1
|
Abstract
Dissociative therapies are being increasingly explored for their psychiatric applications, although questions remain about how they work and how best to use them. In exploring these questions, this review highlights six key areas of clinical relevance: (1) The possible contributions of functional unblinding when interpreting efficacy data; (2) The degree to which the therapeutic effects of dissociative therapies can be distinguished from the transient forms of relief seen with recreational drug use; (3) Understanding the construct of dissociation as it is tasked with describing the function of dissociative drugs; (4) The investigation of subjective drug effects as predictors of therapeutic outcome; (5) Similarities and differences in the effects of dissociative and classic psychedelics; and (6) The anticipated need for judicious prescribing/deprescribing resources as dissociative therapies proliferate.
Collapse
Affiliation(s)
- David S Mathai
- Baylor College of Medicine - Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Baylor College of Medicine - Ethical Legal Implications of Psychedelics in Society Program, Center for Medical Ethics and Health Policy, Houston, TX, USA
- Sattva Medicine - Psychiatry, Psychotherapy, and Consulting Practice, Miami, FL, USA
| |
Collapse
|
2
|
Van Hove JLK. The role of NMDA-receptor type glutamatergic antagonists dextromethorphan or ketamine in the treatment of nonketotic hyperglycinemia: A critical reassessment. Mol Genet Metab 2024; 143:108594. [PMID: 39423724 DOI: 10.1016/j.ymgme.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The recognition of glycine as an endogenous ligand at the allosteric activation site of the NMDA-type glutamatergic receptor led to the assumption that the excess glycine in nonketotic hyperglycinemia would result in overactivation of these receptors, and of the proposed use of inhibitors such as dextromethorphan or ketamine as a therapeutic agent. Years later it was recognized that these same receptors have an alternative endogenous activator d-serine, which is markedly decreased in nonketotic hyperglycinemia. This may result in underactivation of these NMDA-type glutamatergic receptors, challenging the earlier hypothesis. Clear clinical evidence of an added therapeutic benefit beyond the use of glycine reduction strategies from use of either dextromethorphan or ketamine in nonketotic hyperglycinemia has not been documented. The systematic use of these NMDA-type receptor antagonists in nonketotic hyperglycinemia should be reevaluated, particularly in light of emerging potential adverse effects.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
3
|
Wörmeyer L, Nortmann O, Hamacher A, Uhlemeyer C, Belgardt B, Eberhard D, Mayatepek E, Meissner T, Lammert E, Welters A. The N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan Improves Glucose Homeostasis and Preserves Pancreatic Islets in NOD Mice. Horm Metab Res 2024; 56:223-234. [PMID: 38168730 PMCID: PMC10901624 DOI: 10.1055/a-2236-8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For treatment of type 1 diabetes mellitus, a combination of immune-based interventions and medication to promote beta-cell survival and proliferation has been proposed. Dextromethorphan (DXM) is an N-methyl-D-aspartate receptor antagonist with a good safety profile, and to date, preclinical and clinical evidence for blood glucose-lowering and islet-cell-protective effects of DXM have only been provided for animals and individuals with type 2 diabetes mellitus. Here, we assessed the potential anti-diabetic effects of DXM in the non-obese diabetic mouse model of type 1 diabetes. More specifically, we showed that DXM treatment led to five-fold higher numbers of pancreatic islets and more than two-fold larger alpha- and beta-cell areas compared to untreated mice. Further, DXM treatment improved glucose homeostasis and reduced diabetes incidence by 50%. Our data highlight DXM as a novel candidate for adjunct treatment of preclinical or recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Laura Wörmeyer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Nortmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Hamacher
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Bengt Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Alena Welters
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Kim E, Perlmutter M, Zweber H, Resch J. Bilateral nephrolithiasis following ingestion of guaifenesin and dextromethorphan. Urol Case Rep 2023; 50:102481. [PMID: 37455782 PMCID: PMC10344657 DOI: 10.1016/j.eucr.2023.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Both guaifenesin and dextromethorphan are routinely available nonprescription medications that are also common drugs of abuse amongst young adults. We describe a presentation of guaifenesin and dextromethorphan misuse resulting in acute renal failure due to bilateral nephrolithiasis. The patient underwent placement of bilateral ureteral stents but again formed small renal stones bilaterally. While most renal calculi are not drug-induced, this case highlights the potential for nephrolithiasis after guaifenesin and dextromethorphan ingestion. It suggests that in this combination ingestion multiple mechanisms lead to a prolonged period of nephrolith formation.
Collapse
Affiliation(s)
- Elizabeth Kim
- Transitional Year Program, Hennepin Healthcare, Minneapolis, MN, USA
| | - Michael Perlmutter
- Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, MN, USA
| | - Haley Zweber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Resch
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Scholz O, Huß E, Otter S, Herebian D, Hamacher A, Levy LM, Hristeva S, Sanz M, Ajani H, Puentes AR, Hoffmann T, Hogeback J, Unger A, Terheyden S, Reina do Fundo M, Dewidar B, Roden M, Lammert E. Protection of pancreatic islets from oxidative cell death by a peripherally-active morphinan with increased drug safety. Mol Metab 2023:101775. [PMID: 37451343 PMCID: PMC10403733 DOI: 10.1016/j.molmet.2023.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVE Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the μ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.
Collapse
Affiliation(s)
- Okka Scholz
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Elena Huß
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anna Hamacher
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | | | | | - Miguel Sanz
- Taros Chemicals GmbH & Co. KG, D-44227 Dortmund, Germany
| | - Haresh Ajani
- Taros Chemicals GmbH & Co. KG, D-44227 Dortmund, Germany
| | | | | | - Jens Hogeback
- A&M Labor für Analytik und Metabolismusforschung Service GmbH, D-50126 Bergheim, Germany
| | - Anke Unger
- Lead Discovery Center GmbH & Co. KG, D-44227 Dortmund, Germany
| | | | - Michelle Reina do Fundo
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Bedair Dewidar
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany; Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, D-85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Abstract
Dextromethorphan (DXM) was introduced in 1958 as the first non-opioid cough suppressant and is indicated for multiple psychiatric disorders. It has been the most used over-the-counter cough suppressant since its emergence. However, individuals quickly noticed an intoxicating and psychedelic effect if they ingested large doses. DXM's antagonism at N-methyl-d-aspartate receptors (NMDAr) is thought to underly its efficacy in treating acute cough, but supratherapeutic doses mimic the activity of dissociative hallucinogens, such as phencyclidine and ketamine. In this Review we will discuss DXM's synthesis, manufacturing information, drug metabolism, pharmacology, adverse effects, recreational use, abuse potential, and its history and importance in therapy to present DXM as a true classic in chemical neuroscience.
Collapse
Affiliation(s)
- Elliot W McClure
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, Tennessee 37204, United States
| | - R Nathan Daniels
- Department of Pharmaceutical Sciences, Union University College of Pharmacy, Jackson, Tennessee 38305, United States
| |
Collapse
|
7
|
Shimozawa S, Usuda D, Sasaki T, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Hotchi Y, Tokunaga S, Osugi I, Katou R, Ito S, Asako S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Oba J, Nomura T, Sugita M. High doses of dextromethorphan induced shock and convulsions in a 19-year-old female: A case report. World J Clin Cases 2023; 11:3870-3876. [PMID: 37383112 PMCID: PMC10294160 DOI: 10.12998/wjcc.v11.i16.3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Dextromethorphan is a prevalent antitussive agent that can be easily obtained as an over-the-counter medication. There has been a growing number of reported cases of toxicity in recent years. Generally, there are numerous instances of mild symptoms, with only a limited number of reports of severe cases necessitating intensive care. We presented the case of a female who ingested 111 tablets of dextromethorphan, leading to shock and convulsions and requiring intensive care that ultimately saved her life. CASE SUMMARY A 19-year-old female was admitted to our hospital via ambulance, having overdosed on 111 tablets of dextromethorphan (15 mg) obtained through an online importer in a suicide attempt. The patient had a history of drug abuse and multiple self-inflicted injuries. At the time of admission, she exhibited symptoms of shock and altered consciousness. However, upon arrival at the hospital, the patient experienced recurrent generalized clonic convulsions and status epilepticus, necessitating tracheal intubation. The convulsions were determined to have been caused by decreased cerebral perfusion pressure secondary to shock, and noradrenaline was administered as a vasopressor. Gastric lavage and activated charcoal were also administered after intubation. Through systemic management in the intensive care unit, the patient's condition stabilized, and the need for vasopressors ceased. The patient regained consciousness and was extubated. The patient was subsequently transferred to a psychiatric facility, as suicidal ideation persisted. CONCLUSION We report the first case of shock caused by an overdose of dextromethorphan.
Collapse
Affiliation(s)
- Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Toru Sasaki
- Clinical Training Center, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Shungo Tokunaga
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Suguru Asako
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo-city 113-8421, Tokyo, Japan
| | - Jiro Oba
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-city 177-8521, Tokyo, Japan
| |
Collapse
|
8
|
Zaremba M, Serafin P, Kleczkowska P. Antipsychotic Drugs Efficacy in Dextromethorphan-Induced Psychosis. Biomedicines 2023; 11:biomedicines11010123. [PMID: 36672631 PMCID: PMC9855940 DOI: 10.3390/biomedicines11010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Psychosis is known as a broad term of symptoms that cause serious disorganization of behavior, thinking, and perception of reality. One of the medicines that recently gained much attention in terms of its psychotic potential is dextromethorphan (DXM). DXM, a widely used antitussive drug, is a commonly abused drug because of its euphoric, hallucinogenic, and dissociative properties. To date, DXM is a legally marketed cough suppressant that is neither a controlled substance nor a regulated chemical under the Controlled Substances Act. The management of DXM-related psychosis is dependent on the type of psychotic symptoms. Atypical neuroleptics (i.e., olanzapine, risperidone, quetiapine) and typical haloperidol have been used in symptomatic treatment due to their efficacy, especially in positive symptoms (hallucinations and delusions). These agents are also recognized as the preferred option in the symptomatic treatment of DXM-related psychosis due to their better efficacy and safety profile than typical haloperidol in the short-term course. The focus of the present review concerns the current stage of knowledge about DXM psychotic potency as well as the management of DXM-related psychoses with a special emphasis on atypical antipsychotic drugs (i.e., olanzapine, risperidone, quetiapine, and haloperidol).
Collapse
Affiliation(s)
- Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
- Correspondence: ; Tel.: +48-690-888-774
| |
Collapse
|
9
|
Scholz O, Otter S, Welters A, Wörmeyer L, Dolenšek J, Klemen MS, Pohorec V, Eberhard D, Mrugala J, Hamacher A, Koch A, Sanz M, Hoffmann T, Hogeback J, Herebian D, Klöcker N, Piechot A, Mayatepek E, Meissner T, Stožer A, Lammert E. Peripherally active dextromethorphan derivatives lower blood glucose levels by targeting pancreatic islets. Cell Chem Biol 2021; 28:1474-1488.e7. [PMID: 34118188 DOI: 10.1016/j.chembiol.2021.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Dextromethorphan (DXM) acts as cough suppressant via its central action. Cell-protective effects of this drug have been reported in peripheral tissues, making DXM potentially useful for treatment of several common human diseases, such as type 2 diabetes mellitus (T2DM). Pancreatic islets are among the peripheral tissues that positively respond to DXM, and anti-diabetic effects of DXM were observed in two placebo-controlled, randomized clinical trials in humans with T2DM. Since these effects were associated with central side effects, we here developed chemical derivatives of DXM that pass the blood-brain barrier to a significantly lower extent than the original drug. We show that basic nitrogen-containing residues block central adverse events of DXM without reducing its anti-diabetic effects, including the protection of human pancreatic islets from cell death. These results show how to chemically modify DXM, and possibly other morphinans, as to exclude central side effects, while targeting peripheral tissues, such as pancreatic islets.
Collapse
Affiliation(s)
- Okka Scholz
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Silke Otter
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany
| | - Alena Welters
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Laura Wörmeyer
- Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Daniel Eberhard
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jessica Mrugala
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna Hamacher
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Angela Koch
- Institute of Neuro- and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Miguel Sanz
- Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; Taros Chemicals GmbH & Co. KG, 44227 Dortmund, Germany
| | - Torsten Hoffmann
- Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; Taros Chemicals GmbH & Co. KG, 44227 Dortmund, Germany
| | - Jens Hogeback
- A&M Labor für Analytik und Metabolismusforschung Service GmbH, 50126 Bergheim, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nikolaj Klöcker
- Institute of Neuro- and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alexander Piechot
- Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; Taros Chemicals GmbH & Co. KG, 44227 Dortmund, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Eckhard Lammert
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Metabolic Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany; Center of Competence for Innovative Diabetes Therapy (KomIT), German Diabetes Center (DDZ), 40225 Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
10
|
Vearrier D, Grundmann O. Clinical Pharmacology, Toxicity, and Abuse Potential of Opioids. J Clin Pharmacol 2021; 61 Suppl 2:S70-S88. [PMID: 34396552 DOI: 10.1002/jcph.1923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Opioids were the most common drug class resulting in overdose deaths in the United States in 2019. Widespread clinical use of prescription opioids for moderate to severe pain contributed to the ongoing opioid epidemic with the subsequent emergence of fentanyl-laced heroin. More potent analogues of fentanyl and structurally diverse opioid receptor agonists such as AH-7921 and MT-45 are fueling an increasingly diverse illicit opioid supply. Overdose from synthetic opioids with high binding affinities may not respond to a typical naloxone dose, thereby rendering autoinjectors less effective, requiring higher antagonist doses or resulting in a confusing clinical picture for health care providers. Nonscheduled opioid drugs such as loperamide and dextromethorphan are associated with dependence and risk of overdose as easier access makes them attractive to opioid users. Despite a common opioid-mediated pathway, several opioids present with unique pharmacodynamic properties leading to acute toxicity and dependence development. Pharmacokinetic considerations involve half-life of the parent opioid and its metabolites as well as resulting toxicity, as is established for tramadol, codeine, and oxycodone. Pharmacokinetic considerations, toxicities, and treatment approaches for notable opioids are reviewed.
Collapse
Affiliation(s)
- David Vearrier
- Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Waters K. Pharmacologic Similarities and Differences Among Hallucinogens. J Clin Pharmacol 2021; 61 Suppl 2:S100-S113. [PMID: 34396556 DOI: 10.1002/jcph.1917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/22/2021] [Indexed: 12/27/2022]
Abstract
Hallucinogens constitute a unique class of substances that cause changes in the user's thoughts, perceptions, and mood through various mechanisms of action. Although the serotonergic hallucinogens such as lysergic acid diethylamide, psilocybin, and N,N-dimethyltryptamine have been termed the classical hallucinogens, many hallucinogens elicit their actions through other mechanisms such as N-methyl-D-aspartate receptor antagonism, opioid receptor agonism, or inhibition of the reuptake of monoamines including serotonin, norepinephrine, and dopamine. The aim of this article is to compare the pharmacologic similarities and differences among substances within the hallucinogen class and their impact on physical and psychiatric effects. Potential toxicities, including life-threatening and long-term effects, will be reviewed.
Collapse
Affiliation(s)
- Kristin Waters
- School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
Bates MLS, Trujillo KA. Use and abuse of dissociative and psychedelic drugs in adolescence. Pharmacol Biochem Behav 2021; 203:173129. [PMID: 33515586 PMCID: PMC11578551 DOI: 10.1016/j.pbb.2021.173129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022]
Abstract
Adolescence is a period of profound developmental changes, which run the gamut from behavioral and neural to physiological and hormonal. It is also a time at which there is an increased propensity to engage in risk-taking and impulsive behaviors like drug use. This review examines the human and preclinical literature on adolescent drug use and its consequences, with a focus on dissociatives (PCP, ketamine, DXM), classic psychedelics (LSD, psilocybin), and MDMA. It is the case for all the substances reviewed here that very little is known about their effects in adolescent populations. An emerging aspect of the literature is that dissociatives and MDMA produce mixed reinforcing and aversive effects and that the balance between reinforcement and aversion may differ between adolescents and adults, with consequences for drug use and addiction. However, many studies have failed to directly compare adults and adolescents, which precludes definitive conclusions about these consequences. Other important areas that are largely unexplored are sex differences during adolescence and the long-term consequences of adolescent use of these substances. We provide suggestions for future work to address the gaps we identified in the literature. Given the widespread use of these drugs among adolescent users, and the potential for therapeutic use, this work will be crucial to understanding abuse potential and consequences of use in this developmental stage.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychology, California State University Chico, 400 W. First St, Chico, CA 95929, USA.
| | - Keith A Trujillo
- Department of Psychology and Office for Training, Research and Education in the Sciences (OTRES), California State University San Marcos, 333 S. Twin Oaks Valley Rd, San Marcos, CA 92096, USA..
| |
Collapse
|
13
|
Dabbagh R, Aldofyan M, Alzaid W, Alsulimani A, Alshamrani S, Alqahtani S, Abuhaimed A. Prescription and over-the-counter drug misuse among female students at a Saudi university. JOURNAL OF SUBSTANCE USE 2020. [DOI: 10.1080/14659891.2020.1856210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rufaidah Dabbagh
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Wejdan Alzaid
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Samar Alqahtani
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
14
|
Silva AR, Dinis-Oliveira RJ. Pharmacokinetics and pharmacodynamics of dextromethorphan: clinical and forensic aspects. Drug Metab Rev 2020; 52:258-282. [DOI: 10.1080/03602532.2020.1758712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ana Rita Silva
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Sciences, IINFACTS – Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Department of Biological Sciences, Faculty of Pharmacy, Laboratory of Toxicology, UCIBIO, REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Olives TD, Boley SP, LeRoy JM, Stellpflug SJ. Ten Years of Robotripping: Evidence of Tolerance to Dextromethorphan Hydrobromide in a Long-Term User. J Med Toxicol 2019; 15:192-197. [PMID: 30903576 PMCID: PMC6597748 DOI: 10.1007/s13181-019-00706-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Dextromethorphan hydrobromide is widely available as an over-the-counter cough suppressant. A semi-synthetic opioid displaying N-methyl-D-aspartate receptor antagonism, it is commonly abused for recreational purposes. Spuriously elevated serum chloride concentrations are a well-described phenomenon in the setting of dextromethorphan hydrobromide toxicity, but evidence to suggest the development of tolerance is limited to case reports. CASE A 32-year-old male known to chronically ingest dextromethorphan hydrobromide for recreational purposes presented to regional hospitals on 179 occasions over 110 months and was treated for dextromethorphan toxicity on 163/174 (93.7%) of these visits. He reported a subjective need to increase his dosing over time to achieve the same degree of intoxication. Measured serum chloride over this period (n = 217) ranged from 98 to 138 mEq/L (median 115 mEq/L, IQR 110-123 mEq/L). Measured concentrations over the 110-month period progressively rose, with a fitted plot of 111.15 + 0.00232x describing the rise in measured chloride. Though not formally assessed, anion gaps tended to become progressively more negative over the observed period. DISCUSSION We report a patient with persistent dextromethorphan hydrobromide abuse at escalating doses whose mean serum chloride concentration increased, on average, by 0.00232 mEq/L every day over a 110-month period. This case demonstrates progressive spurious hyperchloremia secondary to bromide interference in hospital-based chloride assays, supporting the patient's reported need to dose escalate to the same desired effect. Although this artefactual laboratory finding is a well-documented result of bromide ingestion, it may be useful in identifying patterns of dextromethorphan hydrobromide use that suggest tolerance.
Collapse
Affiliation(s)
- Travis D Olives
- Hennepin Healthcare - Department of Emergency Medicine, 701 South 8th Street, Minneapolis, MN, 55415, USA.
- Minnesota Poison Control System, Minneapolis, MN, USA.
| | - Sean P Boley
- Minnesota Poison Control System, Minneapolis, MN, USA
- United Hospital, Saint Paul, MN, USA
| | - Jenna M LeRoy
- Minnesota Poison Control System, Minneapolis, MN, USA
- Regions Hospital, Saint Paul, MN, USA
| | - Samuel J Stellpflug
- Minnesota Poison Control System, Minneapolis, MN, USA
- Regions Hospital, Saint Paul, MN, USA
| |
Collapse
|
16
|
Caffrey CR, Lank PM. When good times go bad: managing 'legal high' complications in the emergency department. Open Access Emerg Med 2017; 10:9-23. [PMID: 29302196 PMCID: PMC5741979 DOI: 10.2147/oaem.s120120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Patients can use numerous drugs that exist outside of existing regulatory statutes in order to get "legal highs." Legal psychoactive substances represent a challenge to the emergency medicine physician due to the sheer number of available agents, their multiple toxidromes and presentations, their escaping traditional methods of analysis, and the reluctance of patients to divulge their use of these agents. This paper endeavors to cover a wide variety of "legal highs," or uncontrolled psychoactive substances that may have abuse potential and may result in serious toxicity. These agents include not only some novel psychoactive substances aka "designer drugs," but also a wide variety of over-the-counter medications, herbal supplements, and even a household culinary spice. The care of patients in the emergency department who have used "legal high" substances is challenging. Patients may misunderstand the substance they have been exposed to, there are rarely any readily available laboratory confirmatory tests for these substances, and the exact substances being abused may change on a near-daily basis. This review will attempt to group legal agents into expected toxidromes and discuss associated common clinical manifestations and management. A focus on aggressive symptom-based supportive care as well as management of end-organ dysfunction is the mainstay of treatment for these patients in the emergency department.
Collapse
Affiliation(s)
- Charles R Caffrey
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick M Lank
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|