Review
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Methodol. Jun 26, 2017; 7(2): 55-67
Published online Jun 26, 2017. doi: 10.5662/wjm.v7.i2.55
Targeted temperature management in neurological intensive care unit
Sombat Muengtaweepongsa, Winchana Srivilaithon
Sombat Muengtaweepongsa, Division of Neurology, Department of Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
Winchana Srivilaithon, Department of Emergency Medicine, Thammasat University Hospital, Pathum Thani 12120, Thailand
Author contributions: Muengtaweepongsa S contributed to conception and design of the work, data collection, drafing the article, critical revision of the article, final approval; Srivilaithon W contributed to data collection, drafing the article.
Conflict-of-interest statement: No conflict of interest.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Sombat Muengtaweepongsa, MD, Division of Neurology, Department of Medicine, Faculty of Medicine, Thammasat University, Rangsit Campus, Patholyothin Rd., Pathum Thani 12120, Thailand. musombat@tu.ac.th
Telephone: +66-29-269794 Fax: +66-29-269793
Received: January 30, 2017
Peer-review started: February 12, 2017
First decision: March 28, 2017
Revised: April 12, 2017
Accepted: May 18, 2017
Article in press: May 19, 2017
Published online: June 26, 2017
Abstract

Targeted temperature management (TTM) shows the most promising neuroprotective therapy against hypoxic/ischemic encephalopathy (HIE). In addition, TTM is also useful for treatment of elevated intracranial pressure (ICP). HIE and elevated ICP are common catastrophic conditions in patients admitted in Neurologic intensive care unit (ICU). The most common cause of HIE is cardiac arrest. Randomized control trials demonstrate clinical benefits of TTM in patients with post-cardiac arrest. Although clinical benefit of ICP control by TTM in some specific critical condition, for an example in traumatic brain injury, is still controversial, efficacy of ICP control by TTM is confirmed by both in vivo and in vitro studies. Several methods of TTM have been reported in the literature. TTM can apply to various clinical conditions associated with hypoxic/ischemic brain injury and elevated ICP in Neurologic ICU.

Keywords: Targeted temperature management, Neuroprotective therapy, Ischemic/hypoxic encephalopathy, Intracranial pressure, Surface cooling, Endovascular cooling

Core tip: Two main purposes of targeted temperature management (TTM) in patients admitted in neurological intensive care unit are neuroprotective therapy and intracranial pressure (ICP) control. TTM is the most potent neuroprotective treatment due to its numerous methods of protection against ischemic/hypoxic injury. TTM provides capable ICP reductive action. Two most popular methods using in clinical practice and clinical trials are invasive endovascular technique and non-invasive surface cooling. Fast induction, smooth maintenance and slow rewarming are the important steps to achieve ideal TTM.