Li J, Zakariah M, Malik A, Ola MS, Syed R, Chaudhary AA, Khan S. Analysis of
Salmonella typhimurium Protein-Targeting in the Nucleus of Host Cells and the Implications in Colon Cancer: An in-silico Approach.
Infect Drug Resist 2020;
13:2433-2442. [PMID:
32765017 PMCID:
PMC7381790 DOI:
10.2147/idr.s258037]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND
Infections of Salmonella typhimurium (S. typhimurium) are major threats to health, threats include diarrhoea, fever, acute intestinal inflammation, and cancer. Nevertheless, little information is available about the involvement of S. typhimurium in colon cancer etiology.
METHODS
The present study was designed to predict nuclear targeting of S. typhimurium proteins in the host cell through computational tools, including nuclear localization signal (NLS) mapper, Balanced Subcellular Localization predictor (BaCeILo), and Hum-mPLoc using next-generation sequencing data.
RESULTS
Several gene expression-associated proteins of S. typhimurium have been predicted to target the host nucleus during intracellular infections. Nuclear targeting of S. typhimurium proteins can lead to competitive interactions between the host and pathogen proteins with similar cellular substrates, and it may have a possible involvement in colon cancer growth. Our results suggested that S. typhimurium releases its proteins within compartments of the host cell, where they act as a component of the host cell proteome. Protein targeting is possibly involved in colon cancer etiology during intracellular bacterial infection.
CONCLUSION
The results of current in-silico study showed the potential involvement of S. typhimurium infection with alteration in normal functioning of host cell which act as possible factor to connect with the growth and development of colon cancer.
Collapse