1
|
Páhi ZG, Szűcs D, Miklós V, Ördög N, Monostori T, Varga J, Kemény L, Veréb Z, Pankotai T. Increased DNA damage of adipose tissue-derived mesenchymal stem cells under inflammatory conditions. Heliyon 2024; 10:e36275. [PMID: 39296022 PMCID: PMC11407982 DOI: 10.1016/j.heliyon.2024.e36275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Cells have evolved various DNA repair mechanisms to prevent DNA damage from building up. Malfunctions during DNA repair can influence cellular homeostasis because they can bring on genomic instability through the improper recognition of DNA damage or dysregulation of the repair process. Maintaining proper DNA repair is also essential for stem cells (SCs), as they provide a differentiated cell population to the living organism. SCs are regularly used in personalized stem cell therapy. Patients must be treated with specific activators to produce these SCs effectively. This report investigated the impact of treating mesenchymal stem cells (MSC) with lipopolysaccharide, tumor necrosis factor, interferon-gamma, polyinosinic acid, interleukin 1 beta, while monitoring their transcription-related response using next-generation sequencing. RNA sequencing revealed robust gene expression changes, including those of specific genes encoding proteins implicated in DNA damage response. Stem cells can effectively repair specific DNA damages; moreover, they fail to undergo senescence or cell death when genetic lesions accumulate. Here, we draw attention to an elevated DNA repair activation following MSC induction, which may be the main reason for the ineffective stem cell transplantation and may also contribute to the genetic drift that can initiate tumor formation.
Collapse
Affiliation(s)
- Zoltán G Páhi
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Diána Szűcs
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Vanda Miklós
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary
- USZ Biobank, University of Szeged, Szeged, Hungary
| | - Nóra Ördög
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Monostori
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - János Varga
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), HCEMM-USZ Skin Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Genome Integrity and DNA Repair Core Group, University of Szeged, Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Massidda MW, Demkov A, Sices A, Lee M, Lee J, Paull TT, Kim J, Baker AB. Mechanical Rejuvenation of Mesenchymal Stem Cells from Aged Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597781. [PMID: 38895474 PMCID: PMC11185588 DOI: 10.1101/2024.06.06.597781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem cells (MSC) are an appealing therapeutic cell type for many diseases. However, patients with poor health or advanced age often have MSCs with poor regenerative properties. A major limiter of MSC therapies is cellular senescence, which is marked by limited proliferation capability, diminished multipotency, and reduced regenerative properties. In this work, we explored the ability of applied mechanical forces to reduce cellular senescence in MSCs. Our studies revealed that mechanical conditioning caused a lasting enhancement in proliferation, overall cell culture expansion potential, multipotency, and a reduction of senescence in MSCs from aged donors. Mechanistic studies suggested that these functional enhancements were mediated by oxidative stress and DNA damage repair signaling with mechanical load altering the expression of proteins of the sirtuin pathway, the DNA damage repair protein ATM, and antioxidant proteins. In addition, our results suggest a biophysical mechanism in which mechanical stretch leads to improved recognition of damaged DNA in the nucleus. Analysis of the cells through RNA-seq and ATAC-seq, demonstrated that mechanical loading alters the cell's genetic landscape to cause broad shifts in transcriptomic patterns that related to senescence. Overall, our results demonstrate that mechanical conditioning can rejuvenate mesenchymal stem cells derived from aged patients and improve their potential as a therapeutic cell type. GRAPHICAL ABSTRACT
Collapse
|
3
|
Printzell L, Reseland JE, Edin NFJ, Ellingsen JE, Tiainen H. Backscatter from therapeutic doses of ionizing irradiation does not impair cell migration on titanium implants in vitro. Clin Oral Investig 2023; 27:5073-5082. [PMID: 37410152 PMCID: PMC10492688 DOI: 10.1007/s00784-023-05128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVE The influence of radiation backscatter from titanium on DNA damage and migration capacity of human osteoblasts (OBs) and mesenchymal stem cells (MSCs) may be critical for the osseointegration of dental implants placed prior to radiotherapy. In order to evaluate effects of radiation backscatter, the immediate DNA damage and migration capacity of OBs and MSCs cultured on titanium or plastic were compared after exposure to ionizing irradiation. MATERIALS AND METHODS Human OBs and MSCs were seeded on machined titanium, moderately rough fluoride-modified titanium, or tissue culture polystyrene, and irradiated with nominal doses of 2, 6, 10, or 14 Gy. Comet assay was performed immediately after irradiation, while a scratch wound healing assay was initiated 24 h post-irradiation. Fluorescent live cell imaging documented the migration. RESULTS DNA damage increased with higher dose and with backscatter from titanium, and MSCs were significantly more affected than OBs. All doses of radiation accelerated the cell migration on plastic, while only the highest dose of 10 Gy inhibited the migration of both cell types on titanium. CONCLUSIONS High doses (10 Gy) of radiation inhibited the migration capacity of both cell types on titanium, whereas lower doses (2 and 6 Gy) did not affect the migration of either OBs or MSCs. CLINICAL RELEVANCE Fractionated doses of 2 Gy/day, as distributed in conventional radiotherapy, appear not to cause severe DNA damage or disturb the migration of OBs or MSCs during osseointegration of dental implants.
Collapse
Affiliation(s)
- Lisa Printzell
- Department of Prosthodontics, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, PO box 1109, 0317, Blindern, Oslo, Norway.
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, Oslo, Norway
| | | | - Jan Eirik Ellingsen
- Department of Prosthodontics, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, PO box 1109, 0317, Blindern, Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty for Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Wright A, Snyder OL, He H, Christenson LK, Fleming S, Weiss ML. Procoagulant Activity of Umbilical Cord-Derived Mesenchymal Stromal Cells' Extracellular Vesicles (MSC-EVs). Int J Mol Sci 2023; 24:ijms24119216. [PMID: 37298168 DOI: 10.3390/ijms24119216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Orman Larry Snyder
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Hong He
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| | - Lane K Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sherry Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
- Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Usupzhanova DY, Astrelina TA, Kobzeva IV, Suchkova YB, Brunchukov VA, Rastorgueva AA, Nikitina VA, Samoilov AS. Evaluation of Changes in Some Functional Properties of Human Mesenchymal Stromal Cells Induced by Low Doses of Ionizing Radiation. Int J Mol Sci 2023; 24:6346. [PMID: 37047317 PMCID: PMC10094729 DOI: 10.3390/ijms24076346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Each person is inevitably exposed to low doses of ionizing radiation (LDIR) throughout their life. The research results of LDIR effects are ambiguous and an accurate assessment of the risks associated with the influence of LDIR is an important task. Mesenchymal stromal cells (MSCs) are the regenerative reserve of an adult organism; because of this, they are a promising model for studying the effects of LDIR. The qualitative and quantitative changes in their characteristics can also be considered promising criteria for assessing the risks of LDIR exposure. The MSCs from human connective gingiva tissue (hG-MSCs) were irradiated at doses of 50, 100, 250, and 1000 mGy by the X-ray unit RUST-M1 (Russia). The cells were cultured continuously for 64 days after irradiation. During the study, we evaluated the secretory profile of hG-MSCs (IL-10, IDO, IL-6, IL-8, VEGF-A) using an ELISA test, the immunophenotype (CD45, CD34, CD90, CD105, CD73, HLA-DR, CD44) using flow cytometry, and the proliferative activity using the xCelligence RTCA cell analyzer at the chosen time points. The results of study have indicated the development of stimulating effects in the early stages of cultivation after irradiation using low doses of X-ray radiation. On the contrary, the effects of the low doses were comparable with the effects of medium doses of X-ray radiation in the long-term periods of cultivation after irradiation and have indicated the inhibition of the functional activity of MSCs.
Collapse
Affiliation(s)
| | - Tatiana A. Astrelina
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Pretreated Mesenchymal Stem Cells and Their Secretome: Enhanced Immunotherapeutic Strategies. Int J Mol Sci 2023; 24:ijms24021277. [PMID: 36674790 PMCID: PMC9864323 DOI: 10.3390/ijms24021277] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) with self-renewing, multilineage differentiation and immunomodulatory properties, have been extensively studied in the field of regenerative medicine and proved to have significant therapeutic potential in many different pathological conditions. The role of MSCs mainly depends on their paracrine components, namely secretome. However, the components of MSC-derived secretome are not constant and are affected by the stimulation MSCs are exposed to. Therefore, the content and composition of secretome can be regulated by the pretreatment of MSCs. We summarize the effects of different pretreatments on MSCs and their secretome, focusing on their immunomodulatory properties, in order to provide new insights for the therapeutic application of MSCs and their secretome in inflammatory immune diseases.
Collapse
|
7
|
Paracrine Senescence of Mesenchymal Stromal Cells Involves Inflammatory Cytokines and the NF-κB Pathway. Cells 2022; 11:cells11203324. [PMID: 36291189 PMCID: PMC9600401 DOI: 10.3390/cells11203324] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 12/28/2022] Open
Abstract
It has been known that senescence-associated secretory phenotype (SASP) triggers senescence of the surrounding normal cells. However, SASP signaling regarding mesenchymal stromal cell aging remains to be fully elucidated. Therefore, the present study aimed to clarify the molecular mechanism of late (passage) MSC-induced paracrine SASP-mediated senescence of early (passage) MSCs during ex vivo expansion. Here, we conducted an extensive characterization of senescence features in bone-marrow (BM)-derived MSCs from healthy human donors. Late MSCs displayed an enlarged senescent-like morphology, induced SASP-related proinflammatory cytokines (IL-1α and IL-8), and reduced clonogenic capacity and osteogenic differentiation when compared to early MSCs. Of note, paracrine effects of SASP-related IL-1α and IL-8 from late MSCs induced cellular senescence of early MSCs via an NF-κB-dependent manner. Moreover, cellular senescence of early MSCs was promoted by the synergistic action of IL-1α and IL-8. However, inhibition of NF-κB by shRNA transfection or using inhibitors in early MSCs blocked early MSCs cellular senescence caused by paracrine SASP of late MSCs. In conclusion, these findings reveal that late MSCs display features of senescence and that, during ex vivo expansion, SASP-related proinflammatory cytokines contribute to activate a cellular senescence program in early MSCs that may ultimately impair their functionality.
Collapse
|
8
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
9
|
Chen CM, Chen YC, Wang JY, Chen CF, Chao KY, Wu PK, Chen WM. A Cryoprotectant-Gel Composite Designed to Preserve Articular Cartilage during Frozen Osteoarticular Autograft Reconstruction for Malignant Bone Tumors: An Animal-Based Study. Cartilage 2022; 13:19476035221109228. [PMID: 35979907 PMCID: PMC9393690 DOI: 10.1177/19476035221109228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We designed a highly adhesive cryoprotectant-gel composite (CGC), based on regular liquid-form cryoprotectant base (CB), aiming to protect cartilage tissue during frozen osteoarticular autograft reconstruction for high-grade sarcoma around the joint. This study aimed to evaluate its effectiveness in rat and porcine distal femur models. DESIGN Fresh articular cartilage samples harvested from distal rat and porcine femurs were divided into 4 test groups: untreated control group, liquid nitrogen (LN) freezing group, LN freezing group pretreated with CB (CB group), and LN freezing group pretreated with CGC (CGC group). Microscopic and macroscopic evaluation of cartilage condition, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, and apoptotic protein analysis of chondrocytes were performed to confirm our results. RESULTS In the rat model, CGC could prevent articular cartilage from roughness and preserve more proteoglycans when compared with the LN freezing and CB groups. Western blot analysis showed CGC could prevent cartilage from LN-induced apoptosis supported by caspase-3/8 apoptotic signaling cascade. Macroscopically, we observed CGC could reduce both articular clefting and loss of articular luminance after freezing in the porcine model. In both models, CGC could reduce articular chondrocytes from degeneration. Fewer TUNEL-positive apoptotic and more viable chondrocytes in cartilage tissue were observed in the CGC group in our animal models. CONCLUSION Our study proved that CGC could effectively prevent cartilage surface and chondrocytes from cryoinjury after LN freezing. Freezing articular cartilage surrounded with high concentration of CGC can be a better alternative to preserve articular cartilage during limb salvage surgery for malignant bone tumor.
Collapse
Affiliation(s)
- Chao-Ming Chen
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan,Institute of Clinical Medicine, School
of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Orthopaedic, School of
Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Chun Chen
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Jir-You Wang
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan,Institute of Traditional Medicine,
School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan,Department of Orthopaedic, School of
Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Kuang-Yu Chao
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan,Department of Orthopaedic, School of
Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Po-Kuei Wu, Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road,
Taipei City 112, Taiwan.
| | - Wei-Ming Chen
- Department of Orthopaedic &
Traumatology, Taipei Veterans General Hospital, Taipei City, Taiwan,Therapeutical and Research Center of
Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City, Taiwan,Department of Orthopaedic, School of
Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, Zhao Z, Li L, Li B. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:356-371. [PMID: 35485439 PMCID: PMC9052415 DOI: 10.1093/stcltm/szac004] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Bo Li
- Corresponding author: Bo Li, DDS, PhD, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, People’s Republic of China.
| |
Collapse
|
11
|
Banerjee M, Al-Eryani L, Srivastava S, Rai SN, Pan J, Kalbfleisch TS, States JC. Delineating the Effects of Passaging and Exposure in a Longitudinal Study of Arsenic-Induced Squamous Cell Carcinoma in a HaCaT Cell Line Model. Toxicol Sci 2021; 185:184-196. [PMID: 34730829 DOI: 10.1093/toxsci/kfab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19 and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs. 19 weeks and 19 vs. 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < 0.05; log2(Fold Change)>I1I] and 2826-4079 mRNA [p < 0.001; log2(Fold Change)>I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared to unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line based longitudinal chronic exposure studies to follow for optimal efficacy.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Sudhir Srivastava
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, India New Delhi, 110012
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Department of Bioinformatics and Biostatistics, University of Louisville, USA Louisville, KY
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, USA Louisville, KY
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| |
Collapse
|
12
|
Atkinson SP. A preview of selected articles. STEM CELLS (DAYTON, OHIO) 2021; 38:1051-1054. [PMID: 32853480 DOI: 10.1002/stem.3262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
|
13
|
Ahn H, Lee SY, Jung WJ, Lee KH. Alopecia treatment using minimally manipulated human umbilical cord-derived mesenchymal stem cells: Three case reports and review of literature. World J Clin Cases 2021; 9:3741-3751. [PMID: 34046478 PMCID: PMC8130094 DOI: 10.12998/wjcc.v9.i15.3741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alopecia areata (AA) is a common autoimmune disease characterized by hair loss. AA appears in extensive forms, such as progressive and diffusing hair loss (diffuse AA), a total loss of scalp hair (alopecia totalis), and complete loss of hair over the entire body (alopecia universalis). Recently, mesenchymal stem cells (MSCs) have been identified as a therapeutic alternative for autoimmune diseases. For this reason, preclinical and case studies of AA and related diseases using MSCs have been conducted.
CASE SUMMARY Case 1: A 55-year-old woman suffered from AA in two areas of the scalp. She was given 15 rounds of minimally manipulated umbilical cord-MSCs (MM-UC-MSCs) over 6 mo. The AA gradually improved 3 mo after the first round. The patient was cured, and AA did not recur. Case 2: A 30-year-old woman, with history of local steroid hormone injections, suffered from AA in one area on the scalp. She was given two rounds of MM-UC-MSCs over 1 mo. The AA immediately improved after the first round. The patient was cured, and AA did not recur. Case 3: A 20-year-old woman, who was diagnosed with alopecia universalis at the age of 12, was given 14 rounds of MM-UC-MSCs over 12 mo. Her hair began to grow about 3 mo after the first round. The patient was cured, and alopecia universalis did not recur.
CONCLUSION MM-UC-MSC transplantation potentially treats patients who suffer from AA and related diseases.
Collapse
Affiliation(s)
- Hyunjun Ahn
- bio Beauty&Health Company (bBHC) - Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
- Department of Functional Genomics, University of Science and Technology KRIBB School, Deajeon 34113, South Korea
| | - Sang Yeon Lee
- bio Beauty&Health Company (bBHC) - Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| | - Won Ju Jung
- 97.7 Beauty&Health (B&H) Clinics, Seoul 04420, South Korea
| | - Kye-Ho Lee
- bio Beauty&Health Company (bBHC) - Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| |
Collapse
|
14
|
Ho CT, Wu MH, Chen MJ, Lin SP, Yen YT, Hung SC. Combination of Mesenchymal Stem Cell-Delivered Oncolytic Virus with Prodrug Activation Increases Efficacy and Safety of Colorectal Cancer Therapy. Biomedicines 2021; 9:548. [PMID: 34068264 PMCID: PMC8153168 DOI: 10.3390/biomedicines9050548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although oncolytic viruses are currently being evaluated for cancer treatment in clinical trials, systemic administration is hindered by many factors that prevent them from reaching the tumor cells. When administered systemically, mesenchymal stem cells (MSCs) target tumors, and therefore constitute good cell carriers for oncolytic viruses. MSCs were primed with trichostatin A under hypoxia, which upregulated the expression of CXCR4, a chemokine receptor involved in tumor tropism, and coxsackievirus and adenovirus receptor that plays an important role in adenoviral infection. After priming, MSCs were loaded with conditionally replicative adenovirus that exhibits limited proliferation in cells with a functional p53 pathway and encodes Escherichia coli nitroreductase (NTR) enzymes (CRAdNTR) for targeting tumor cells. Primed MSCs increased tumor tropism and susceptibility to adenoviral infection, and successfully protected CRAdNTR from neutralization by anti-adenovirus antibodies both in vitro and in vivo, and specifically targeted p53-deficient colorectal tumors when infused intravenously. Analyses of deproteinized tissues by UPLC-MS/QTOF revealed that these MSCs converted the co-administered prodrug CB1954 into cytotoxic metabolites, such as 4-hydroxylamine and 2-amine, inducing oncolysis and tumor growth inhibition without being toxic for the host vital organs. This study shows that the combination of oncolytic viruses delivered by MSCs with the activation of prodrugs is a new cancer treatment strategy that provides a new approach for the development of oncolytic viral therapy for various cancers.
Collapse
Affiliation(s)
- Chun-Te Ho
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan; (C.-T.H.); (Y.-T.Y.)
- Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung 404, Taiwan
| | - Mei-Hsuan Wu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (M.-H.W.); (S.-P.L.)
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital & Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan;
| | - Shih-Pei Lin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (M.-H.W.); (S.-P.L.)
| | - Yu-Ting Yen
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan; (C.-T.H.); (Y.-T.Y.)
- Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan; (C.-T.H.); (Y.-T.Y.)
- Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
15
|
Sjakste N, Riekstiņa U. DNA damage and repair in differentiation of stem cells and cells of connective cell lineages: A trigger or a complication? Eur J Histochem 2021; 65. [PMID: 33942598 PMCID: PMC8116775 DOI: 10.4081/ejh.2021.3236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
The review summarizes literature data on the role of DNA breaks and DNA repair in the differentiation of pluripotent stem cells (PSC) and connective cell lineages. PSC, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), are rapidly dividing cells with highly active DNA damage response (DDR) mechanisms to ensure the stability and integrity of the DNA. In PSCs, the most common DDR mechanism is error-free homologous recombination (HR) that is primarily active during the S phase of the cell cycle, whereas in quiescent, slow-dividing or non-dividing tissue progenitors and terminally differentiated cells, errorprone non-homologous end joining (NHEJ) mechanism of the double-strand break (DSB) repair is dominating. Thus, it seems that reprogramming and differentiation induce DNA strand breaks in stem cells which itself may trigger the differentiation process. Somatic cell reprogramming to iPSCs is preceded by a transient increase of the DSBs induced presumably by the caspase-dependent DNase or reactive oxygen species. In general, pluripotent stem cells possess stronger DNA repair systems compared to differentiated cells. Nonetheless, during a prolonged cell culture propagation, DNA breaks can accumulate due to the DNA polymerase stalling. Consequently, the DNA damage might trigger the differentiation of stem cells or replicative senescence of somatic cells. The differentiation process per se is often accompanied by a decrease in the DNA repair capacity. Thus, the differentiation might be triggered by DNA breaks, alternatively, the breaks can be a consequence of the decay in the DNA repair capacity of differentiated cells.
Collapse
|
16
|
Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC Secretome: A Hydrogel Focused Approach. Adv Healthc Mater 2021; 10:e2001948. [PMID: 33594836 PMCID: PMC8035320 DOI: 10.1002/adhm.202001948] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic benefits of exogenously delivered mesenchymal stromal/stem cells (MSCs) have been largely attributed to their secretory properties. However, clinical translation of MSC-based therapies is hindered due to loss of MSC regenerative properties during large-scale expansion and low survival/retention post-delivery. These limitations might be overcome by designing hydrogel culture platforms to modulate the MSC microenvironment. Hydrogel systems could be engineered to i) promote MSC proliferation and maintain regenerative properties (i.e., stemness and secretion) during ex vivo expansion, ii) improve MSC survival, retention, and engraftment in vivo, and/or iii) direct the MSC secretory profile using tailored biochemical and biophysical cues. Herein, it is reviewed how hydrogel material properties (i.e., matrix modulus, viscoelasticity, dimensionality, cell adhesion, and porosity) influence MSC secretion, mediated through cell-matrix and cell-cell interactions. In addition, it is highlighted how biochemical cues (i.e., small molecules, peptides, and proteins) can improve and direct the MSC secretory profile. Last, the authors' perspective is provided on future work toward the understanding of how microenvironmental cues influence the MSC secretome, and designing the next generation of biomaterials, with optimized biophysical and biochemical cues, to direct the MSC secretory profile for improved clinical translation outcomes.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Varsha V Rao
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado-Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| |
Collapse
|
17
|
Wang Q, Li J, Wang S, Deng Q, Wang K, Dai X, An Y, Dong G, Ke W, Chen F, Liu L, Yang H, Du Y, Zhao W, Shang Z. Single-cell transcriptome profiling reveals molecular heterogeneity in human umbilical cord tissue and culture-expanded mesenchymal stem cells. FEBS J 2021; 288:5311-5330. [PMID: 33763993 DOI: 10.1111/febs.15834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Human umbilical cord-derived mesenchymal stem/stromal cells (UMSCs) demonstrate great therapeutic potential in regenerative medicine. The use of UMSCs for clinical applications requires high quantity and good quality of cells usually by in vitro expansion. However, the heterogeneity and the characteristics of cultured UMSCs and the cognate human umbilical cord tissue at single-cell resolution remain poorly defined. In this study, we created a single-cell transcriptome profile of human umbilical cord tissue and the cognate culture-expanded UMSCs. Based on the inferred characteristics of cell clusters and trajectory analysis, we identified three subgroups in culture-expanded UMSCs and putative novel transcription factors (TFs) in regulating UMSC state transition. Further, putative ligand-receptor interaction analysis demonstrated that cellular interactions most frequently occurred in epithelial-like cells with other cell groups in umbilical cord tissue. Moreover, we dissected the transcriptomic differences of in vitro and in vivo subgroups and inferred the telomere-related molecules and pathways that might be activated in UMSCs for cell expansion in vitro. Our study provides a comprehensive and integrative study of the transcriptomics of human umbilical cord tissue and their cognate-cultured counterparts, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of UMSCs-based cell therapy.
Collapse
Affiliation(s)
- Quanlei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China
| | - Jinlu Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Shengpeng Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Kuixing Wang
- BGI-Shenzhen, China.,Shenzhen BGI Cell Technology Co., Ltd, China
| | - Xi Dai
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | | | - Guoyi Dong
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Weilin Ke
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, China
| | - Fang Chen
- BGI-Shenzhen, China.,MGI, BGI-Shenzhen, China
| | | | - Huanming Yang
- BGI-Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Weihua Zhao
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, China
| | - Zhouchun Shang
- BGI-Shenzhen, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China.,MGI, BGI-Shenzhen, China.,BGI College, Northwest University, Xi'an, China
| |
Collapse
|
18
|
NAD +/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun Biol 2020; 3:774. [PMID: 33319867 PMCID: PMC7738682 DOI: 10.1038/s42003-020-01514-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) promote endogenous tissue regeneration and have become a promising candidate for cell therapy. However, in vitro culture expansion of hMSCs induces a rapid decline of stem cell properties through replicative senescence. Here, we characterize metabolic profiles of hMSCs during expansion. We show that alterations of cellular nicotinamide adenine dinucleotide (NAD + /NADH) redox balance and activity of the Sirtuin (Sirt) family enzymes regulate cellular senescence of hMSCs. Treatment with NAD + precursor nicotinamide increases the intracellular NAD + level and re-balances the NAD + /NADH ratio, with enhanced Sirt-1 activity in hMSCs at high passage, partially restores mitochondrial fitness and rejuvenates senescent hMSCs. By contrast, human fibroblasts exhibit limited senescence as their cellular NAD + /NADH balance is comparatively stable during expansion. These results indicate a potential metabolic and redox connection to replicative senescence in adult stem cells and identify NAD + as a metabolic regulator that distinguishes stem cells from mature cells. This study also suggests potential strategies to maintain cellular homeostasis of hMSCs in clinical applications. Yuan et al. characterise metabolic profiles of human mesenchymal stem cells (hMSCs) during cell expansion in culture. They find that late passage hMSCs exhibit a NAD + /NADH redox cycle imbalance and that adding NAD + precursor nicotinamide restores mitochondrial fitness and cellular homeostasis in senescent hMSCs indicating a possible route to preserve hMSC homeostasis for therapeutic use.
Collapse
|
19
|
de Freitas Siqueira Silva ERD, Neto NMA, de Oliveira Bezerra D, de Moura Dantas SMM, dos Santos Silva L, da Silva AA, de Moura CRC, Júnior ALG, Braz DC, Costa JRF, de Carvalho Leite YK, de Carvalho MAM. Renal Progenitor Cells Have Higher Genetic Stability and Lower Oxidative Stress than Mesenchymal Stem Cells during In Vitro Expansion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6470574. [PMID: 32695258 PMCID: PMC7368932 DOI: 10.1155/2020/6470574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/09/2023]
Abstract
In vitro senescence of multipotent cells has been commonly associated with DNA damage induced by oxidative stress. These changes may vary according to the sources of production and the studied lineages, which raises questions about the effect of growing time on genetic stability. This study is aimed at evaluating the evolution of genetic stability, viability, and oxidative stress of bone marrow mesenchymal stem cells (MSCBMsu) and renal progenitor cells of the renal cortex (RPCsu) of swine (Sus scrofa domesticus) in culture passages. P2, P5, and P9 were used for MSCBMsu and P1, P2, and P3 for RPCsu obtained by thawing. The experimental groups were submitted to MTT, apoptosis and necrosis assays, comet test, and reactive substance measurements of thiobarbituric acid (TBARS), nitrite, reduced glutathione (GSH), and catalase. The MTT test curve showed a mean viability of 1.14 ± 0.62 and 1.12 ± 0.54, respectively, for MSCBMsu and RPCsu. The percentages of MSCBMsu and RPCsu were presented, respectively, for apoptosis, an irregular and descending behavior, and necrosis, ascending and irregular. The DNA damage index showed higher intensity among the MSCBMsu in the P5 and P9 passages (p < 0.05). In the TBARS evaluation, there was variation among the lines of RPCsu and MSCBMsu, presenting the last most significant variations (p < 0.05). In the nitrite values, we identified only among the lines, in the passages P1 and P2, with the highest averages displayed by the MSCBMsu lineage (p < 0.05). The measurement of antioxidant system activity showed high standards, identifying differences only for GSH values, in the RPCsu lineage, in P3 (p < 0.05). This study suggests that the maintenance of cell culture in the long term induces lower regulation of oxidative stress, and RPCsu presents higher genetic stability and lower oxidative stress than MSCBMsu during in vitro expansion.
Collapse
Affiliation(s)
| | - Napoleão Martins Argôlo Neto
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Center for Agrarian Sciences, Federal University of Piauí, Brazil
| | | | | | - Lucilene dos Santos Silva
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Center for Agrarian Sciences, Federal University of Piauí, Brazil
| | - Avelar Alves da Silva
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Center for Agrarian Sciences, Federal University of Piauí, Brazil
| | - Charlys Rhands Coelho de Moura
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Center for Agrarian Sciences, Federal University of Piauí, Brazil
| | | | | | | | - Yulla Klinger de Carvalho Leite
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Center for Agrarian Sciences, Federal University of Piauí, Brazil
| | - Maria Acelina Martins de Carvalho
- Integrated Nucleus of Morphology and Stem Cell Research (NUPCelt), Center for Agrarian Sciences, Federal University of Piauí, Brazil
| |
Collapse
|
20
|
Yao L, Yu F, Xu Y, Wang Y, Zuo Y, Wang C, Ye L. DNA damage response manages cell cycle restriction of senile multipotent mesenchymal stromal cells. Mol Biol Rep 2019; 47:809-818. [PMID: 31664596 DOI: 10.1007/s11033-019-05150-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023]
Abstract
Multipotent mesenchymal stromal cells (MMSCs) are promising to treat a variety of traumatic and degenerative diseases. However, in vitro-passage aging induces cell cycle arrest and a series of genetic and biological changes, which greatly limits ex vivo cell number expansion and further clinical application of MMSCs. In most cases, DNA damage and DNA damage response (DDR) act as the main cause and executor of cellular senescence respectively. Mechanistically, DNA damage signals induce cell cycle arrest and DNA damage repair via DDR. If the DNA damage is indelible, MMSCs would entry into a permanent cell cycle arrest. It should be noted that apart from DDR signaling, certain proliferation or metabolism pathways are also occupied in DNA damage related cell cycle arrest. New findings of these aspects will also be summarized in this study. In summary, we aim to provide a comprehensive review of DDR associated cell cycle regulation and other major molecular signaling in the senescence of MMSCs. Above knowledge could contribute to improve the limited capacity of in vitro expansion of MMSCs, and then promote their clinical applications.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yining Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
22
|
Spiegel JL, Hambrecht M, Kohlbauer V, Haubner F, Ihler F, Canis M, Schilling AF, Böker KO, Dressel R, Streckfuss-Bömeke K, Jakob M. Radiation-induced sensitivity of tissue-resident mesenchymal stem cells in the head and neck region. Head Neck 2019; 41:2892-2903. [PMID: 31017352 DOI: 10.1002/hed.25768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue-resident mesenchymal stem cells (MSCs) possess the ability to migrate to areas of inflammation and promote the regeneration of damaged tissue. However, it remains unclear how radiation influences this capacity of MSC in the head and neck region. METHODS Two types of MSCs of the head and neck region (mucosa [mMSC] and parotid gland [pMSC]) were isolated, cultured and exposed to single radiation dosages of 2 Gy/day up to 10 days. Effects on morphology, colony forming ability, apoptosis, chemokine receptor expression, cytokine secretion, and cell migration were analyzed. RESULTS Although MSC preserved MSC-specific regenerative abilities and immunomodulatory properties following irradiation in our in vitro model, we found a deleterious impact on colony forming ability, especially in pMSC. CONCLUSIONS MSC exhibited robustness and activation upon radiation for the support of tissue regeneration, but lost their potential to replicate, thus possibly leading to depletion of the local MSC-pool after irradiation.
Collapse
Affiliation(s)
- Jennifer L Spiegel
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Mario Hambrecht
- Department of Otorhinolaryngology, Universitaetsmedizin Goettingen, University Medical Center Goettingen, Goettingen, Germany
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany.,German Center for Vertigo and Balance Disorders, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kai O Böker
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| |
Collapse
|
23
|
Noverina R, Widowati W, Ayuningtyas W, Kurniawan D, Afifah E, Laksmitawati DR, Rinendyaputri R, Rilianawati R, Faried A, Bachtiar I, Wirakusumah FF. Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs). CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Nanog Signaling Mediates Radioresistance in ALDH-Positive Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20051151. [PMID: 30845764 PMCID: PMC6429380 DOI: 10.3390/ijms20051151] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, cancer stem cells (CSCs) have been identified as the major cause of both chemotherapy and radiotherapy resistance. Evidence from experimental studies applying both in vitro and in vivo preclinical models suggests that CSCs survive after conventional therapy protocols. Several mechanisms are proposed to be involved in CSC resistance to radiotherapy. Among them, stimulated DNA double-strand break (DSB) repair capacity in association with aldehyde dehydrogenase (ALDH) activity seems to be the most prominent mechanism. However, thus far, the pathway through which ALDH activity stimulates DSB repair is not known. Therefore, in the present study, we investigated the underlying signaling pathway by which ALDH activity stimulates DSB repair and can lead to radioresistance of breast cancer cell lines in vitro. When compared with ALDH-negative cells, ALDH-positive cells presented significantly enhanced cell survival after radiation exposure. This enhanced cell survival was associated with stimulated Nanog, BMI1 and Notch1 protein expression, as well as stimulated Akt activity. By applying overexpression and knockdown approaches, we clearly demonstrated that Nanog expression is associated with enhanced ALDH activity and cellular radioresistance, as well as stimulated DSB repair. Akt and Notch1 targeting abrogated the Nanog-mediated radioresistance and stimulated ALDH activity. Overall, we demonstrate that Nanog signaling induces tumor cell radioresistance and stimulates ALDH activity, most likely through activation of the Notch1 and Akt pathways.
Collapse
|
25
|
Rao VV, Vu MK, Ma H, Killaars AR, Anseth KS. Rescuing mesenchymal stem cell regenerative properties on hydrogel substrates post serial expansion. Bioeng Transl Med 2019; 4:51-60. [PMID: 30680318 PMCID: PMC6336661 DOI: 10.1002/btm2.10104] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
The use of human mesenchymal stem/stromal cells (hMSCs) in most clinical trials requires millions of cells/kg, necessitating ex vivo expansion typically on stiff substrates (tissue culture polystyrene [TCPS]), which induces osteogenesis and replicative senescence. Here, we quantified how serial expansion on TCPS influences proliferation, expression of hMSC-specific surface markers, mechanosensing, and secretome. Results show decreased proliferation and surface marker expression after five passages (P5) and decreased mechanosensing ability and cytokine production at later passages (P11-P12). Next, we investigated the capacity of poly(ethylene glycol) hydrogel matrices (E ~ 1 kPa) to rescue hMSC regenerative properties. Hydrogels reversed the reduction in cell surface marker expression observed at P5 on TCPS and increased secretion of cytokines for P11 hMSCs. Collectively, these results show that TCPS expansion significantly changes functional properties of hMSCs. However, some changes can be rescued by using hydrogels, suggesting that tailoring material properties could improve in vitro expansion methods.
Collapse
Affiliation(s)
- Varsha V. Rao
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| | - Michael K. Vu
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| | - Hao Ma
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| | - Anouk R. Killaars
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
- Dept. of Materials Science and EngineeringUniversity of ColoradoBoulderCO, 80309
| | - Kristi S. Anseth
- Dept. of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO, 80303
- BioFrontiers InstituteUniversity of ColoradoBoulderCO, 80303
| |
Collapse
|
26
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
27
|
Boetefuer EL, Lake RJ, Dreval K, Fan HY. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin. J Biol Chem 2018; 293:17863-17874. [PMID: 30266807 DOI: 10.1074/jbc.ra118.004548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Cockayne syndrome protein B (CSB) is an ATP-dependent chromatin remodeler that relieves oxidative stress by regulating DNA repair and transcription. CSB is proposed to participate in base-excision repair (BER), the primary pathway for repairing oxidative DNA damage, but exactly how CSB participates in this process is unknown. It is also unclear whether CSB contributes to other repair pathways during oxidative stress. Here, using a patient-derived CS1AN-sv cell line, we examined how CSB is targeted to chromatin in response to menadione-induced oxidative stress, both globally and locus-specifically. We found that menadione-induced, global CSB-chromatin association does not require CSB's ATPase activity and is, therefore, mechanistically distinct from UV-induced CSB-chromatin association. Importantly, poly(ADP-ribose) polymerase 1 (PARP1) enhanced the kinetics of global menadione-induced CSB-chromatin association. We found that the major BER enzymes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), do not influence this association. Additionally, the level of γ-H2A histone family member X (γ-H2AX), a marker for dsDNA breaks, was not increased in menadione-treated cells. Therefore, our results support a model whereby PARP1 localizes to ssDNA breaks and recruits CSB to participate in DNA repair. Furthermore, this global CSB-chromatin association occurred independently of RNA polymerase II-mediated transcription elongation. However, unlike global CSB-chromatin association, both PARP1 knockdown and inhibition of transcription elongation interfered with menadione-induced CSB recruitment to specific genomic regions. This observation supports the hypothesis that CSB is also targeted to specific genomic loci to participate in transcriptional regulation in response to oxidative stress.
Collapse
Affiliation(s)
- Erica L Boetefuer
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert J Lake
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131
| | - Kostiantyn Dreval
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131
| | - Hua-Ying Fan
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics, and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131.
| |
Collapse
|
28
|
Agostini F, Rossi FM, Aldinucci D, Battiston M, Lombardi E, Zanolin S, Massarut S, Parodi PC, Da Ponte A, Tessitori G, Pivetta B, Durante C, Mazzucato M. Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno-free media. Stem Cell Res Ther 2018; 9:130. [PMID: 29751821 PMCID: PMC5948766 DOI: 10.1186/s13287-018-0886-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023] Open
Abstract
Background The stromal vascular fraction (SVF) derived from adipose tissue contains adipose-derived stromal/stem cells (ASC) and can be used for regenerative applications. Thus, a validated protocol for SVF isolation, freezing, and thawing is required to manage product administration. To comply with Good Manufacturing Practice (GMP), fetal bovine serum (FBS), used to expand ASC in vitro, could be replaced by growth factors from platelet concentrates. Methods Throughout each protocol, GMP-compliant reagents and devices were used. SVF cells were isolated from lipoaspirates by a standardized enzymatic protocol. Cells were cryopreserved in solutions containing different albumin or serum and dimethylsulfoxide (DMSO) concentrations. Before and after cryopreservation, we analyzed: cell viability (by Trypan blue); immunophenotype (by flow cytometry); colony-forming unit-fibroblast (CFU-F) formation; and differentiation potential. ASC, seeded at different densities, were expanded in presence of 10% FBS or 5% supernatant rich in growth factors (SRGF) from platelets. The differentiation potential and cell transformation grade were tested in expanded ASC. Results We demonstrated that SVF can be obtained with a consistent yield (about 185 × 103 cells/ml lipoaspirate) and viability (about 82%). Lipoaspirate manipulation after overnight storage at +4 °C reduced cell viability (−11.6%). The relative abundance of ASC (CD34+CD45−CD31–) and endothelial precursors (CD34+CD45−CD31+) in the SVF product was about 59% and 42%, respectively. A period of 2 months cryostorage in autologous serum with added DMSO minimally affected post-thaw SVF cell viability as well as clonogenic and differentiation potentials. Viability was negatively affected when SVF was frozen at a cell concentration below 1.3 × 106 cells/ml. Cell viability was not significantly affected after a freezing period of 1 year. Independent of seeding density, ASC cultured in 5% SRGF exhibited higher growth rates when compared with 10% FBS. ASC expanded in both media showed unaltered identity (by flow cytometry) and were exempt from genetic lesions. Both 5% SRGF- and 10% FBS-expanded ASC efficiently differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions This paper reports a GMP-compliant approach for freezing SVF cells isolated from adipose tissue by a standardized protocol. Moreover, an ASC expansion method in controlled culture conditions and without involvement of animal-derived additives was reported.
Collapse
Affiliation(s)
| | - Francesca Maria Rossi
- Clinical-Experimental Onco-Hematology Unit, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Donatella Aldinucci
- Molecular Oncology Unit, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Monica Battiston
- Stem Cell Unit, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | | | - Stefania Zanolin
- Stem Cell Unit, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Samuele Massarut
- Breast Surgery Unit; CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Pier Camillo Parodi
- Department of Plastic and Reconstructive Surgery, University of Udine, Udine, Italy
| | | | - Giovanni Tessitori
- Cytogenetic Unit, AAS 5 Friuli Occidentale, "S. Maria degli Angeli" Hospital, Pordenone, Italy
| | - Barbara Pivetta
- Cytogenetic Unit, AAS 5 Friuli Occidentale, "S. Maria degli Angeli" Hospital, Pordenone, Italy
| | - Cristina Durante
- Stem Cell Unit, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Mario Mazzucato
- Stem Cell Unit, CRO Aviano National Cancer Institute, Aviano, PN, Italy.
| |
Collapse
|
29
|
Rühle A, Xia O, Perez RL, Trinh T, Richter W, Sarnowska A, Wuchter P, Debus J, Saffrich R, Huber PE, Nicolay NH. The Radiation Resistance of Human Multipotent Mesenchymal Stromal Cells Is Independent of Their Tissue of Origin. Int J Radiat Oncol Biol Phys 2018; 100:1259-1269. [PMID: 29452769 DOI: 10.1016/j.ijrobp.2018.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/10/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Human mesenchymal stromal cells (MSCs) may aid the regeneration of ionizing radiation (IR)-induced tissue damage. They can be harvested from different tissues for clinical purposes; however, the role of the tissue source on the radiation response of human MSCs remains unknown. METHODS AND MATERIALS Human MSCs were isolated from adipose tissue, bone marrow, and umbilical cord, and cellular survival, proliferation, and apoptosis were measured after irradiation. The influence of IR on the defining functions of MSCs was assessed, and cell morphology, surface marker expression, and the differentiation potential were examined. Western blot analyses were performed to assess the activation of DNA damage signaling and repair pathways. RESULTS MSCs from adipose tissue, bone marrow, and umbilical cord exhibited a relative radioresistance independent of their tissue of origin. Defining properties including cellular adhesion and surface marker expression were preserved, and irradiated MSCs maintained their potential for multilineage differentiation irrespective of their tissue source. Analysis of activated DNA damage recognition and repair pathways demonstrated an efficient repair of IR-induced DNA double-strand breaks in MSCs from different tissues, thereby influencing the induction of apoptosis. CONCLUSIONS These data show for the first time that MSCs are resistant to IR and largely preserve their defining functions after irradiation irrespective of their tissue of origin. Efficient repair of IR-induced DNA double-strand breaks and consecutive reduction of apoptosis induction may contribute to the tissue-independent radiation resistance of MSCs.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Xia
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Sarnowska
- Translative Platform for Regenerative Medicine, Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Donor Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Saffrich
- Institute of Transfusion Medicine and Immunology, German Red Cross Donor Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany; Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|