPH) is a dementing condition in which Alzheimer's disease (AD)-related amyloid-β (Aβ) plaques are frequently observed in the neocortex. iNPH patients with prominent Aβ pathology show AD-related alterations in amyloid-β protein precursor (AβPP) processing resulting from increased γ-secretase activity. OBJECTIVES Our goal was to assess potential alterations in the global gene expression profile in the brain of iNPH patients as compared to non-demented controls and to evaluate the levels of the identified targets in the cerebrospinal fluid (CSF) of iNPH patients. METHODS The genome-wide expression profile of ~35,000 probes was assessed in the RNA samples obtained from 22 iNPH patients and eight non-demented control subjects using a microarray chip. The soluble levels of sAβPPα, sAβPPβ, and transthyretin (TTR) were measured from the CSF of 102 iNPH patients using ELISA. RESULTS After correcting the results for multiple testing, significant differences in the expression of TTR and A βPP were observed between iNPH and control subjects. The mRNA levels of TTR were on average 17-fold lower in iNPH samples compared to control samples. Conversely, the expression level of A βPP was on average three times higher in iNPH samples as compared to control samples. Interestingly, the expression of α-secretase (ADAM10) was also increased in iNPH patients. In the lumbar CSF samples, soluble TTR levels showed a significant positive correlation with sAβPPα and sAβPPβ, but TTR levels did not predict the brain pathology or the shunt response. CONCLUSIONS These findings suggest differences in the expression profile of key factors involved in AD-related cellular events in the brain of iNPH patients.
Collapse
Affiliation(s)
- Tiina Laiterä
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mitja I Kurki
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine - Pathology, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anne M Remes
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juha E Jääskeläinen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
33
|
Jeppsson A, Höltta M, Zetterberg H, Blennow K, Wikkelsø C, Tullberg M. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2016; 13:13. [PMID: 27472944 PMCID: PMC4967298 DOI: 10.1186/s12987-016-0037-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/18/2016] [Indexed: 01/21/2023] Open
Abstract
Background Patients with idiopathic normal pressure hydrocephalus (iNPH) have reduced cerebrospinal fluid (CSF) concentrations of amyloid-β (Aβ) and α- and β-cleaved soluble forms of amyloid precursor protein (sAPPα and sAPPβ). The aims of this study were to examine if changes could also be seen in the CSF for secreted metabolites of APP-like protein 1 (APLP1) and to explore the prognostic value of amyloid-related CSF biomarkers, as well as markers of neuronal injury and astroglial activation, as regards to clinical outcome after shunt surgery. Methods Twenty patients diagnosed with iNPH, 10 improved and 10 unchanged by shunt surgery, and 20 neurologically healthy controls were included. All patients were examined clinically prior to surgery and at 6-month follow-up after surgery using the iNPH scale. Lumbar puncture was performed pre-operatively. CSF samples were analyzed for neurofilament light (NFL), Aβ isoforms Aβ38, Aβ40 and Aβ42, sAPPα, sAPPβ, APLP1 β-derived peptides APL1β25, APL1β 27 and APL1β 28 and YKL40 by immunochemical methods. Results The concentrations of all soluble forms of APP, all Aβ isoforms and APL1β28 were lower, whilst APL1β25 and APL1β27 were higher in the CSF of iNPH patients compared to controls. There was no difference in biomarker concentrations between patients who improved after surgery and those who remained unchanged. Conclusions The reduced CSF concentrations of Aβ38, Aβ40, Aβ42, sAPPα and sAPPβ suggest that APP expression could be downregulated in iNPH. In contrast, APLP1 concentration in the CSF seems relatively unchanged. The increase of APL1β25 and APL1β27 in combination with a slight decreased APL1β28 could be caused by more available γ-secretase due to reduced availability of its primary substrate, APP. The data did not support the use of these markers as indicators of shunt responsiveness.
Collapse
Affiliation(s)
- A Jeppsson
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| | - Mikko Höltta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Molndal, Sweden
| | - C Wikkelsø
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Mats Tullberg
- Hydrocephalus Research Unit, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| |
Collapse
|
34
|
Yamada S, Ishikawa M, Yamamoto K. Comparison of CSF Distribution between Idiopathic Normal Pressure Hydrocephalus and Alzheimer Disease. AJNR Am J Neuroradiol 2016; 37:1249-55. [PMID: 26915568 DOI: 10.3174/ajnr.a4695] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE CSF volumes in the basal cistern and Sylvian fissure are increased in both idiopathic normal pressure hydrocephalus and Alzheimer disease, though the differences in these volumes in idiopathic normal pressure hydrocephalus and Alzheimer disease have not been well-described. Using CSF segmentation and volume quantification, we compared the distribution of CSF in idiopathic normal pressure hydrocephalus and Alzheimer disease. MATERIALS AND METHODS CSF volumes were extracted from T2-weighted 3D spin-echo sequences on 3T MR imaging and quantified semi-automatically. We compared the volumes and ratios of the ventricles and subarachnoid spaces after classification in 30 patients diagnosed with idiopathic normal pressure hydrocephalus, 10 with concurrent idiopathic normal pressure hydrocephalus and Alzheimer disease, 18 with Alzheimer disease, and 26 control subjects 60 years of age or older. RESULTS Brain to ventricle ratios at the anterior and posterior commissure levels and 3D volumetric convexity cistern to ventricle ratios were useful indices for the differential diagnosis of idiopathic normal pressure hydrocephalus or idiopathic normal pressure hydrocephalus with Alzheimer disease from Alzheimer disease, similar to the z-Evans index and callosal angle. The most distinctive characteristics of the CSF distribution in idiopathic normal pressure hydrocephalus were small convexity subarachnoid spaces and the large volume of the basal cistern and Sylvian fissure. The distribution of the subarachnoid spaces in the idiopathic normal pressure hydrocephalus with Alzheimer disease group was the most deformed among these 3 groups, though the mean ventricular volume of the idiopathic normal pressure hydrocephalus with Alzheimer disease group was intermediate between that of the idiopathic normal pressure hydrocephalus and Alzheimer disease groups. CONCLUSIONS The z-axial expansion of the lateral ventricle and compression of the brain just above the ventricle were the common findings in the parameters for differentiating idiopathic normal pressure hydrocephalus from Alzheimer disease.
Collapse
Affiliation(s)
- S Yamada
- From the Normal Pressure Hydrocephalus Center (S.Y., M.I.) Department of Neurosurgery and Stroke Center (S.Y., M.I., K.Y.), Rakuwakai Otowa Hospital, Kyoto, Japan.
| | - M Ishikawa
- From the Normal Pressure Hydrocephalus Center (S.Y., M.I.) Department of Neurosurgery and Stroke Center (S.Y., M.I., K.Y.), Rakuwakai Otowa Hospital, Kyoto, Japan
| | - K Yamamoto
- Department of Neurosurgery and Stroke Center (S.Y., M.I., K.Y.), Rakuwakai Otowa Hospital, Kyoto, Japan
| |
Collapse
|
35
|
Idrocefalo nei bambini e negli adulti. Neurologia 2015. [DOI: 10.1016/s1634-7072(15)73994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Nakajima M, Miyajima M, Ogino I, Akiba C, Sugano H, Hara T, Fusegi K, Karagiozov K, Arai H. Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci 2015; 357:88-95. [PMID: 26169158 DOI: 10.1016/j.jns.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/16/2015] [Accepted: 07/01/2015] [Indexed: 11/28/2022]
Abstract
The prognosis of cognitive improvement after cerebrospinal fluid (CSF) shunting in idiopathic normal pressure hydrocephalus (iNPH) remains uncertain, with no reports on CSF biomarkers related to long-term cognitive prognosis. We performed a preliminary study of CSF biomarker protein levels for cognitive outcome prognostication of two-year outcomes after shunt treated iNPH in 36 patients (13 women) with a median age of 75years (IQR 69-78). CSF biomarkers included soluble amyloid precursor proteins (sAPP, sAPPα, sAPPβ), amyloid β (Aβ)1-38, Aβ1-42 and phosphorylated tau (p-tau), lipocalin-type prostaglandin D synthase (L-PGDS)/β-trace, and cystatin C. The results clearly showed that p-tau levels (sensitivity of 71.4%, specificity of 77.8%, cut-off value of 22.0pg/mL), Aβ1-38/Aβ1-42 ratio (77.8%, 81%, 3.58), and the Aβ1-42/p-tau ratio (76%, 72.7%, 14.6) in preoperative CSF have the potential to determine postoperative prognosis. Improved cognition may be associated with the improvement in CSF circulation after LPS, which likely induces cystatin C and L-PGDS and switches synthesis from Aβ1-42 to Aβ1-38.
Collapse
Affiliation(s)
- Madoka Nakajima
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Chihiro Akiba
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Keiko Fusegi
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Kostadin Karagiozov
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8342, Japan.
| |
Collapse
|
37
|
McAllister JP, Williams MA, Walker ML, Kestle JRW, Relkin NR, Anderson AM, Gross PH, Browd SR. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg 2015; 123:1427-38. [PMID: 26090833 DOI: 10.3171/2014.12.jns132352] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Building on previous National Institutes of Health-sponsored symposia on hydrocephalus research, "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes" was held in Seattle, Washington, July 9-11, 2012. Plenary sessions were organized into four major themes, each with two subtopics: Causes of Hydrocephalus (Genetics and Pathophysiological Modifications); Diagnosis of Hydrocephalus (Biomarkers and Neuroimaging); Treatment of Hydrocephalus (Bioengineering Advances and Surgical Treatments); and Outcome in Hydrocephalus (Neuropsychological and Neurological). International experts gave plenary talks, and extensive group discussions were held for each of the major themes. The conference emphasized patient-centered care and translational research, with the main objective to arrive at a consensus on priorities in hydrocephalus that have the potential to impact patient care in the next 5 years. The current state of hydrocephalus research and treatment was presented, and the following priorities for research were recommended for each theme. 1) Causes of Hydrocephalus-CSF absorption, production, and related drug therapies; pathogenesis of human hydrocephalus; improved animal and in vitro models of hydrocephalus; developmental and macromolecular transport mechanisms; biomechanical changes in hydrocephalus; and age-dependent mechanisms in the development of hydrocephalus. 2) Diagnosis of Hydrocephalus-implementation of a standardized set of protocols and a shared repository of technical information; prospective studies of multimodal techniques including MRI and CSF biomarkers to test potential pharmacological treatments; and quantitative and cost-effective CSF assessment techniques. 3) Treatment of Hydrocephalus-improved bioengineering efforts to reduce proximal catheter and overall shunt failure; external or implantable diagnostics and support for the biological infrastructure research that informs these efforts; and evidence-based surgical standardization with longitudinal metrics to validate or refute implemented practices, procedures, or tests. 4) Outcome in Hydrocephalus-development of specific, reliable batteries with metrics focused on the hydrocephalic patient; measurements of neurocognitive outcome and quality-of-life measures that are adaptable, trackable across the growth spectrum, and applicable cross-culturally; development of comparison metrics against normal aging and sensitive screening tools to diagnose idiopathic normal pressure hydrocephalus against appropriate normative age-based data; better understanding of the incidence and prevalence of hydrocephalus within both pediatric and adult populations; and comparisons of aging patterns in adults with hydrocephalus against normal aging patterns.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Michael A Williams
- Department of Neurology, The Sandra and Malcolm Berman Brain & Spine Institute and Adult Hydrocephalus Center, Sinai Hospital, Baltimore, Maryland
| | - Marion L Walker
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - John R W Kestle
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - Norman R Relkin
- Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Amy M Anderson
- Department of Neurosurgery, Seattle Children's Hospital, Seattle, Washington; and
| | | | - Samuel R Browd
- Departments of Neurosurgery and Bioengineering, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | | |
Collapse
|
38
|
Correlations between mini-mental state examination score, cerebrospinal fluid biomarkers, and pathology observed in brain biopsies of patients with normal-pressure hydrocephalus. J Neuropathol Exp Neurol 2015; 74:470-9. [PMID: 25868149 DOI: 10.1097/nen.0000000000000191] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alzheimer disease (AD)-related pathology was assessed in cortical biopsy samples of 111 patients with idiopathic normal-pressure hydrocephalus. Alzheimer disease hallmark lesions-β-amyloid (Aβ) and hyperphosphorylated tau (HPtau)-were observed in 47% of subjects, a percentage consistent with that for whole-brain assessment reported postmortem in unselected cohorts. Higher-immunostained area fraction of AD pathology corresponded with lower preoperative mini-mental state examination scores. Concomitant Aβ and HPtau pathology, reminiscent of that observed in patients with AD, was observed in 22% of study subjects. There was a significant correlation between Aβ-immunostained area fraction in tissue and Aβ42 (42-amino-acid form of Aβ) in cerebrospinal fluid (CSF). Levels of Aβ42 were significantly lower in CSF in subjects with concomitant Aβ and HPtau pathology compared with subjects lacking pathology. Moreover, a significant correlation between HPtau-immunostained area fraction and HPtau in CSF was noted. Both HPtau and total tau were significantly higher in CSF in subjects with concomitant Aβ and HPtau pathology compared with subjects lacking pathology. The 42-amino-acid form of Aβ (Aβ42) and HPtau in CSF were the most significant predictors of the presence of AD pathology in cortical biopsies. Long-term follow-up studies are warranted to assess whether all patients with idiopathic normal-pressure hydrocephalus with AD pathology progress to AD and to determine the pathologic substrate of idiopathic normal-pressure hydrocephalus.
Collapse
|
39
|
Moriya M, Miyajima M, Nakajima M, Ogino I, Arai H. Impact of cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus on the amyloid cascade. PLoS One 2015; 10:e0119973. [PMID: 25821958 PMCID: PMC4379026 DOI: 10.1371/journal.pone.0119973] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to determine whether the improvement of cerebrospinal fluid (CSF) flow dynamics by CSF shunting, can suppress the oligomerization of amyloid β-peptide (Aβ), by measuring the levels of Alzheimer’s disease (AD)-related proteins in the CSF before and after lumboperitoneal shunting. Lumbar CSF from 32 patients with idiopathic normal pressure hydrocephalus (iNPH) (samples were obtained before and 1 year after shunting), 15 patients with AD, and 12 normal controls was analyzed for AD-related proteins and APLP1-derived Aβ-like peptides (APL1β) (a surrogate marker for Aβ). We found that before shunting, individuals with iNPH had significantly lower levels of soluble amyloid precursor proteins (sAPP) and Aβ38 compared to patients with AD and normal controls. We divided the patients with iNPH into patients with favorable (improvement ≥ 1 on the modified Rankin Scale) and unfavorable (no improvement on the modified Rankin Scale) outcomes. Compared to the unfavorable outcome group, the favorable outcome group showed significant increases in Aβ38, 40, 42, and phosphorylated-tau levels after shunting. In contrast, there were no significant changes in the levels of APL1β25, 27, and 28 after shunting. After shunting, we observed positive correlations between sAPPα and sAPPβ, Aβ38 and 42, and APL1β25 and 28, with shifts from sAPPβ to sAPPα, from APL1β28 to 25, and from Aβ42 to 38 in all patients with iNPH. Our results suggest that Aβ production remained unchanged by the shunt procedure because the levels of sAPP and APL1β were unchanged. Moreover, the shift of Aβ from oligomer to monomer due to the shift of Aβ42 (easy to aggregate) to Aβ38 (difficult to aggregate), and the improvement of interstitial-fluid flow, could lead to increased Aβ levels in the CSF. Our findings suggest that the shunting procedure can delay intracerebral deposition of Aβ in patients with iNPH.
Collapse
Affiliation(s)
- Masao Moriya
- Department of Neurosurgery, Juntendo University Graduate School of medicine, Tokyo, Japan
- * E-mail:
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of medicine, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of medicine, Tokyo, Japan
| |
Collapse
|
40
|
Miyajima M, Kazui H, Mori E, Ishikawa M. One-year outcome in patients with idiopathic normal-pressure hydrocephalus treated with a lumbo-peritoneal shunt (SINPHONI-2), compared to ventriculo-peritoneal shunt (SINPHONI) used as a historical control. Fluids Barriers CNS 2015. [PMCID: PMC4582353 DOI: 10.1186/2045-8118-12-s1-o46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Affiliation(s)
- A H V Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK.
| |
Collapse
|
42
|
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a communicating hydrocephalus, of unknown pathophysiology, characterized by the classical triad of dementia, urinary incontinence, and ataxia. The most popular treatment option is shunt surgery, although it is not a cure. The diagnosis of the disorder is challenging as it may mimic a lot of other neurological conditions and has no distinct biomarker. It becomes even more challenging as majority of the cases are diagnosed by invasive cerebrospinal fluid (CSF) removal tests. However, a careful history taking, a keen and detailed physical examination, and pertinent imaging studies can lead to an early diagnosis. The gait symptoms respond the most to surgery. The predictors deciding the postsurgical prognosis has been discussed. Improved shunting modalities and novel shunt materials with valve adjustments have improved the precision of the shunting procedures. Still we have lot more to achieve in terms of early diagnosis and definitive management of iNPH.
Collapse
Affiliation(s)
- Sayantani Ghosh
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Carol Lippa
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
43
|
Kang K, Ko PW, Jin M, Suk K, Lee HW. Idiopathic normal-pressure hydrocephalus, cerebrospinal fluid biomarkers, and the cerebrospinal fluid tap test. J Clin Neurosci 2014; 21:1398-403. [PMID: 24836892 DOI: 10.1016/j.jocn.2013.11.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/29/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
Cerebrospinal fluid (CSF) biomarkers, including soluble amyloid β-42 (Aβ-42) and phosphorylated-tau (P-tau), reflect core pathophysiological features of Alzheimer's disease (AD). AD is frequently a concomitant pathology in older patients with idiopathic normal-pressure hydrocephalus (iNPH), and somewhat similar altered CSF dynamics exist in both AD and iNPH. We therefore investigated relationships between lumbar CSF biomarkers Aβ-42 and P-tau and clinical parameters in iNPH patients, along with differences in these biomarkers between CSF tap test (CSFTT) responders and non-responders. Thirty-one iNPH patients (14 CSFTT responders and 17 CSFTT non-responders) were included in the final analysis. We found lower CSF Aβ-42 correlated with poor cognitive performance (r=0.687, p<0.001 for Korean Mini Mental State Examination; r=0.568, p=0.001 for Frontal Assessment Battery; r=-0.439, p=0.014 for iNPH grading scale [iNPHGS] cognitive score; r=-0.588, p=0.001 for Clinical Dementia Rating Scale), and lower CSF P-tau correlated with gait dysfunction (r=-0.624, p<0.001 for Timed Up and Go Test; r=-0.652, p<0.001 for 10meter walking test; r=-0.578, p=0.001 for Gait Status Scale; r=-0.543, p=0.002 for iNPHGS gait score). In subgroup analysis, CSF P-tau/Aβ-42 ratios were significantly higher in CSFTT non-responders compared to responders (p=0.027). Two conjectures are suggested. One, CSF biomarkers may play different and characteristic roles in relation to different iNPH symptoms such as cognition and gait. Two, comorbid AD pathology in iNPH patients may affect the response to the CSFTT. Larger studies using combinations of other biomarkers associated with AD would be necessary to evaluate these hypotheses.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, Kyungpook National University School of Medicine, 50 Samdeok-dong 2-ga, Jung-gu, Daegu 700-721, South Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University School of Medicine, 50 Samdeok-dong 2-ga, Jung-gu, Daegu 700-721, South Korea
| | - Myungwon Jin
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, South Korea; Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, South Korea; Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine, 50 Samdeok-dong 2-ga, Jung-gu, Daegu 700-721, South Korea; Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea.
| |
Collapse
|
44
|
Nishida N, Nagata N, Toda H, Jingami N, Uemura K, Ozaki A, Mase M, Urade Y, Matsumoto S, Iwasaki K, Ishikawa M. Association of lipocalin-type prostaglandin D synthase with disproportionately enlarged subarachnoid-space in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2014; 11:9. [PMID: 24731502 PMCID: PMC3991874 DOI: 10.1186/2045-8118-11-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
Background Idiopathic normal pressure hydrocephalus (iNPH) is a treatable cause of dementia, gait disturbance, and urinary incontinence in elderly patients with ventriculomegaly. Its unique morphological feature, called disproportionately enlarged subarachnoid-space hydrocephalus (DESH), may also be a diagnostic feature. Lipocalin-type prostaglandin D synthase (L-PGDS) is a major cerebrospinal fluid (CSF) protein produced by arachnoid cells, and its concentration in the CSF is reportedly decreased in iNPH. L-PGDS acts as a prostaglandin D2-producing enzyme and behaves as a chaperone to prevent the neurotoxic aggregation of amyloid beta (Aβ) implicated in Alzheimer’s disease, a major comorbidity of iNPH. The aim of this study was to confirm the L-PGDS decrease in DESH-type iNPH and to clarify its relationship with clinico-radiological features or other CSF biomarkers. Methods We evaluated 22 patients (age: 76.4 ± 4.4 y; males: 10, females: 12) referred for ventriculomegaly without CSF pathway obstruction, and conducted a CSF tap test to determine the surgical indication. CSF concentrations of L-PGDS, Aβ42, Aβ40, and total tau (t-tau) protein were determined using enzyme-linked immunosorbent assays. Clinical symptoms were evaluated by the iNPH grading scale, mini-mental state examination, frontal assessment battery (FAB), and timed up and go test. The extent of DESH was approximated by the callosal angle, and the severity of parenchymal damage was evaluated by the age-related white matter change (ARWMC) score. Results L-PGDS and t-tau levels in CSF were significantly decreased in DESH patients compared to non-DESH patients (p = 0.013 and p = 0.003, respectively). L-PGDS and t-tau showed a significant positive correlation (Spearman r = 0.753, p < 0.001). Among the clinico-radiological profiles, L-PGDS levels correlated positively with age (Spearman r = 0.602, p = 0.004), callosal angle (Spearman r = 0.592, p = 0.004), and ARWMC scores (Spearman r = 0.652, p = 0.001), but were negatively correlated with FAB scores (Spearman r = 0.641, p = 0.004). Conclusions Our data support the diagnostic value of L-PGDS as a CSF biomarker for iNPH and suggest a possible interaction between L-PGDS and tau protein. In addition, L-PGDS might work as a surrogate marker for DESH features, white matter damage, and frontal lobe dysfunction.
Collapse
Affiliation(s)
- Namiko Nishida
- Department of Neurosurgery, Tazuke Kofukai Foundation, Medical Research Institute and Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pyykkö OT, Lumela M, Rummukainen J, Nerg O, Seppälä TT, Herukka SK, Koivisto AM, Alafuzoff I, Puli L, Savolainen S, Soininen H, Jääskeläinen JE, Hiltunen M, Zetterberg H, Leinonen V. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS One 2014; 9:e91974. [PMID: 24638077 PMCID: PMC3956805 DOI: 10.1371/journal.pone.0091974] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/18/2014] [Indexed: 01/12/2023] Open
Abstract
Background The significance of amyloid precursor protein (APP) and neuroinflammation in idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer's disease (AD) is unknown. Objective To investigate the role of soluble APP (sAPP) and amyloid beta (Aβ) isoforms, proinflammatory cytokines, and biomarkers of neuronal damage in the cerebrospinal fluid (CSF) in relation to brain biopsy Aβ and hyperphosphorylated tau (HPτ) findings. Methods The study population comprised 102 patients with possible NPH with cortical brain biopsies, ventricular and lumbar CSF samples, and DNA available. The final clinical diagnoses were: 53 iNPH (91% shunt-responders), 26 AD (10 mixed iNPH+AD), and 23 others. Biopsy samples were immunostained against Aβ and HPτ. CSF levels of AD-related biomarkers (Aβ42, p-tau, total tau), non-AD-related Aβ isoforms (Aβ38, Aβ40), sAPP isoforms (sAPPα, sAPPβ), proinflammatory cytokines (several interleukins (IL), interferon-gamma, monocyte chemoattractant protein-1, tumor necrosis factor-alpha) and biomarkers of neuronal damage (neurofilament light and myelin basic protein) were measured. All patients were genotyped for APOE. Results Lumbar CSF levels of sAPPα were lower (p<0.05) in patients with shunt-responsive iNPH compared to non-iNPH patients. sAPPβ showed a similar trend (p = 0.06). CSF sAPP isoform levels showed no association to Aβ or HPτ in the brain biopsy. Quantified Aβ load in the brain biopsy showed a negative correlation with CSF levels of Aβ42 in ventricular (r = −0.295, p = 0.003) and lumbar (r = −0.356, p = 0.01) samples, while the levels of Aβ38 and Aβ40 showed no correlation. CSF levels of proinflammatory cytokines and biomarkers of neuronal damage did not associate to the brain biopsy findings, diagnosis, or shunt response. Higher lumbar/ventricular CSF IL-8 ratios (p<0.001) were seen in lumbar samples collected after ventriculostomy compared to the samples collected before the procedure. Conclusions The role of sAPP isoforms in iNPH seems to be independent from the amyloid cascade. No neuroinflammatory background was observed in iNPH or AD.
Collapse
Affiliation(s)
- Okko T. Pyykkö
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| | - Miikka Lumela
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Jaana Rummukainen
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ossi Nerg
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Toni T. Seppälä
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M. Koivisto
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lakshman Puli
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sakari Savolainen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Hilkka Soininen
- Neurology of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
46
|
Miyajima M, Nakajima M, Motoi Y, Moriya M, Sugano H, Ogino I, Nakamura E, Tada N, Kunichika M, Arai H. Leucine-rich α2-glycoprotein is a novel biomarker of neurodegenerative disease in human cerebrospinal fluid and causes neurodegeneration in mouse cerebral cortex. PLoS One 2013; 8:e74453. [PMID: 24058569 PMCID: PMC3776841 DOI: 10.1371/journal.pone.0074453] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/01/2013] [Indexed: 11/25/2022] Open
Abstract
Leucine-rich α2-glycoprotein (LRG) is a protein induced by inflammation. It contains a leucine-rich repeat (LRR) structure and easily binds with other molecules. However, the function of LRG in the brain during aging and neurodegenerative diseases has not been investigated. Here, we measured human LRG (hLRG) concentration in the cerebrospinal fluid (CSF) and observed hLRG expression in post-mortem human cerebral cortex. We then generated transgenic (Tg) mice that over-expressed mouse LRG (mLRG) in the brain to examine the effects of mLRG accumulation. Finally, we examined protein-protein interactions using a protein microarray method to screen proteins with a high affinity for hLRG. The CSF concentration of hLRG increases with age and is significantly higher in patients with Parkinson’s disease with dementia (PDD) and progressive supranuclear palsy (PSP) than in healthy elderly people, idiopathic normal pressure hydrocephalus (iNPH) patients, and individuals with Alzheimer’s disease (AD). Tg mice exhibited neuronal degeneration and neuronal decline. Accumulation of LRG in the brains of PDD and PSP patients is not a primary etiological factor, but it is thought to be one of the causes of neurodegeneration. It is anticipated that hLRG CSF levels will be a useful biomarker for the early diagnosis of PDD and PSP.
Collapse
Affiliation(s)
- Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masao Moriya
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miyuki Kunichika
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus. Neurology 2013; 80:1385-92. [DOI: 10.1212/wnl.0b013e31828c2fda] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objectives:This observational study aimed to explore the pathophysiology of idiopathic normal-pressure hydrocephalus (iNPH) and to evaluate the diagnostic and prognostic value of CSF biomarkers.Methods:Lumbar CSF of patients with iNPH and healthy elderly individuals (HI) and ventricular CSF (VCSF) from the patients with iNPH pre and 6 months postsurgery were analyzed by ELISA. We analyzed neurofilament light protein (NFL), myelin basic protein (MBP), a panel of β-amyloid isoforms (Aβ38, Aβ40, and Aβ42), soluble amyloid precursor protein (sAPP) isoforms sAPPα and sAPPβ, total and phosphorylated tau protein (t- and p-tau), and inflammatory markers interleukin 8, interleukin 10, and monocyte chemoattractant protein 1.Results:NFL was elevated and amyloid precursor protein (APP)–derived proteins and tau proteins were lower in patients with iNPH than in HI. Postsurgery, there was an increase of NFL, APP-derived proteins, p-tau, and albumin in VCSF, whereas levels of MBP and t-tau had decreased. Improved patients showed a greater increase of APP-derived proteins in VCSF following shunting than did those who did not improve.Conclusions:We interpret our data as iNPH pathophysiology to be characterized by a reduced periventricular metabolism and axonal degeneration but no major cortical damage.
Collapse
|