1
|
Wu F, Chen G, Hu R, Liu P, Lou J, Zhao W, He Z, Sha S, Zheng Y. AAVR Expression is Essential for AAV Vector Transduction in Sensory Hair Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408873. [PMID: 39776318 DOI: 10.1002/advs.202408873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults. In this study, we demonstrated that expression of a key AAV receptor (AAVR, Kiaa0319l, or Au040320) in OHCs and vestibular hair cells decreases significantly in mature mice and AAV particles directly interact with AAVR by forming complexes. Consequently, antibody blockage of AAVR significantly inhibits AAV transduction in sensory hair cells in cochlear explants. Moreover, use of AAVR knockout mice confirms inhibition of AAV transduction in sensory hair cells in vivo. Finally, conditional overexpression of AAVR in sensory hair cells of adult mice successfully restores AAV transduction efficiency in OHCs and vestibular hair cells. In conclusion, this strong evidence that AAVR is essential for AAV transduction in sensory hair cells will help to increase the efficacy of future gene therapy in inner ear.
Collapse
Affiliation(s)
- Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| | - Peiwen Liu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, 516621, China
| |
Collapse
|
2
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
3
|
Yin X, Jiang LH. Extracellular vesicles: Targeting the heart. Front Cardiovasc Med 2023; 9:1041481. [PMID: 36704471 PMCID: PMC9871562 DOI: 10.3389/fcvm.2022.1041481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases rank the highest incidence and mortality worldwide. As the most common type of cardiovascular disease, myocardial infarction causes high morbidity and mortality. Recent studies have revealed that extracellular vesicles, including exosomes, show great potential as a promising cell-free therapy for the treatment of myocardial infarction. However, low heart-targeting efficiency and short plasma half-life have hampered the clinical translation of extracellular vesicle therapy. Currently, four major types of strategies aiming at enhancing target efficiency have been developed, including modifying EV surface, suppressing non-target absorption, increasing the uptake efficiency of target cells, and utilizing a hydrogel patch. This presented review summarizes the current research aimed at EV heart targeting and discusses the challenges and opportunities in EV therapy, which will be beneficial for the development of effective heart-targeting strategies.
Collapse
Affiliation(s)
- Xin Yin
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, China,Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,The First People’s Hospital of Yunnan, Kunming, Yunnan, China
| | - Li-Hong Jiang
- Department of Ultrasound, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China,The First People’s Hospital of Yunnan, Kunming, Yunnan, China,*Correspondence: Li-Hong Jiang,
| |
Collapse
|
4
|
Song L, Constanthin PE, Sun T, Li X, Xia Z, An L, Li F. Long-term Production of Glycogen and Hepatic-Derived, Cell-Invasion-Promoting Chemokines by Ultrasound-Driven Hepatic-Differentiated Human Bone Marrow Mesenchymal Stem Cells. Radiat Res 2020; 193:394-405. [PMID: 32126187 DOI: 10.1667/rr15421.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current treatment for liver failure is restricted to surgical liver transplantation, which is technically complicated, limited by the shortage of available organs and presents major risks to the patient. Bone marrow mesenchymal stem cells (BMSCs) represent promising sources of hepatocyte-like cells for cell transplantation treatment. However, a safe and efficient induction method for their differentiation remains to be defined. Here we further optimized an effective technique by combining high-dose treatment with hepatocyte growth factor (HGF) and ultrasound stimulation. The optimized ultrasound parameter (1.0 W/cm2 intensity, 1 MHz frequency, 20% duty cycle, 100 Hz pulse repetition frequency, 60-s irradiation duration, triple times in three days) combined with different HGF doses (10, 20 and 50 ng/ml) was used to treat BMSCs. The results showed that the specific hepatic markers, including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen, were increased in a dose-dependent manner. Their concentration was then further increased when ultrasound irradiation was administered (P < 0.05), as indicated by PCR, Western blot and immunofluorescence staining as well as a glycogen synthesis test. Furthermore, analysis of the hepatocyte-derived chemokines showed elevated stromal cell-derived factor 1alpha (SDF-1α) and C-X-C chemokine receptor type 4 (CXCR4) after HGF treatment. Again, concentrations of those chemokines were further increased by ultrasound radiation (P < 0.05). The observed increased effect was sustained for 21 days. To summarize, we further defined the optimal combination of HGF and ultrasound treatment to increase the differentiation and chemotaxis of BMSCs in a safe, sustained and efficient manner. These findings provide a new perspective for stem cell orientation in the field of tissue engineering.
Collapse
Affiliation(s)
- Lin Song
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Paul E Constanthin
- Department of Fundamental Neurosciences, University of Geneva, Geneva, 1211, Switzerland.,Neurosurgery Department, Hôpitaux Universitaires de Genève, Geneva, 1205, Switzerland
| | - Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhen Xia
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
5
|
Gao F, Wu J, Niu S, Sun T, Li F, Bai Y, Jin L, Lin L, Shi Q, Zhu LM, Du L. Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics 2019; 9:6002-6018. [PMID: 31534533 PMCID: PMC6735371 DOI: 10.7150/thno.36135] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022] Open
Abstract
The dense extracellular matrix (ECM) and hypovascular networks were often found in solid pancreatic tumors form an impenetrable barrier, leading to limited uptake of chemotherapeutics and thus undesirable treatment outcomes. Methods: A biodegradable nanoplatform based on hollow mesoporous organosilica nanoparticle (HMON) was designed as an effective delivery system for pirfenidone (PFD) to overcome the challenges in pancreatic tumor treatment. By varying pH producing a mildly acidic environment to emulate tumor cells, results in cleavage of the acetal bond between HMON nanoparticle and gating molecular, gemcitabine (Gem), enabling its controlled release. Results: The in vitro and in vivo immunocytochemistry evaluations demonstrated an excellent ECM regulation efficacy of the nanoplatform and therefore the improved penetration of drug into the cells. The technique employed was especially enhanced when mediated with ultrasound target microbubble destruction (UTMD). Evaluations culminated with pancreatic cancer bearing mice and demonstrated therapeutic efficacy, good biodegradability, and negligible systemic toxicity. Conclusion: the designed Gem gated biodegradable nanosystem is expected to provide an alternative way of improving antitumor efficacy by down-regulation of ECM levels and offers a passive-targeted therapy for pancreatic cancer treatment.
Collapse
|
6
|
Skachkov I, Luan Y, van Tiel ST, van der Steen AFW, de Jong N, Bernsen MR, Kooiman K. SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures. PLoS One 2018; 13:e0204354. [PMID: 30235336 PMCID: PMC6147550 DOI: 10.1371/journal.pone.0204354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
In vivo cell tracking of therapeutic, tumor, and endothelial cells is an emerging field and a promising technique for imaging cardiovascular disease and cancer development. Site-specific labeling of endothelial cells with the MRI contrast agent superparamagnetic iron oxide (SPIO) in the absence of toxic agents is challenging. Therefore, the aim of this in vitro study was to find optimal parameters for efficient and safe SPIO-labeling of endothelial cells using ultrasound-activated CD31-targeted microbubbles for future MRI tracking. Ultrasound at a frequency of 1 MHz (10,000 cycles, repetition rate of 20 Hz) was used for varying applied peak negative pressures (10–160 kPa, i.e. low mechanical index (MI) of 0.01–0.16), treatment durations (0–30 s), time of SPIO addition (-5 min– 15 min with respect to the start of the ultrasound), and incubation time after SPIO addition (5 min– 3 h). Iron specific Prussian Blue staining in combination with calcein-AM based cell viability assays were applied to define the most efficient and safe conditions for SPIO-labeling. Optimal SPIO labeling was observed when the ultrasound parameters were 40 kPa peak negative pressure (MI 0.04), applied for 30 s just before SPIO addition (0 min). Compared to the control, this resulted in an approximate 12 times increase of SPIO uptake in endothelial cells in vitro with 85% cell viability. Therefore, ultrasound-activated targeted ultrasound contrast agents show great potential for effective and safe labeling of endothelial cells with SPIO.
Collapse
Affiliation(s)
- Ilya Skachkov
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Ying Luan
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Sandra T. van Tiel
- Department of Radiology & Nucleair Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Monique R. Bernsen
- Department of Radiology & Nucleair Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
Li F, Liu Y, Cai Y, Li X, Bai M, Sun T, Du L. Ultrasound Irradiation Combined with Hepatocyte Growth Factor Accelerate the Hepatic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1044-1052. [PMID: 29499919 DOI: 10.1016/j.ultrasmedbio.2018.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the impact of ultrasound (US) irradiation on the hepatic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) induced by hepatocyte growth factor (HGF) and the possible mechanisms. We treated hBMSCs, using HGF with and without US irradiation. Cell viability and stem cell surface markers were analyzed. Hepatocyte-like cell markers and functional markers including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen content were analyzed at the time point of day 1, 3 and 5 after treatment. The involvement of Wnt/β-catenin signaling pathway was evaluated as well. The results showed that the US treatment at 1.0 W/cm2 or 1.5 W/cm2 for 30 s or 60 s conditions yielded favorable cell viability and engendered stem cell differentiation. At day 5, the expressions of AFP, CK18, ALB and the glycogen content were significantly elevated in the US-treated group at both messenger ribonucleic acid and protein levels (all p <0.05), in comparison with HGF and control groups. Among all the US treated groups, the expression levels of specific hepatic markers in the (1.5 W/cm2 for 60 s) group were the highest. Furthermore, Wnt1, β-Catenin, c-Myc and Cyclin D1 were significantly increased after US irradiation (all p <0.05), and the enhancements of c-Myc and Cyclin D1 could be obviously impaired by the inhibitor ICG-001 (p <0.05, p <0.05), in accordance with decreased ALB and CK18 expression and glycogen content (all p <0.05). In conclusion, US irradiation was able to promote the hBMSCs' differentiation mediated by HGF in vitro safely, easily and controllably. The activation of Wnt/β-catenin signaling pathway was involved in this process. US irradiation could serve as a potentially beneficial tool for the research and application of stem cell differentiation.
Collapse
Affiliation(s)
- Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyu Cai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Bai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfang Du
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Ma J, Shen M, Xu CS, Sun Y, Duan YR, Du LF. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro. Oncotarget 2018; 7:80008-80018. [PMID: 27835907 PMCID: PMC5346767 DOI: 10.18632/oncotarget.13243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/19/2016] [Indexed: 11/25/2022] Open
Abstract
A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Songjiang Hospital Affiliated to The First People's Hospital of Shanghai Jiao tong University, Shanghai 201600, China.,Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, China.,Department of Ultrasound, Shanghai East Hospital Affiliated to Tong ji University, Shanghai 200120, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Chang Song Xu
- Huai'an First People's Hospital, Nanjing Medical University, Jiangsu 223001, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - You Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
9
|
Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, Li F, Qin P, Shi Q, Shi X, Du L. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics 2018; 8:1923-1939. [PMID: 29556365 PMCID: PMC5858509 DOI: 10.7150/thno.22834] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022] Open
Abstract
Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i). Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume. Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors. Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments.
Collapse
|
10
|
Li Q, Li H, He C, Jing Z, Liu C, Xie J, Ma W, Deng H. The use of 5-fluorouracil-loaded nanobubbles combined with low-frequency ultrasound to treat hepatocellular carcinoma in nude mice. Eur J Med Res 2017; 22:48. [PMID: 29162156 PMCID: PMC5698940 DOI: 10.1186/s40001-017-0291-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the therapeutic effects of 5-fluorouracil (5-FU)-loaded nanobubbles irradiated with low-intensity, low-frequency ultrasound in nude mice with hepatocellular carcinoma (HCC). METHODS A transplanted tumor model of HCC in nude mice was established in 40 mice, which were then randomly divided equally into four groups: group A (saline), group B (5-FU-loaded nanobubbles), group C (5-FU-loaded nanobubbles with non-low-frequency ultrasound), and group D (5-FU-loaded nanobubbles with low-frequency ultrasound). The tumor size in each mouse was observed via ultrasound before and after the treatments. Inhibition of the tumor growth in each group was compared, and survival curves were generated. Tumor tissues were removed to determine the apoptotic index using the TUNEL method and quantitative analysis. Tumor tissues with CD34-positive microvessels were observed by immunohistochemistry, and the tumor microvessel densities were calculated. RESULTS The growth rate of the tumor volumes in group D was significantly slower than that in the other groups, while the tumor inhibition rates and apoptotic index in group D were significantly higher than those of the other groups. The number of microvessels staining positive for CD34 was decreased in group D. Therefore, group D presented the most significant inhibitory effects. CONCLUSIONS Therefore, 5-FU-loaded nanobubbles subjected to irradiation with low-frequency ultrasound could further improve drug targeting and effectively inhibit the growth of transplanted tumors, which is expected to become an ideal drug carrier and targeted drug delivery system for the treatment of HCC in the future.
Collapse
Affiliation(s)
- Qiaoya Li
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China
| | - Hongyang Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chengjun He
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhouhong Jing
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Changan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Juan Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China
| | - Wenwen Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China
| | - Huisheng Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
11
|
Wang YJ, Zhou Q, Cao S, Hu B, Deng Q, Jiang N, Cui J. Efficient gene therapy with a combination of ultrasound‑targeted microbubble destruction and PEI/DNA/NLS complexes. Mol Med Rep 2017; 16:7685-7691. [PMID: 28944824 DOI: 10.3892/mmr.2017.7510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
Abstract
Current strategies of gene transfection are not efficient at achieving a notable therapeutic effect. The aim of the present study was to combine ultrasound‑targeted microbubble destruction (UTMD) with a polyethylenimine/pEGFP‑N3 plasmid/nuclear localization sequence (PEI/DNA/NLS) complex gene delivery system, and evaluate the transfection efficiency of enhanced green fluorescent protein (EGFP) gene delivery to 293T cells using this system. The formation of PEI/DNA/NLS complexes and the protective effects of PEI/NLS were verified by gel electrophoresis. Solutions consisting of the plasmid alone, PEI/DNA complexes, PEI/DNA/NLS complexes, UTMD+DNA, UTMD+PEI/DNA complexes, and UTMD+PEI/DNA/NLS complexes were transduced into 293T cells via ultrasound irradiation. The expression of GFP was observed using an inverted microscope and transfection efficiency was detected by flow cytometry following 24 h incubation in vitro. Cell activity was detected using a Cell Counting kit (CCK)‑8 assay. Gel electrophoresis confirmed the formation of PEI/DNA/NLS complexes and demonstrated that PEI/NLS exhibited protective effects on plasmid integrity for a limited time. Inverted microscope observations revealed that a greater GFP signal was observed with the combined action of PEI/DNA/NLS complexes with UTMD, and flow cytometry analysis demonstrated the highest level of transfection efficiency in this group. In addition, the viability of the cells detected by CCK‑8 and treated with PEI/DNA/NLS complexes with UTMD was >80%. In conclusion, the combination of UTMD and PEI/DNA/NLS complexes was highly effective for the efficient transfection of 293T cells without causing excessive cell damage. This method may provide a novel and effective gene transduction system to be applied in clinical treatments.
Collapse
Affiliation(s)
- Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingjing Cui
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Status of Therapeutic Gene Transfer to Treat Cardiovascular Disease in Dogs and Cats. Vet Clin North Am Small Anim Pract 2017. [PMID: 28647114 DOI: 10.1016/j.cvsm.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene therapy is a procedure resulting in the transfer of a gene into an individual's cells to treat a disease. One goal of gene transfer is to express a functional gene when the endogenous gene is inactive. However, because heart failure is a complex disease characterized by multiple abnormalities at the cellular level, an alternate gene delivery approach is to alter myocardial protein levels to improve function. This article discusses background information on gene delivery, including packaging, administration, and a brief discussion of some of the candidate transgenes likely to alter the progression of naturally occurring heart disease in dogs and cats.
Collapse
|
13
|
Heun Y, Hildebrand S, Heidsieck A, Gleich B, Anton M, Pircher J, Ribeiro A, Mykhaylyk O, Eberbeck D, Wenzel D, Pfeifer A, Woernle M, Krötz F, Pohl U, Mannell H. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo. Theranostics 2017; 7:295-307. [PMID: 28042335 PMCID: PMC5197065 DOI: 10.7150/thno.16192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro. Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo, we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.
Collapse
|
14
|
Park YC, Zhang C, Kim S, Mohamedi G, Beigie C, Nagy JO, Holt RG, Cleveland RO, Jeon NL, Wong JY. Microvessels-on-a-Chip to Assess Targeted Ultrasound-Assisted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31541-31549. [PMID: 27781429 DOI: 10.1021/acsami.6b09071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbubbles have been used in ultrasound-assisted drug delivery to help target solid tumors via blood vessels in vivo; however, studies to understand the phenomena at the cellular level and to optimize parameters for ultrasound or microbubbles in vivo are challenging and expensive to perform. Here, we utilize microfluidic microvessels-on-a-chip that enable visualization of microbubble/ultrasound-dependent drug delivery to microvasculature. When exposed to pulsed ultrasound, microbubbles perfused through microvessels-on-a-chip were observed to stably oscillate. Minimal cellular damage was observed for both microbubbles and untargeted doxorubicin-encapsulating liposomes (DOX-liposomes) perfused through chip microvessels. In contrast, passive and ultrasound-assisted perfusion of integrin-targeted DOX-liposomes induced cytotoxicity, which was only significantly enhanced for ultrasound-assisted perfusion when microbubbles were coperfused. These results suggest that stably oscillating microbubbles enhance targeted DOX-liposome internalization/cytotoxicity largely by stimulating integrin receptor endocytosis. Furthermore, our study demonstrates the utility of our microvessels-on-a-chip as a screening platform for optimizing drug dosage, targeting ligands and drugs.
Collapse
Affiliation(s)
- Yoonjee C Park
- Department of Biomedical Engineering, Boston University , 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Chentian Zhang
- Department of Biomedical Engineering, Boston University , 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Sudong Kim
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-744, Korea
| | - Graciela Mohamedi
- Department of Biomedical Engineering, Boston University , 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Carl Beigie
- Department of Biomedical Engineering, Boston University , 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Jon O Nagy
- NanoValent Pharmaceuticals, Inc. , 910 Technology Boulevard, Suite G, Bozeman, Montana 59718, United States
| | - R Glynn Holt
- Department of Mechanical Engineering, Boston University , Boston, Massachusetts 02215, United States
| | - Robin O Cleveland
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford , Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University , Seoul 151-744, Korea
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University , 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|
15
|
Xing L, Shi Q, Zheng K, Shen M, Ma J, Li F, Liu Y, Lin L, Tu W, Duan Y, Du L. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer. Am J Cancer Res 2016; 6:1573-87. [PMID: 27446491 PMCID: PMC4955056 DOI: 10.7150/thno.15164] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.
Collapse
|
16
|
Yang Y, Bai W, Chen Y, Nan S, Lin Y, Ying T, Hu B. Low-frequency ultrasound-mediated microvessel disruption combined with docetaxel to treat prostate carcinoma xenografts in nude mice: A novel type of chemoembolization. Oncol Lett 2016; 12:1011-1018. [PMID: 27446386 DOI: 10.3892/ol.2016.4703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/06/2016] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to investigate whether low-frequency ultrasound (US)-mediated microvessel disruption combined with docetaxel (DTX) can be used as a novel type of chemoembolization. Mice were assigned to four groups: i) The USMB group, treated with low-frequency US combined with microbubbles (USMB); ii) the DTX group, treated with DTX; iii) the USMB + DTX group, treated with combined therapy; and iv) the control group, which was untreated. Immediately after the first treatment, the average peak intensity (API) on contrast-enhanced US was calculated, and tumors were excised for hematoxylin and eosin (HE) staining. At 2 weeks post-treatment, the tumor volumes and wet weights were calculated, and tumors were excised for immunohistochemistry to calculate apoptotic index (AI), proliferative index (PI) and microvessel density (MVD) values. Immediately after the first treatment, in the DTX and control groups, the tumors demonstrated abundant perfusion enhancement, while in the USMB + DTX and USMB groups, blood perfusion of the tumors was interrupted. Compared with that of the control group, the API was significantly lower in the USMB + DTX USMB groups (all P<0.001). HE staining showed that tumor microvasculature was disrupted into flaky hematomas and severely dilated microvessels in the USMB + DTX and USMB groups. In the DTX and control groups, there was no distinct evidence of the disruption and dilation of blood microvessels. At the end of the treatment, the mean tumor inhibition ratio was 73.33, 46.67 and 33.33% for the USMB + DTX, DTX and USMB groups, respectively. The USMB + DTX group had the highest AI, and the lowest PI and MVD compared with the other groups, although the difference between the USMB + DTX and DTX groups with regard to PI and MVD was not significant (USMB + DTX vs. DTX group, P=0.345 and P=0.059, respectively). In conclusion, as a novel type of chemoembolization, USMB combined with DTX is more effective than USMB or DTX alone in inhibiting tumor growth via the enhancement of apoptosis, and the suppression of proliferation and angiogenesis.
Collapse
Affiliation(s)
- Yu Yang
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yini Chen
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Shuliang Nan
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Yanduan Lin
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China
| |
Collapse
|
17
|
Åslund AKO, Berg S, Hak S, Mørch Ý, Torp SH, Sandvig A, Widerøe M, Hansen R, de Lange Davies C. Nanoparticle delivery to the brain--By focused ultrasound and self-assembled nanoparticle-stabilized microbubbles. J Control Release 2015; 220:287-294. [PMID: 26518721 DOI: 10.1016/j.jconrel.2015.10.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 01/04/2023]
Abstract
The blood-brain barrier (BBB) constitutes a significant obstacle for the delivery of drugs into the central nervous system (CNS). Nanoparticles have been able to partly overcome this obstacle and can thus improve drug delivery across the BBB. Furthermore, focused ultrasound in combination with gas filled microbubbles has opened the BBB in a temporospatial manner in animal models, thus facilitating drug delivery across the BBB. In the current study we combine these two approaches in our quest to develop a novel, generic method for drug delivery across the BBB and into the CNS. Nanoparticles were synthesized using the polymer poly(butyl cyanoacrylate) (PBCA), and such nanoparticles have been reported to cross the BBB to some extent. Together with proteins, these nanoparticles self-assemble into microbubbles. Using these novel microbubbles in combination with focused ultrasound, we successfully and safely opened the BBB transiently in healthy rats. Furthermore, we also demonstrated that the nanoparticles could cross the BBB and deliver a model drug into the CNS.
Collapse
Affiliation(s)
- Andreas K O Åslund
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Sigrid Berg
- SINTEF Technology and Society, P.O. box 4760 Sluppen, 7465 Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ýrr Mørch
- SINTEF Materials and Chemistry, P.O. box 4760 Sluppen, 7465 Trondheim, Norway
| | - Sverre H Torp
- Department of Pathology and Medical Genetics, St.Olavs University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Axel Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Division of Pharmacology and Clinical Neuroscience, Department of Neurosurgery, Umeå University Hospital, Umeå, Sweden
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Rune Hansen
- SINTEF Technology and Society, P.O. box 4760 Sluppen, 7465 Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | |
Collapse
|
18
|
Using the Promise of Sonodynamic Therapy in the Clinical Setting against Disseminated Cancers. CHEMOTHERAPY RESEARCH AND PRACTICE 2015; 2015:316015. [PMID: 26380110 PMCID: PMC4562321 DOI: 10.1155/2015/316015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022]
Abstract
Sonodynamic therapy (SDT) is a form of ultrasound therapy in which specialized chemotherapeutic agents known as sonosensitizers are administered to increase the efficacy of ultrasound-mediated preferential damage of neoplastic cells. Multiple in vitro and in vivo studies have indicated that SDT has the ability to exhibit profound physical and chemical changes on cellular structure. As supportive as the data have been, assessment of this method at the clinical level has been limited to only solid tumors. Although SDT has shown efficacy against multiple adherent neoplastic cell lines, it has also shown particular promise with leukemia-derived cell lines. Potential procedures to administer SDT to leukemia patients are heating the appendages as ultrasound is applied to these areas (Heat and Treat), using an ultrasound probe to scan the body for malignant growths (Target and Destroy), and extracorporeal blood sonication (EBS) through dialysis. Each method offers a unique set of benefits and concerns that will need to be evaluated in preclinical mammalian models of malignancy before clinical examination can be considered.
Collapse
|
19
|
Wan C, Li F, Li H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 2015; 12:4803-14. [PMID: 26151686 PMCID: PMC4581786 DOI: 10.3892/mmr.2015.4054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
The eye is an ideal target organ for gene therapy as it is easily accessible and immune‑privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound‑targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene‑ and drug delivery. When gene‑loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High‑amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD‑mediated gene delivery system has been widely used in pre‑clinical studies to enhance gene expression in a site‑specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood‑retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD.
Collapse
Affiliation(s)
- Caifeng Wan
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hongli Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
20
|
Ma J, Xu CS, Gao F, Chen M, Li F, Du LF. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol Med Rep 2015; 12:4022-4028. [PMID: 26081968 DOI: 10.3892/mmr.2015.3941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discussed, as well as the acoustically‑induced biological effects, including ultrasound targeted microbubble destruction (UTMD). This review also explores the considerations for the safe use of UCA from an acoustic standpoint. The scope of the application of UCA has markedly expanded in recent years, and it is a rapidly growing field of medical research. The current article reviews recent advances in the diagnostic and therapeutic applications of ultrasound microbubble/nanobubble contrast agents.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chang Song Xu
- Department of Ultrasound, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
21
|
Ma J, Xing LX, Shen M, Li F, Zhu MJ, Jin LF, Li Z, Gao F, Su Y, Duan YR, Du LF. Ultrasound contrast-enhanced imaging and in vitro antitumor effect of paclitaxel-poly(lactic-co-glycolic acid)-monomethoxypoly (ethylene glycol) nanocapsules with ultrasound-targeted microbubble destruction. Mol Med Rep 2014; 11:2413-20. [PMID: 25500683 PMCID: PMC4337512 DOI: 10.3892/mmr.2014.3072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 10/02/2014] [Indexed: 11/20/2022] Open
Abstract
A combination of diagnostic and therapeutic ultrasound (US) techniques may be able to provide the basis of specific therapeutic protocols, particularly for the treatment of tumors. Nanotechnology may aid the progression towards the use of US for tumor diagnosis and targeted therapy. The current study investigated in vivo and in vitro US contrast imaging using nanocapsules (NCs), and also US and US-targeted microbubble destruction (UTMD) therapy using drug-loaded NCs for pancreatic cancer in vitro. In the current study, the NCs were made from the polymer nanomaterial poly(lactic-co-glycolic acid)-monomethoxypoly(ethylene glycol) (PLGA-mPEG), encapsulated with paclitaxel (PTX), to create PTX-PLGA-mPEG NCs. The PTX-PLGA-mPEG NCs were used as a US contrast agent (UCA), which produced satisfactory US contrast-enhanced images in vitro and in vivo of the rabbit kidneys, with good contrast compared with lesions in the peripheral regions. However, clear contrast-enhanced images were not obtained using PTX-PLGA-mPEG NCs as a UCA, when imaging the superficial pancreatic tumors of nude mice in vivo. Subsequently, fluorescence and flow cytometry were used to measure the NC uptake rate of pancreatic tumor cells under various US or UTMD conditions. An MTT assay was used to evaluate the efficiency of PTX and PTX-PLGA-mPEG NCs in killing tumor cells following 24 or 48 h of US or UTMD therapy, compared with controls. The specific US or UTMD conditions had been previously demonstrated to be optimal through repeated testing, to determine the conditions by which cells were not impaired and the efficiency of uptake of nanoparticles was highest. The current study demonstrated high cellular uptake rates of PLGA-mPEG NCs and high tumor cell mortality with PTX-PLGA-mPEG NCs under US or UTMD optimal conditions. It was concluded that the use of NCs in US-mediated imaging and antitumor therapy may provide a novel application for US.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ling Xi Xing
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Shen
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Jie Zhu
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Li Fang Jin
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhaojun Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yijin Su
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| | - You Rong Duan
- Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200032, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
22
|
Li H, Wan C, Du L, Li F. Enhanced downregulation of transforming growth factor‑β2 in rat retinal pigment epithelium cells by adeno‑associated virus‑mediated ribonucleic acid interference combined with ultrasound or microbubbles. Mol Med Rep 2014; 11:1099-104. [PMID: 25370502 DOI: 10.3892/mmr.2014.2845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/06/2014] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to determine the efficiency and safety of ultrasound (US) and/or US contrast agent microbubbles (MBs) in the delivery of type 2 recombinant adeno-associated virus‑delivered transforming growth factor‑β2 short hairpin ribonucleic acid encoding the enhanced green fluorescent protein gene (rAAV2‑TGFβ2 shRNA‑EGFP) and the downregulation of TGFβ2 in rat retinal pigment epithelium (RPE‑J) cells. The effects of US and/or MBs on the delivery of rAAV2‑EGFP and rAAV2‑TGFβ2 shRNA‑EGFP were evaluated by fluorescence microscopy and flow cytometry. The potential toxicity of cell viability under various US or MB conditions was assessed by CellTiter 96® AQueous One solution cell proliferation assay. The level of TGFβ2 mRNA in RPE‑J cells under various conditions was estimated by reverse transcription‑quantitative polymerase chain reaction analysis. The results obtained demonstrated that low-intensity US (0.5 W/cm2 and 30 sec) or SonoVue (MB:cell ratio, 40:1) increased the delivery efficiency of rAAV2‑EGFP and rAAV2‑TGFβ2 shRNA‑EGFP to RPE‑J cells, whereas the combination of US with MBs did not further increase but instead decreased rAAV transfection. Under the optimal conditions of rAAV delivery, enhanced TGFβ2 gene silencing with a combination of US or SonoVue with rAAV2‑TGFβ2 shRNA resulted in a significant decrease in mRNA levels compared with rAAV2‑TGFβ2 shRNA alone. US or SonoVue was used safely to enhance the delivery of rAAV2‑TGFβ2 shRNA to RPE‑J cells. A combination of the biological (rAAV2‑TGFβ2 shRNA) and physical (US or SonoVue) approaches downregulated the mRNA level of TGFβ2 more effectively.
Collapse
Affiliation(s)
- Hongli Li
- Department of Ultrasound, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Caifeng Wan
- Department of Ultrasound, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lianfang Du
- Department of Ultrasound, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| | - Fenghua Li
- Department of Ultrasound, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
23
|
Kooiman K, Vos HJ, Versluis M, de Jong N. Acoustic behavior of microbubbles and implications for drug delivery. Adv Drug Deliv Rev 2014; 72:28-48. [PMID: 24667643 DOI: 10.1016/j.addr.2014.03.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/11/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.
Collapse
|
24
|
Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3:39-44. [PMID: 25237622 PMCID: PMC4145571 DOI: 10.5662/wjm.v3.i4.39] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 02/06/2023] Open
Abstract
Genes can be transferred using viral or non-viral vectors. Non-viral methods that use plasmid DNA and short interference RNA (siRNA) have advantages, such as low immunogenicity and low likelihood of genomic integration in the host, when compared to viral methods. Non-viral methods have potential merit, but their gene transfer efficiency is not satisfactory. Therefore, new methods should be developed. Low-frequency ultrasound irradiation causes mechanical perturbation of the cell membrane, allowing the uptake of large molecules in the vicinity of the cavitation bubbles. The collapse of these bubbles generates small transient holes in the cell membrane and induces transient membrane permeabilization. This formation of small pores in the cell membrane using ultrasound allows the transfer of DNA/RNA into the cell. This phenomenon is known as sonoporation and is a gene delivery method that shows great promise as a potential new approach in gene therapy. Microbubbles lower the threshold of cavity formation. Complexes of therapeutic genes and microbubbles improve the transfer efficiency of genes. Diagnostic ultrasound is potentially a suitable sonoporator because it allows the real-time monitoring of irradiated fields.
Collapse
Affiliation(s)
- Minoru Tomizawa
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Fuminobu Shinozaki
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Yasufumi Motoyoshi
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Takao Sugiyama
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Shigenori Yamamoto
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| | - Makoto Sueishi
- Minoru Tomizawa, Department of Gastroenterology, National Hospital Organization Shimoshizu Hospital, 934-5 Shikawatashi, Yotsukaido City, Chiba 284-0003, Japan
| |
Collapse
|