1
|
Henriksen K, Rufer C, Title AC, Jawurek S, Hartmann B, Holst JJ, Knop FK, Yesildag B, Størling J. Proinflammatory cytokine-induced alpha cell impairment in human islet microtissues is partially restored by dual incretin receptor agonism. Diabetologia 2025:10.1007/s00125-025-06425-3. [PMID: 40374968 DOI: 10.1007/s00125-025-06425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/11/2025] [Indexed: 05/18/2025]
Abstract
AIMS/HYPOTHESIS In type 1 diabetes, the counterregulatory glucagon response to low plasma glucose is impaired. The resulting increased risk of hypoglycaemia necessitates novel strategies to ameliorate alpha cell impairment. Here, we aimed to establish an in vitro type 1 diabetes-like model of alpha cell impairment using standardised reaggregated human islet microtissues (MTs) exposed to proinflammatory cytokines. Additionally, we investigated the therapeutic potential of incretin receptor agonists in improving alpha cell responses to low glucose. METHODS Human islet MTs were exposed to proinflammatory cytokines (IL-1β, IFN-γ and TNF-α) for 1 day (short-term) and 6 days (long-term). Alpha cell function was assessed by sequential glucose-dependent secretion assays at 2.8 and 16.7 mmol/l glucose, followed by glucagon measurements. Additional evaluations included ATP content, caspase-3/7 activity, chemokine secretion and content of islet transcription factors (aristaless-related homeobox [ARX] and NK6 homeobox 1 [NKX6.1]) and hormones. The effects of incretin receptor agonist treatment (glucose-dependent insulinotropic polypeptide [GIP] analogue [D-Ala2]-GIP with or without the glucagon-like peptide 1 [GLP-1] receptor agonist liraglutide) alongside or after cytokine exposure were also investigated, focusing on low-glucose-dependent glucagon secretion. RESULTS Short-term cytokine exposure increased glucagon secretion at both 2.8 and 16.7 mmol/l glucose in islet MTs. In contrast, long-term cytokine exposure caused dose-dependent suppression of glucagon secretion at 2.8 mmol/l glucose, resembling a type 1 diabetes phenotype. Long-term cytokine exposure also diminished insulin and somatostatin secretion, reduced ATP content, increased caspase 3/7 activity and decreased islet content of ARX, NKX6.1, glucagon and insulin. Despite cytokine-induced impairment, alpha cells partially retained secretory capacity to L-arginine stimulation. Treatment with incretin receptor agonists during long-term cytokine exposure did not prevent alpha cell impairment. However, acute treatment with [D-Ala2]-GIP with or without liraglutide, or with the single-molecule dual agonist tirzepatide, after cytokine exposure partially restored glucagon secretion at low glucose. CONCLUSIONS/INTERPRETATION Long-term cytokine exposure of human islet MTs created a type 1 diabetes-like phenotype with impaired low-glucose-induced glucagon secretion. This cytokine-induced alpha cell impairment was partially restored by [D-Ala2]-GIP with or without liraglutide, or by tirzepatide.
Collapse
Affiliation(s)
- Kristine Henriksen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | | | | | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | | | - Joachim Størling
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Jiang Y, Zhu H, Gong F. Why does GLP-1 agonist combined with GIP and/or GCG agonist have greater weight loss effect than GLP-1 agonist alone in obese adults without type 2 diabetes? Diabetes Obes Metab 2025; 27:1079-1095. [PMID: 39592891 DOI: 10.1111/dom.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Obesity is a chronic condition demanding effective treatment strategies, among which pharmacotherapy plays a critical role. As glucagon-like peptide-1 (GLP-1) agonist approved by the Food and Drug Administration (FDA) for long-term weight management in adults with obesity, liraglutide and semaglutide have great weight loss effect through reducing food intake and delaying gastric emptying. The emergence of unimolecular polypharmacology, which utilizes single molecules to simultaneously target multiple receptors or pathways, marked a revolutionary improvement in GLP-1-based obesity pharmacotherapy. The dual agonist tirzepatide activates both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptors and has shown enhanced potency for weight loss compared to conventional GLP-1 mono agonist. Furthermore, emerging data suggests that unimolecular GLP-1/glucagon (GCG) dual agonist, as well as GLP-1/GIP/GCG triple agonist, may offer superior weight loss efficacy over GLP-1 agonist. This review summarizes the comprehensive mechanisms underlying the pronounced advantages of GLP-1/GIP dual agonist, GLP-1/GCG dual agonist and GLP-1/GIP/GCG triple agonist over GLP-1 mono agonist in weight reduction in obese adults without type 2 diabetes. A deeper understanding of these unimolecular multitargeting GLP-1-based agonists will provide insights for their clinical application and guide the development of new drugs for obesity treatment.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Rocha GR, de Melo FF. Glucagon-like peptide-1 and impaired counterregulatory responses to hypoglycemia in type 1 diabetes. World J Diabetes 2025; 16:99928. [PMID: 39959274 PMCID: PMC11718485 DOI: 10.4239/wjd.v16.i2.99928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 12/30/2024] Open
Abstract
This letter comments on a study by Jin et al, published recently in the World Journal of Diabetes. Hypoglycemia is a significant complication of diabetes, with primary defense mechanisms involving the stimulation of glucagon secretion in α-cells and the inhibition of insulin secretion in pancreatic β-cells, which are often compromised in type 1 diabetes mellitus (T1DM) and advanced type 2 diabetes mellitus. Recurrent hypoglycemia predisposes the development of impaired hypoglycemia awareness, a condition underpinned by complex pathophysiological processes, encompassing central nervous system adaptations and several hormonal interactions, including a potential role for glucagon-like peptide-1 (GLP-1) in paracrine and endocrine vias. Experimental evidence indicates that GLP-1 may impair hypoglycemic counterregulation by disrupting the sympathoadrenal system and promoting somatostatin release in pancreatic δ-cells, which inhibits glucagon secretion from neighboring α-cells. However, current trials evaluating GLP-1 receptor agonists (GLP-1 RAs) in T1DM patients have shown promising benefits in reducing insulin requirements and body weight, without increasing the risk of hypoglycemia. Further research is essential to elucidate the specific roles of GLP-1 and GLP-1 RAs in modulating glucagon secretion and the sympathetic-adrenal reflex, and their impact on hypoglycemia unawareness in T1DM patients.
Collapse
Affiliation(s)
- Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45065-430, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45065-430, Bahia, Brazil
| |
Collapse
|
5
|
Alogaiel DM, Alsuwaylihi A, Alotaibi MS, Macdonald IA, Lobo DN. Effects of Ramadan intermittent fasting on hormones regulating appetite in healthy individuals: A systematic review and meta-analysis. Clin Nutr 2025; 45:250-261. [PMID: 39842253 DOI: 10.1016/j.clnu.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS This systematic review and meta-analysis aimed to examine the effect of Ramadan intermittent fasting on appetite-regulating hormones including leptin, ghrelin, insulin, gastrin, glucagon-like peptide-1, peptide YY, and cholecystokinin. METHODS We searched the MEDLINE, Embase, Cochrane Library, CINAHL, Google Scholar, and Web of Science databases to identify relevant research on appetite-regulating hormones during Ramadan intermittent fasting, published until the end of March 2024. RESULTS Data from 16 eligible studies comprising 664 participants (341, 51.4 % male) with a mean ± standard deviation age of 33.9 ± 10.8 years were included. The meta-analysis included 12 studies with complete leptin data, showing no significant effect of Ramadan intermittent fasting on leptin concentrations (standardised mean difference - SMD = -0.11 μg/mL, 95 % CI: -0.36 to 0.14). Analysis of three studies with complete ghrelin data demonstrated a significant increase in ghrelin concentrations following Ramadan intermittent fasting (SMD = 0.31 pg/mL, 95 % CI: 0.03 to 0.60). Six studies examining insulin concentrations pre- and post-fasting revealed no significant effect on insulin concentrations (SMD = -0.24 μU/mL, 95 % CI: -0.54 to 0.02). Similarly, analysis of three studies with complete gastrin data showed no significant effect of intermittent fasting on gastrin concentrations (SMD = 0.23 pg/mL, 95 % CI: -0.71 to 0.99). CONCLUSION Ramadan intermittent fasting significantly increases ghrelin concentrations while showing no significant effects on leptin, insulin, and gastrin. While ghrelin findings were consistent across studies, the high heterogeneity in leptin studies suggests further research to better understand the effects of Ramadan intermittent fasting on appetite-regulating hormones.
Collapse
Affiliation(s)
- Deema M Alogaiel
- Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Health Sciences Department, College of Health and Rehabilitation, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsuwaylihi
- Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; Department of Clinical Nutrition, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
| | - May S Alotaibi
- Health Sciences Department, College of Health and Rehabilitation, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Ian A Macdonald
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, Division of Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK; Division of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
He X, Zhao W, Li P, Zhang Y, Li G, Su H, Lu B, Pang Z. Research progress of GLP-1RAs in the treatment of type 2 diabetes mellitus. Front Pharmacol 2025; 15:1483792. [PMID: 39902077 PMCID: PMC11788294 DOI: 10.3389/fphar.2024.1483792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid intestinal insulin-stimulating factor, which is mainly secreted by L cells in the distal ileum and colon. It has various physiological functions, such as promoting insulin secretion and synthesis, stimulating β-cell proliferation, inducing islet regeneration, inhibiting β-cell apoptosis and glucagon release, delaying gastric emptying and controlling appetite, etc. It plays a role through a specific GLP-1 receptor (GLP-1R) distributed in many organs or tissues and participates in the regulation of glucose homeostasis in the body. GLP-1 receptor agonists (GLP-1RAs) has the similar physiological function of GLP-1. Because of its structural difference from natural GLP-1, it is not easy to be degraded by dipeptidyl peptidase-4 (DPP-4), thus prolonging the action time. GLP-1RAs have been recognized as a new type of hypoglycemic drugs and widely used in the treatment of type 2 diabetes mellitus (T2DM). Compared with other non-insulin hypoglycemic drugs, it can not only effectively reduce blood glucose and glycosylated hemoglobin (HbA1c), but also protect cardiovascular system, nervous system and kidney function without causing hypoglycemia and weight gain. Therefore, GLP-1RAs has good application prospects and potential for further development.
Collapse
Affiliation(s)
- Xu He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Wei Zhao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - PeiHang Li
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - YinJiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - GuoHua Li
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - HongYu Su
- Graduate School, Chengde Medical College, Chengde, China
| | - BiNan Lu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - ZongRan Pang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Haller N, Lutz TA. Incretin therapy in feline diabetes mellitus - A review of the current state of research. Domest Anim Endocrinol 2024; 89:106869. [PMID: 38870560 DOI: 10.1016/j.domaniend.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Incretin hormones potentiate the glucose-induced insulin secretion following enteral nutrient intake. The best characterised incretin hormones are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) which are produced in and secreted from the gut in response to nutrient ingestion. The property of incretins to enhance endogenous insulin secretion only at elevated blood glucose levels makes them interesting therapeutics for type 2 diabetes mellitus with a better safety profile than exogenous insulin. While incretin therapeutics (especially GLP-1 agonists, and more recently also GLP-1 / GIP dual agonists and other drugs that influence the incretin metabolism (e.g., dipeptidyl peptidase-4 (DPP-4) inhibitors)) are already widely used treatment options for human type 2 diabetes, these drugs are not yet approved for the therapy of feline diabetes mellitus. This review provides an introduction to incretins and feline diabetes mellitus in general and summarises the current study situation on incretins as therapeutics for feline diabetes mellitus to assess their possible future potential in feline medicine. Studies to date on the use of GLP-1 receptor agonists (GLP-1RA) in healthy cats largely confirm their insulinotropic effect known from other species. In diabetic cats, GLP-1RAs appear to significantly reduce glycaemic variability (GV, an indicator for the quality of glycaemic control), which is important for the management of the disease and prevention of long-term complications. However, for widespread use in feline diabetes mellitus, further studies are required that include larger numbers of diabetic cats, and that consider and test a possible need for dose adjustments to overweight and diabetic cats. Also evaluation of the outcome of GLP-1RA monotherapy will be neceessary.
Collapse
Affiliation(s)
- Nina Haller
- Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 204, CH 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH 8057 Zurich, Switzerland.
| |
Collapse
|
8
|
Dai M, Dai S, Gu L, Xiang Z, Xu A, Lu S, Yang Y, Zhou C. Efficacy of Glucagon-like Peptide-1 Receptor Agonists in Overweight/Obese and/or T2DM Adolescents: A Meta-analysis Based on Randomized Controlled Trials. J Clin Res Pediatr Endocrinol 2024; 16:323-333. [PMID: 38828884 PMCID: PMC11590762 DOI: 10.4274/jcrpe.galenos.2024.2024-1-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Objective The aim of this meta-analysis was to investigate the effect of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on blood glucose and weight in adolescents with overweight/obesity and/or type 2 diabetes mellitus (T2DM) aged <18 years. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched for all randomized controlled trials (RCTs) up to August 2023 comparing GLP-1RAs with placebo in overweight/obese and/or T2DM adolescents and extracted relevant data for meta-analysis. Results Fourteen RCTs were included in the meta-analysis with a total of 1,262 participants. Results revealed that the GLP-1RAs group had a more significant reduction in glycosylated hemoglobin A1c (HbA1c; risk difference (RD)=-0.34%, p<0.001) than the control group. However, there was no difference in fasting plasma glucose [fasting plasma glucose (FPG); RD=-2.07 mg/dL, p=0.065] between the two groups. Nonetheless, the experimental group that received exenatide showed no significant reduction in HbA1c (p=0.253) and FPG (p=0.611) between the two groups. The GLP-1RAs group had a more significant decline in body weight (RD=-4.28 kg, p=0.002) and body mass index (BMI) (RD=-1.63 kg/m2, p=0.002) compared to the control group. The experimental group was given liraglutide (RD=-2.31 kg, p=0.038) or exenatide (RD=-2.70 kg, p<0.001). Compared to the control group, the experimental group had a more significant drop in body weight than the control group. However, for the experimental group that received liraglutide, the BMI had a no significant reduction between the two groups (RD=-0.81 kg/m2, p=0.260). For the experimental group using exenatide, BMI declined more significantly in the intervention group than in the control group (RD=-1.14 kg/m2, p<0.001). Conclusion This study showed that GLP-1RAs reduced HbA1c, FPG, and weight loss in overweight/obese and/or T2DM adolescents. Liraglutide was better than exenatide in terms of glucose reduction. Nevertheless, in terms of weight control, exenatide was more effective than liraglutide.
Collapse
Affiliation(s)
- Min Dai
- Zhejiang Chinese Medical University, The Second Clinical Medical College, Zhejiang, China
| | - Senjie Dai
- Zhejiang Chinese Medical University, The Second Clinical Medical College, Zhejiang, China
| | - Lihu Gu
- Ningbo No. 2 Hospital, Clinic of General Surgery, Zhejiang, China
| | - Zhiyi Xiang
- Zhejiang Chinese Medical University, The First Clinical Medical College, Zhejiang, China
| | - Anyi Xu
- Zhejiang Chinese Medical University, The First Clinical Medical College, Zhejiang, China
| | - Siyu Lu
- Zhejiang Chinese Medical University, The Second Clinical Medical College, Zhejiang, China
| | - Yang Yang
- Zhejiang Chinese Medical University, The Second Clinical Medical College, Zhejiang, China
| | - Cong Zhou
- Ningbo Mingzhou Hospital, Clinic of Endocrinology, Zhejiang, China
| |
Collapse
|
9
|
Hamed K, Alosaimi MN, Ali BA, Alghamdi A, Alkhashi T, Alkhaldi SS, Altowarqi NA, Alzahrani H, Alshehri AM, Alkhaldi RK, Alqahtani KW, Alharbi NH, Alhulayfi HF, Sharifi SY, Dighriri IM. Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists: Exploring Their Impact on Diabetes, Obesity, and Cardiovascular Health Through a Comprehensive Literature Review. Cureus 2024; 16:e68390. [PMID: 39355484 PMCID: PMC11444311 DOI: 10.7759/cureus.68390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1-RAs) are a novel class of medications promising for treating type 2 diabetes mellitus (T2DM) and obesity-related conditions such as cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). This comprehensive literature review examines available research on these medications, focusing on their mechanisms of action, clinical effectiveness, safety profiles, and socioeconomic implications. A comprehensive search was performed using the PubMed, EMBASE, and Cochrane Library databases. Although initially developed for glucose management, these drugs have also demonstrated efficacy in promoting weight loss and reducing the risk of CVD. GLP-1-RAs function similarly to naturally occurring incretins. They stimulate insulin secretion in response to glucose levels, inhibit glucagon release, delay stomach emptying, and generate a sense of fullness via brain pathways. Head-to-head clinical studies have indicated that GLP-1-RAs outperform conventional antidiabetic medicines in terms of glycemic management and weight reduction. According to cardiovascular outcome studies, various drugs in this category have been found to reduce the frequency of severe adverse cardiovascular events. A common side effect is gastrointestinal toxicity, which can be mitigated by gradually increasing the dose. Personalized treatment is likely because the effectiveness, safety, and dose regimens of currently available GLP-1-RAs differ. GLP-1-RAs are a superior choice for patients with T2DM, especially those who already have CVD or require weight-control support. The high cost of these drugs creates hurdles to access and fair healthcare. Current research mainly focuses on increasing therapeutic uses and producing orally delivered medicines with greater potency and bioavailability. Integrating GLP-1-RAs into clinical practice can enhance patient outcomes and reduce the community burden of cardiometabolic disease.
Collapse
Affiliation(s)
- Khalid Hamed
- Department of Clinical Toxicology, Umm Al-Qura University, Mecca, SAU
| | | | - Bashaer A Ali
- Department of Pharmacy, Nahdi Medical Company, Jeddah, SAU
| | | | | | | | | | | | | | | | - Khalid W Alqahtani
- Department of Pharmacy, Dr. Sulaiman Al Habib Medical Group, Riyadh, SAU
| | | | | | | | | |
Collapse
|
10
|
Le R, Nguyen MT, Allahwala MA, Psaltis JP, Marathe CS, Marathe JA, Psaltis PJ. Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. J Clin Med 2024; 13:4674. [PMID: 39200816 PMCID: PMC11355214 DOI: 10.3390/jcm13164674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Owing to their potent glucose-lowering efficacy and substantial weight loss effects, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are now considered part of the frontline therapeutic options to treat both type 2 diabetes mellitus and nondiabetic overweight/obesity. Stemming from successful demonstration of their cardiometabolic modulation and reduction of major adverse cardiovascular events in clinical outcome trials, GLP-1 RAs have since been validated as agents with compelling cardiovascular protective properties. Studies spanning from the bench to preclinical and large-scale randomised controlled trials have consistently corroborated the cardiovascular benefits of this pharmacological class. Most notably, there is converging evidence that they exert favourable effects on atherosclerotic ischaemic endpoints, with preclinical data indicating that they may do so by directly modifying the burden and composition of atherosclerotic plaques. This narrative review examines the underlying pharmacology and clinical evidence behind the cardiovascular benefits of GLP-1 RAs, with particular focus on atherosclerotic cardiovascular disease. It also delves into the mechanisms that underpin their putative plaque-modifying actions, addresses existing knowledge gaps and therapeutic challenges and looks to future developments in the field, including the use of combination incretin agents for diabetes and weight loss management.
Collapse
Affiliation(s)
- Richard Le
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia;
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
| | - Mau T. Nguyen
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Momina A. Allahwala
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - James P. Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Chinmay S. Marathe
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
- Department of Endocrinology, Central Adelaide Local Health Network, Adelaide 5000, Australia
| | - Jessica A. Marathe
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| | - Peter J. Psaltis
- Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (M.T.N.); (M.A.A.); (J.A.M.)
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (J.P.P.); (C.S.M.)
| |
Collapse
|
11
|
Gaffey RH, Takyi AK, Shukla A. Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity. Expert Opin Investig Drugs 2024; 33:757-773. [PMID: 38984950 DOI: 10.1080/13543784.2024.2377319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
Collapse
Affiliation(s)
- Robert H Gaffey
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Afua K Takyi
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alpana Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1431292. [PMID: 39114288 PMCID: PMC11304055 DOI: 10.3389/fendo.2024.1431292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are two incretins that bind to their respective receptors and activate the downstream signaling in various tissues and organs. Both GIP and GLP-1 play roles in regulating food intake by stimulating neurons in the brain's satiety center. They also stimulate insulin secretion in pancreatic β-cells, but their effects on glucagon production in pancreatic α-cells differ, with GIP having a glucagonotropic effect during hypoglycemia and GLP-1 exhibiting glucagonostatic effect during hyperglycemia. Additionally, GIP directly stimulates lipogenesis, while GLP-1 indirectly promotes lipolysis, collectively maintaining healthy adipocytes, reducing ectopic fat distribution, and increasing the production and secretion of adiponectin from adipocytes. Together, these two incretins contribute to metabolic homeostasis, preventing both hyperglycemia and hypoglycemia, mitigating dyslipidemia, and reducing the risk of cardiovascular diseases in individuals with type 2 diabetes and obesity. Several GLP-1 and dual GIP/GLP-1 receptor agonists have been developed to harness these pharmacological effects in the treatment of type 2 diabetes, with some demonstrating robust effectiveness in weight management and prevention of cardiovascular diseases. Elucidating the underlying cellular and molecular mechanisms could potentially usher in the development of new generations of incretin mimetics with enhanced efficacy and fewer adverse effects. The treatment guidelines are evolving based on clinical trial outcomes, shaping the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Qiyuan Keith Liu
- MedStar Medical Group, MedStar Montgomery Medical Center, Olney, MD, United States
| |
Collapse
|
13
|
Honka H, Gastaldelli A, Pezzica S, Peterson R, DeFronzo R, Salehi M. Differential effect of endogenous glucagon-like peptide-1 on prandial glucose counterregulatory response to hypoglycaemia in humans with and without bariatric surgery. Diabetes Obes Metab 2024; 26:2476-2486. [PMID: 38558527 PMCID: PMC11078606 DOI: 10.1111/dom.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
AIM To determine the effect of endogenous glucagon-like peptide 1 (GLP-1) on prandial counterregulatory response to hypoglycaemia after gastric bypass (GB). MATERIALS AND METHODS Glucose fluxes, and islet-cell and gut hormone responses before and after mixed-meal ingestion, were compared during a hyperinsulinaemic-hypoglycaemic (~3.2 mmol/L) clamp with and without a GLP-1 receptor (GLP-1R) antagonist exendin-(9-39) infusion in non-diabetic patients who had previously undergone GB compared to matched participants who had previously undergone sleeve gastrectomy (SG) and non-surgical controls. RESULTS Exendin-(9-39) infusion raised prandial endogenous glucose production (EGP) response to insulin-induced hypoglycaemia in the GB group but had no consistent effect on EGP response among the SG group or non-surgical controls (p < 0.05 for interaction). The rates of systemic appearance of ingested glucose or prandial glucose utilization did not differ among the three groups or between studies with and without exendin-(9-39) infusion. Blockade of GLP-1R had no effect on insulin secretion or insulin action but enhanced prandial glucagon in all three groups. CONCLUSIONS These results indicate that impaired post-meal glucose counterregulatory response to hypoglycaemia after GB is partly mediated by endogenous GLP-1, highlighting a novel pathogenic mechanism of GLP-1 in developing hypoglycaemia in this population.
Collapse
Affiliation(s)
- Henri Honka
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| | - Richard Peterson
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX
| | - Ralph DeFronzo
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX
| | - Marzieh Salehi
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX
- South Texas Veteran Health Care System, Audie Murphy Hospital, San Antonio, TX
| |
Collapse
|
14
|
Kumar S, Blaha MJ. GLP-1 RA for cardiometabolic risk reduction in obesity - How do we best describe benefit and value? Am J Prev Cardiol 2024; 18:100682. [PMID: 38840935 PMCID: PMC11152602 DOI: 10.1016/j.ajpc.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
How do we assess the overall benefit and value of GLP1-RAs? Current clinical trials often focus narrowly on individual atherosclerotic cardiovascular endpoints like MACE, potentially missing broader GLP-1 RA benefits across multiple comorbidities. Herein, we set out a framework for expanding outcome analyses in large trials that we believe will provide a more holistic understanding of GLP-1 RA benefits across the cardio-kidney-metabolic (CKM) spectrum, guiding patient care, guidelines, and insurance coverage decisions.
Collapse
Affiliation(s)
- Sant Kumar
- MedStar Georgetown University Hospital, Washington, D.C. 20007, United States
| | - Michael J. Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD 21287, United States
| |
Collapse
|
15
|
Vinciguerra F, Romeo LM, Frittitta L, Baratta R. Pharmacological treatment of non-responders following bariatric surgery. Minerva Endocrinol (Torino) 2024; 49:196-204. [PMID: 33792233 DOI: 10.23736/s2724-6507.21.03311-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is a complex chronic disease and requires a long-term multidisciplinary management. Even patients undergoing bariatric surgery, one the most effective treatments for obesity, can have insufficient weight loss (IWL) than expected (primary non responder) or weight regain (WR) after a successful primary procedure (secondary non responder). A poor response represents a challenge of bariatric surgery that can induce persistence or recurrence of obesity-related comorbidities, prejudicing benefits of surgery. Increasing evidence suggests that weight loss medications represent a useful strategy in obesity care also after bariatric surgery procedures. This narrative review summarizes the evidence concerning anti-obesity therapy in the management of no-responders to primary bariatric surgery. Available data on liraglutide (one randomized double-blind placebo-controlled trial, three prospective and three retrospective studies), naltrexone/bupropion (three retrospective studies), orlistat (one case control prospective and one retrospective studies) and topiramate and phentermine (five retrospective studies) have been considered. Available data suggest that weight loss medications could offer a significant adjunctive benefit to lifestyle and behavioral modifications in the life-long management of obesity. Newer treatment modalities including the use of anti-obesity drugs provide patients and healthcare providers with more options in the management of poor response after bariatric surgery.
Collapse
Affiliation(s)
- Federica Vinciguerra
- Section of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy -
| | - Luana M Romeo
- Section of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lucia Frittitta
- Section of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Section of Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Catania, Italy
| | - Roberto Baratta
- Section of Diabetes, Obesity and Dietetic Center, Garibaldi Hospital, Catania, Italy
| |
Collapse
|
16
|
Abdullah bin Ahmed I. A Comprehensive Review on Weight Gain following Discontinuation of Glucagon-Like Peptide-1 Receptor Agonists for Obesity. J Obes 2024; 2024:8056440. [PMID: 38765635 PMCID: PMC11101251 DOI: 10.1155/2024/8056440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Obesity is considered the leading public health problem in the medical sector. The phenotype includes overweight conditions that lead to several other comorbidities that drastically decrease health. Glucagon-like receptor agonists (GLP-1RAs) initially designed for treating type 2 diabetes mellitus (T2DM) had demonstrated weight loss benefits in several clinical trials. In vivo studies showed that GLP-1RA encourages reduced food consumption and consequent weight reduction by stimulating brown fat and enhancing energy outlay through the action of the sympathetic nervous system (SNS) pathways. Additionally, GLP-1RAs were found to regulate food intake through stimulation of sensory neurons in the vagus, interaction with the hypothalamus and hindbrain, and through inflammation and intestinal microbiota. However, the main concern with the use of GLP-1RA treatment was weight gain after withdrawal or discontinuation. We could identify three different ways that could lead to weight gain. Potential factors might include temporary hormonal adjustment in response to weight reduction, the central nervous system's (CNS) incompetence in regulating weight augmentation owing to the lack of GLP-1RA, and β-cell malfunction due to sustained exposure to GLP-1RA. Here, we also review the data from clinical studies that reported withdrawal symptoms. Although the use of GLP-1RA could be beneficial in multiple ways, withdrawal after years has the symptoms reversed. Clinical studies should emphasize the downside of these views we highlighted, and mechanistic studies must be carried out for a better outcome with GLP-1RA from the laboratory to the bedside.
Collapse
Affiliation(s)
- Ibrahim Abdullah bin Ahmed
- Department of Family Medicine, Faculty of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Chen GL, Liu Y, Gao XF, Wu KQ, Yang YK, Chen Y, Peng CG, Jin TH, Huang YB, Zhang YW, Su J, Jiang Q, Guo T, Zhao J, Peng XN, Peng JY, Li SX, Sun YL, Zhang HM, Fu YL, Luo D, Ma Y, Shen ZW, Zhang YT, Shou ZF. Safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of Exendin-4-IgG4-Fc in healthy subjects: A phase 1, single-centre, randomized, double-blind, dose escalation study. Diabetes Obes Metab 2024; 26:1395-1406. [PMID: 38287130 DOI: 10.1111/dom.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
AIM Novel long-acting drugs for type 2 diabetes mellitus may optimize patient compliance and glycaemic control. Exendin-4-IgG4-Fc (E4F4) is a long-acting glucagon-like peptide-1 receptor agonist. This first-in-human study investigated the safety, tolerability, pharmacokinetic, pharmacodynamic and immunogenicity profiles of a single subcutaneous injection of E4F4 in healthy subjects. METHODS This single-centre, randomized, double-blind, placebo-controlled phase 1 clinical trial included 96 subjects in 10 sequential cohorts that were provided successively higher doses of E4F4 (0.45, 0.9, 1.8, 3.15, 4.5, 6.3, 8.1, 10.35, 12.6 and 14.85 mg) or placebo (ChinaDrugTrials.org.cn: ChiCTR2100049732). The primary endpoint was safety and tolerability of E4F4. Secondary endpoints were pharmacokinetic, pharmacodynamic and immunogenicity profiles of E4F4. Safety data to day 15 after the final subject in a cohort had been dosed were reviewed before commencing the next dose level. RESULTS E4F4 was safe and well tolerated among healthy Chinese participants in this study. There was no obvious dose-dependent relationship between frequency, severity or causality of treatment-emergent adverse events. Cmax and area under the curve of E4F4 were dose proportional over the 0.45-14.85 mg dose range. Median Tmax and t1/2 ranged from 146 to 210 h and 199 to 252 h, respectively, across E4F4 doses, with no dose-dependent trends. For the intravenous glucose tolerance test, area under the curve of glucose in plasma from time 0 to 180 min showed a dose-response relationship in the 1.8-10.35 mg dose range, with an increased response at the higher doses. CONCLUSION E4F4 exhibited an acceptable safety profile and linear pharmacokinetics in healthy subjects. The recommended phase 2 dose is 4.5-10.35 mg once every 2 weeks.
Collapse
Affiliation(s)
- Gui-Ling Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yang Liu
- China National Biotec Group Company Limited, Beijing, China
| | - Xue-Feng Gao
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Kai-Qi Wu
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yun-Kai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Yong Chen
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Cong-Gao Peng
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Ting-Han Jin
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yu-Bao Huang
- China National Biotec Group Company Limited, Beijing, China
| | - Yao-Wen Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Jing Su
- China National Biotec Group Company Limited, Beijing, China
| | - Qi Jiang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Tong Guo
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Jie Zhao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Xiang-Nan Peng
- China National Biotec Group Company Limited, Beijing, China
| | - Jing-Yu Peng
- China National Biotec Group Company Limited, Beijing, China
| | - Si-Xiu Li
- China National Biotec Group Company Limited, Beijing, China
| | - Yong-Li Sun
- China National Biotec Group Company Limited, Beijing, China
| | - Hong-Mei Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Yan-Li Fu
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Dan Luo
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Yaru Ma
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| | - Zhen-Wei Shen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yun-Tao Zhang
- China National Biotec Group Company Limited, Beijing, China
| | - Zhang-Fei Shou
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- Lanzhou Institute of Biological Products Company Limited, Lanzhou, China
| |
Collapse
|
18
|
Kono H, Furuya S, Akaike H, Shoda K, Kawaguchi Y, Amemiya H, Kawaida H, Ichikawa D. Rikkunshito increases peripheral incretin-hormone levels in humans and rats. World J Methodol 2024; 14:88518. [PMID: 38577198 PMCID: PMC10989408 DOI: 10.5662/wjm.v14.i1.88518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND It was reported that rikkunshito (TJ-43) improved the cisplatin-induced decreases in the active form of ghrelin in plasma; however, other effects on gastrointestinal hormones have not been investigated. AIM To investigate the effects of TJ-43 on peripheral levels of incretin hormones, including gastric inhibitory polypeptide (GIP) and glucagon-like polypeptide-1 (GLP-1), in humans and rats. METHODS Patients were divided into two groups, namely patients who received TJ-43 immediately following surgery [TJ-43(+) group] and those who received TJ-43 on postoperative day 21 [TJ-43(-) group], and the plasma levels of active GIP and active GLP-1 were assessed. In animal experiments, rats were treated with TJ-43 [rat (r)TJ-43(+) group] or without [rTJ-43(-) group] by gavage for 4 wk, and the plasma active GIP and active GLP-1 levels were measured. The expression of incretin hormones in the gastrointestinal tract and insulin in the pancreas were investigated by immunohistochemistry. Furthermore, the cyclic adenosine monophosphate activities were assessed in pancreatic tissues from rats treated with or without TJ-43 in vivo, and the blood glucose levels and plasma insulin levels were measured in rats treated with or without TJ-43 in oral glucose tolerance tests. RESULTS In humans, the active incretin hormone levels increased, and values were significantly greater in the TJ-43(+) group compared those in the TJ-43(-) group. In rats, the plasma active incretin levels significantly increased in the rTJ-43(+) group compared with those in the rTJ-43(-) group. GIP and GLP-1 expressions were enhanced by TJ-43 treatment. Moreover, plasma insulin levels increased and blood glucose levels were blunted in the rTJ-43(+) group. CONCLUSION The results show that TJ-43 may be beneficial for patients who undergo pancreatic surgery.
Collapse
Affiliation(s)
- Hiroshi Kono
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidenori Akaike
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- The First Department of Surgery, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
19
|
Morettini M, Palumbo MC, Bottiglione A, Danieli A, Del Giudice S, Burattini L, Tura A. Glucagon-like peptide-1 and interleukin-6 interaction in response to physical exercise: An in-silico model in the framework of immunometabolism. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108018. [PMID: 38262127 DOI: 10.1016/j.cmpb.2024.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Glucagon-like peptide 1 (GLP-1) is classically identified as an incretin hormone, secreted in response to nutrient ingestion and able to enhance glucose-stimulated insulin secretion. However, other stimuli, such as physical exercise, may enhance GLP-1 plasma levels, and this exercise-induced GLP-1 secretion is mediated by interleukin-6 (IL-6), a cytokine secreted by contracting skeletal muscle. The aim of the study is to propose a mathematical model of IL-6-induced GLP-1 secretion and kinetics in response to physical exercise of moderate intensity. METHODS The model includes the GLP-1 subsystem (with two pools: gut and plasma) and the IL-6 subsystem (again with two pools: skeletal muscle and plasma); it provides a parameter of possible clinical relevance representing the sensitivity of GLP-1 to IL-6 (k0). The model was validated on mean IL-6 and GLP-1 data derived from the scientific literature and on a total of 100 virtual subjects. RESULTS Model validation provided mean residuals between 0.0051 and 0.5493 pg⋅mL-1 for IL-6 (in view of concentration values ranging from 0.8405 to 3.9718 pg⋅mL-1) and between 0.0133 and 4.1540 pmol⋅L-1 for GLP-1 (in view of concentration values ranging from 0.9387 to 17.9714 pmol⋅L-1); a positive significant linear correlation (r = 0.85, p<0.001) was found between k0 and the ratio between areas under GLP-1 and IL-6 curve, over the virtual subjects. CONCLUSIONS The model accurately captures IL-6-induced GLP-1 kinetics in response to physical exercise.
Collapse
Affiliation(s)
- Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Maria Concetta Palumbo
- Institute for Applied Computing (IAC) "Mauro Picone", National Research Council of Italy, via dei Taurini 19, Rome, 00185, Italy.
| | - Alessandro Bottiglione
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Andrea Danieli
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Simone Del Giudice
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Andrea Tura
- CNR Institute of Neuroscience, Corso Stati Uniti 4, Padova, 35127, Italy.
| |
Collapse
|
20
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
21
|
Deng W, Zhao Z, Zou T, Kuang T, Wang J. Research Advances in Fusion Protein-Based Drugs for Diabetes Treatment. Diabetes Metab Syndr Obes 2024; 17:343-362. [PMID: 38288338 PMCID: PMC10823413 DOI: 10.2147/dmso.s421527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood glucose levels, resulting in multi-organ dysfunction and various complications. Fusion proteins can form multifunctional complexes by combining the target proteins with partner proteins. It has significant advantages in improving the performance of the target proteins, extending their biological half-life, and enhancing patient drug compliance. Fusion protein-based drugs have emerged as promising new drugs in diabetes therapeutics. However, there has not been a systematic review of fusion protein-based drugs for diabetes therapeutics. Hence, we conducted a comprehensive review of published literature on diabetic fusion protein-based drugs for diabetes, with a primary focus on immunoglobulin G (IgG) fragment crystallizable (Fc) region, albumin, and transferrin (TF). This review aims to provide a reference for the subsequent development and clinical application of fusion protein-based drugs in diabetes therapeutics.
Collapse
Affiliation(s)
- Wenying Deng
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Zeyi Zhao
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tao Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tongdong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, People’s Republic of China
| | - Jing Wang
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| |
Collapse
|
22
|
Mashayekhi M, Nian H, Mayfield D, Devin JK, Gamboa JL, Yu C, Silver HJ, Niswender K, Luther JM, Brown NJ. Weight Loss-Independent Effect of Liraglutide on Insulin Sensitivity in Individuals With Obesity and Prediabetes. Diabetes 2024; 73:38-50. [PMID: 37874653 PMCID: PMC10784656 DOI: 10.2337/db23-0356] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Metabolic effects of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and not fully recapitulated by increasing endogenous GLP-1. We tested the hypothesis that GLP-1 receptor (GLP-1R) agonists exert weight loss-independent, GLP-1R-dependent effects that differ from effects of increasing endogenous GLP-1. Individuals with obesity and prediabetes were randomized to receive for 14 weeks the GLP-1R agonist liraglutide, a hypocaloric diet, or the dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin. The GLP-1R antagonist exendin(9-39) and placebo were administered in a two-by-two crossover study during mixed-meal tests. Liraglutide and diet, but not sitagliptin, caused weight loss. Liraglutide improved insulin sensitivity measured by HOMA for insulin resistance (HOMA-IR), the updated HOMA model (HOMA2), and the Matsuda index after 2 weeks, prior to weight loss. Liraglutide decreased fasting and postprandial glucose levels, and decreased insulin, C-peptide, and fasting glucagon levels. In contrast, diet-induced weight loss improved insulin sensitivity by HOMA-IR and HOMA2, but not the Matsuda index, and did not decrease glucose levels. Sitagliptin increased endogenous GLP-1 and GIP values without altering insulin sensitivity or fasting glucose levels, but decreased postprandial glucose and glucagon levels. Notably, sitagliptin increased GIP without altering weight. Acute GLP-1R antagonism increased glucose levels in all groups, increased the Matsuda index and fasting glucagon level during liraglutide treatment, and increased endogenous GLP-1 values during liraglutide and sitagliptin treatments. Thus, liraglutide exerts rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity that are not achieved by increasing endogenous GLP-1. ARTICLE HIGHLIGHTS Metabolic benefits of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and are not fully achieved by increasing endogenous GLP-1 through dipeptidyl peptidase 4 (DPP-4) inhibition. We investigated weight loss-independent, GLP-1 receptor (GLP-1R)-dependent metabolic effects of liraglutide versus a hypocaloric diet or the DPP-4 inhibitor sitagliptin. GLP-1R antagonism with exendin(9-39) was used to assess GLP-1R-dependent effects during mixed meals. Liraglutide improved insulin sensitivity and decreased fasting and postprandial glucose prior to weight loss, and these benefits were reversed by exendin(9-39). GLP-1R agonists exert rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity not achieved by increasing endogenous GLP-1.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Dustin Mayfield
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jessica K. Devin
- UCHealth Endocrinology, Yampa Valley Medical Center, Steamboat Springs, CO
| | - Jorge L. Gamboa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Chang Yu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Heidi J. Silver
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Kevin Niswender
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - James M. Luther
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J. Brown
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
23
|
Lee B, Postnov DD, Sørensen CM, Sosnovtseva O. In vivo mapping of hemodynamic responses mediated by tubuloglomerular feedback in hypertensive kidneys. Sci Rep 2023; 13:21954. [PMID: 38081921 PMCID: PMC10713540 DOI: 10.1038/s41598-023-49327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
The kidney has a sophisticated vascular structure that performs the unique function of filtering blood and managing blood pressure. Tubuloglomerular feedback is an intra-nephron negative feedback mechanism stabilizing single-nephron blood flow, glomerular filtration rate, and tubular flow rate, which is exhibited as self-sustained oscillations in single-nephron blood flow. We report the application of multi-scale laser speckle imaging to monitor global blood flow changes across the kidney surface (low zoom) and local changes in individual microvessels (high zoom) in normotensive and spontaneously hypertensive rats in vivo. We reveal significant differences in the parameters of TGF-mediated hemodynamics and patterns of synchronization. Furthermore, systemic infusion of a glucagon-like-peptide-1 receptor agonist, a potential renoprotective agent, induces vasodilation in both groups but only alters the magnitude of the TGF in Sprague Dawleys, although the underlying mechanisms remain unclear.
Collapse
Affiliation(s)
- Blaire Lee
- Department of Biomedicine, The University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Dmitry D Postnov
- CFIN Department of Clinical Medicine, Aarhus University, 1710, Aarhus, Denmark
| | - Charlotte M Sørensen
- Department of Biomedicine, The University of Copenhagen, 2100, Copenhagen, Denmark
| | - Olga Sosnovtseva
- Department of Biomedicine, The University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
24
|
Yau K, Odutayo A, Dash S, Cherney DZI. Biology and Clinical Use of Glucagon-Like Peptide-1 Receptor Agonists in Vascular Protection. Can J Cardiol 2023; 39:1816-1838. [PMID: 37429523 DOI: 10.1016/j.cjca.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) are incretin agents initially designed for the treatment of type 2 diabetes mellitus but because of pleiotropic actions are now used to reduce cardiovascular disease in people with type 2 diabetes mellitus and in some instances as approved treatments for obesity. In this review we highlight the biology and pharmacology of GLP1RA. We review the evidence for clinical benefit on major adverse cardiovascular outcomes in addition to modulation of cardiometabolic risk factors including reductions in weight, blood pressure, improvement in lipid profiles, and effects on kidney function. Guidance is provided on indications and potential adverse effects to consider. Finally, we describe the evolving landscape of GLP1RA and including novel glucagon-like peptide-1-based dual/polyagonist therapies that are being evaluated for weight loss, type 2 diabetes mellitus, and cardiorenal benefit.
Collapse
Affiliation(s)
- Kevin Yau
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ayodele Odutayo
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Abstract
Incretin hormones (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) play a role in the pathophysiology of type 2 diabetes. Along with their derivatives they have shown therapeutic success in type 2 diabetes, with the potential for further improvements in glycaemic, cardiorenal and body weight-related outcomes. In type 2 diabetes, the incretin effect (greater insulin secretory response after oral glucose than with 'isoglycaemic' i.v. glucose, i.e. with an identical glycaemic stimulus) is markedly reduced or absent. This appears to be because of a reduced ability of GIP to stimulate insulin secretion, related either to an overall impairment of beta cell function or to specific defects in the GIP signalling pathway. It is likely that a reduced incretin effect impacts on postprandial glycaemic excursions and, thus, may play a role in the deterioration of glycaemic control. In contrast, the insulinotropic potency of GLP-1 appears to be much less impaired, such that exogenous GLP-1 can stimulate insulin secretion, suppress glucagon secretion and reduce plasma glucose concentrations in the fasting and postprandial states. This has led to the development of incretin-based glucose-lowering medications (selective GLP-1 receptor agonists or, more recently, co-agonists, e.g. that stimulate GIP and GLP-1 receptors). Tirzepatide (a GIP/GLP-1 receptor co-agonist), for example, reduces HbA1c and body weight in individuals with type 2 diabetes more effectively than selective GLP-1 receptor agonists (e.g. semaglutide). The mechanisms by which GIP receptor agonism may contribute to better glycaemic control and weight loss after long-term exposure to tirzepatide are a matter of active research and may change the pessimistic view that developed after the disappointing lack of insulinotropic activity in people with type 2 diabetes when exposed to GIP in short-term experiments. Future medications that stimulate incretin hormone and other receptors simultaneously may have the potential to further increase the ability to control plasma glucose concentrations and induce weight loss.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology, Metabolism Section, Medical Department I, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
26
|
Salehi M, Tripathy D, Peterson R, Honka H, Pezzica S, DeFronzo R, Gastaldelli A. Bariatric Surgery Alters the Postprandial Recovery From Hypoglycemia, Mediated by Cholinergic Signal. Diabetes 2023; 72:1374-1383. [PMID: 37467435 PMCID: PMC10545558 DOI: 10.2337/db23-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Roux-en-Y gastric bypass (GB) and sleeve gastrectomy (SG) surgeries increase prandial insulin and glucagon secretion but reduce the endogenous glucose production (EGP) response to hypoglycemia in comparison with control subjects who had not undergone gastric surgery (CN), suggesting that parasympathetic nervous system (PNS) plays a role. Here, we investigated the effect of acute PNS blockade on the post-meal counterregulatory response to insulin-induced hypoglycemia in GB and SG compared with CN. Glucose kinetics and islet cell secretion were measured in nine subjects without diabetes with GB and seven with SG and five CN during hyperinsulinemic-hypoglycemic clamp (∼3.2 mmol/L) combined with meal ingestion on two separate days with and without intravenous atropine infusion. Glucose and hormonal levels were similar at baseline and during steady-state hypoglycemia before meal ingestion in three groups and unaffected by atropine. Atropine infusion diminished prandial systemic appearance of ingested glucose (RaO) by 30%, EGP by 40%, and glucagon response to hypoglycemia by 90% in CN. In GB or SG, blocking PNS had no effect on the RaO or meal-induced hyperglucagonemia but increased EGP in SG without any effect in GB (P < 0.05 interaction). These findings indicate that cholinergic signal contributes to the recovery from hypoglycemia by meal consumption in humans. However, bariatric surgery dissipates PNS-mediated physiologic responses to hypoglycemia in the fed state. ARTICLE HIGHLIGHTS Rerouted gut after Roux-en-Y gastric bypass (GB) and, to a lesser degree, after sleeve gastrectomy (SG) leads to larger glucose excursion and lower nadir glucose, predisposing individuals to hypoglycemia. Despite prandial hyperglucagonemia, endogenous glucose production response to hypoglycemia is reduced after GB or SG. Parasympathetic nervous system (PNS) activity plays a key role in regulation of glucose kinetics and islet cell function. We examined the effect of acute PNS blockade on counterregulatory glucose and islet cell response to meal ingestion during insulin-induced hypoglycemia among GB, SG, and control subjects who had not had gastric surgery. Our findings demonstrate that cholinergic signal is critical in the recovery from hypoglycemia by meal ingestion in humans who have not had gastric surgery, although prandial PNS-mediated physiologic responses to hypoglycemia are differentially changed by GB and SG.
Collapse
Affiliation(s)
- Marzieh Salehi
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
- Audie L. Murphy Memorial Veterans’ Hospital, South Texas Veterans Health Care System, San Antonio, TX
| | - Devjit Tripathy
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Richard Peterson
- Department of Surgery, The University of Texas at San Antonio, San Antonio, TX
| | - Henri Honka
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Samantha Pezzica
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
| | - Amalia Gastaldelli
- Division of Diabetes, The University of Texas at San Antonio, San Antonio, TX
- Cardiometabolic Risk Unit, CNR Institute of Clinical Physiology, Pisa, Italy
| |
Collapse
|
27
|
Goldney J, Sargeant JA, Davies MJ. Incretins and microvascular complications of diabetes: neuropathy, nephropathy, retinopathy and microangiopathy. Diabetologia 2023; 66:1832-1845. [PMID: 37597048 PMCID: PMC10474214 DOI: 10.1007/s00125-023-05988-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/21/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs, incretin mimetics) and dipeptidyl peptidase-4 inhibitors (DPP-4is, incretin enhancers) are glucose-lowering therapies with proven cardiovascular safety, but their effect on microvascular disease is not fully understood. Both therapies increase GLP-1 receptor agonism, which is associated with attenuation of numerous pathological processes that may lead to microvascular benefits, including decreased reactive oxygen species (ROS) production, decreased inflammation and improved vascular function. DPP-4is also increase stromal cell-derived factor-1 (SDF-1), which is associated with neovascularisation and tissue repair. Rodent studies demonstrate several benefits of these agents in the prevention or reversal of nephropathy, retinopathy and neuropathy, but evidence from human populations is less clear. For nephropathy risk in human clinical trials, meta-analyses demonstrate that GLP-1RAs reduce the risk of a composite renal outcome (doubling of serum creatinine, eGFR reduction of 30%, end-stage renal disease or renal death), whereas the benefits of DPP-4is appear to be limited to reductions in the risk of albuminuria. The relationship between GLP-1RAs and retinopathy is less clear. Many large trials and meta-analyses show no effect, but an observed increase in the risk of retinopathy complications with semaglutide therapy (a GLP-1RA) in the SUSTAIN-6 trial warrants caution, particularly in individuals with baseline retinopathy. Similarly, DPP-4is are associated with increased retinopathy risk in both trials and meta-analysis. The association between GLP-1RAs and peripheral neuropathy is unclear due to little trial evidence. For DPP-4is, one trial and several observational studies show a reduced risk of peripheral neuropathy, with others reporting no effect. Evidence in other less-established microvascular outcomes, such as microvascular angina, cerebral small vessel disease, skeletal muscle microvascular disease and autonomic neuropathies (e.g. cardiac autonomic neuropathy, gastroparesis, erectile dysfunction), is sparse. In conclusion, GLP-1RAs are protective against nephropathy, whereas DPP-4is are protective against albuminuria and potentially peripheral neuropathy. Caution is advised with DPP-4is and semaglutide, particularly for patients with background retinopathy, due to increased risk of retinopathy. Well-designed trials powered for microvascular outcomes are needed to clarify associations of incretin therapies and microvascular diseases.
Collapse
Affiliation(s)
- Jonathan Goldney
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK.
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
- Leicester Diabetes Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
28
|
Sheth S, Patel A, Foreman M, Mumtaz M, Reddy A, Sharaf R, Sheth S, Lucke-Wold B. The protective role of GLP-1 in neuro-ophthalmology. EXPLORATION OF DRUG SCIENCE 2023; 1:221-238. [PMID: 37711214 PMCID: PMC10501042 DOI: 10.37349/eds.2023.00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 09/16/2023]
Abstract
Despite recent advancements in the field of neuro-ophthalmology, the rising rates of neurological and ophthalmological conditions, mismatches between supply and demand of clinicians, and an aging population underscore the urgent need to explore new therapeutic approaches within the field. Glucagon-like peptide 1 receptor agonists (GLP-1RAs), traditionally used in the treatment of type 2 diabetes, are becoming increasingly appreciated for their diverse applications. Recently, GLP-1RAs have been approved for the treatment of obesity and recognized for their cardioprotective effects. Emerging evidence indicates some GLP-1RAs can cross the blood-brain barrier and may have neuroprotective effects. Therefore, this article aims to review the literature on the neurologic and neuro-ophthalmic role of glucagon-like peptide 1 (GLP-1). This article describes GLP-1 peptide characteristics and the mechanisms mediating its known role in increasing insulin, decreasing glucagon, delaying gastric emptying, and promoting satiety. This article identifies the sources and targets of GLP-1 in the brain and review the mechanisms which mediate its neuroprotective effects, as well as implications for Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, the preclinical works which unravel the effects of GLP-1 in ocular dynamics and the preclinical literature regarding GLP-1RA use in the management of several neuro-ophthalmic conditions, including diabetic retinopathy (DR), glaucoma, and idiopathic intracranial hypertension (IIH) are discussed.
Collapse
Affiliation(s)
- Sohum Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Marco Foreman
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Mohammed Mumtaz
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Akshay Reddy
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Ramy Sharaf
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Siddharth Sheth
- College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
29
|
Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, Dean ED, Campbell JE, Bloom SR, Tan TMM, Knop FK, Müller TD. 100 years of glucagon and 100 more. Diabetologia 2023; 66:1378-1394. [PMID: 37367959 DOI: 10.1007/s00125-023-05947-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Filip K Knop
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| |
Collapse
|
30
|
Weiler N, Bojunga J. Ernährung bei fortgeschrittener Leberzirrhose und perioperativ bei Lebertransplantation. DIE GASTROENTEROLOGIE 2023; 18:308-316. [DOI: 10.1007/s11377-023-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 01/04/2025]
|
31
|
Panfili E, Frontino G, Pallotta MT. GLP-1 receptor agonists as promising disease-modifying agents in WFS1 spectrum disorder. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1171091. [PMID: 37333802 PMCID: PMC10275359 DOI: 10.3389/fcdhc.2023.1171091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
WFS1 spectrum disorder (WFS1-SD) is a rare monogenic neurodegenerative disorder whose cardinal symptoms are childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus, and neurological signs ranging from mild to severe. The prognosis is poor as most patients die prematurely with severe neurological disabilities such as bulbar dysfunction and organic brain syndrome. Mutation of the WFS1 gene is recognized as the prime mover of the disease and responsible for a dysregulated ER stress signaling, which leads to neuron and pancreatic β-cell death. There is no currently cure and no treatment that definitively arrests the progression of the disease. GLP-1 receptor agonists appear to be an efficient way to reduce elevated ER stress in vitro and in vivo, and increasing findings suggest they could be effective in delaying the progression of WFS1-SD. Here, we summarize the characteristics of GLP-1 receptor agonists and preclinical and clinical data obtained by testing them in WFS1-SD as a feasible strategy for managing this disease.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giulio Frontino
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Hospital, Milano, Italy
| | | |
Collapse
|
32
|
Wibawa IDN, Mariadi IK, Somayana G, Krisnawardani Kumbara CIY, Sindhughosa DA. Diabetes and fatty liver: Involvement of incretin and its benefit for fatty liver management. World J Diabetes 2023; 14:549-559. [PMID: 37273247 PMCID: PMC10237000 DOI: 10.4239/wjd.v14.i5.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Fatty liver disease is defined as liver condition characterized by hepatic steatosis, closely related to pathological conditions in type 2 diabetes and obesity. The high prevalence of fatty liver disease in obese patients with type 2 diabetes reached 70%, reflecting the importance of these conditions with fatty liver. Although the exact pathological mechanism of fatty liver disease, specifically non-alcoholic fatty liver disease (NAFLD) remains not completely revealed, insulin resistance is suggested as the major mechanism that bridged the development of NAFLD. Indeed, loss of the incretin effect leads to insulin resistance. Since incretin is closely related to insulin resistance and the resistance of insulin associated with the development of fatty liver disease, this pathway suggested a potential me-chanism that explains the association between type 2 diabetes and NAFLD. Furthermore, recent studies indicated that NAFLD is associated with impaired glucagon-like peptide-1, resulting in decreased incretin effect. Nevertheless, improving the incretin effect becomes a reasonable approach to manage fatty liver disease. This review elucidates the involvement of incretin in fatty liver disease and recent studies of incretin as the management for fatty liver disease.
Collapse
Affiliation(s)
- I Dewa Nyoman Wibawa
- Department of Internal Medicine, Gastroentero-hepatology Division, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| | - I Ketut Mariadi
- Department of Internal Medicine, Gastroentero-hepatology Division, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| | - Gde Somayana
- Department of Internal Medicine, Gastroentero-hepatology Division, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| | | | - Dwijo Anargha Sindhughosa
- Internal Medicine Resident, Udayana University, Faculty of Medicine, Denpasar 80233, Bali, Indonesia
| |
Collapse
|
33
|
Rasalam R, Abdo S, Deed G, O'Brien R, Overland J. Early type 2 diabetes treatment intensification with glucagon-like peptide-1 receptor agonists in primary care: An Australian perspective on guidelines and the global evidence. Diabetes Obes Metab 2023; 25:901-915. [PMID: 36541153 DOI: 10.1111/dom.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Early and intensive management of type 2 diabetes has been shown to delay disease progression, reduce the risk of cardiorenal complications and prolong time to treatment failure. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are being increasingly recognized for their potential in early disease management, with recent guideline updates recommending second-line use of this injectable drug class alongside oral glucose-lowering drugs. GLP-1RAs target at least six of the eight core defects implicated in the pathogenesis of type 2 diabetes and offer significant glycaemic and weight-related improvements over other second-line agents in head-to-head trials. In addition, placebo-controlled clinical trials have shown cardiovascular protection with GLP-1RA use. Even so, this therapeutic class is underused in primary care, largely owing to clinical inertia and patient-related barriers to early intensification with GLP-1RAs. Fortunately, clinicians can overcome barriers to treatment acceptance through patient education and training, and management of treatment expectations. In this review we comment on global and Australian guideline updates and evidence in support of early intensification with this therapeutic class, and provide clinicians with practical advice for GLP-1RA use in primary care.
Collapse
Affiliation(s)
- Roy Rasalam
- College of Medicine, James Cook University, Townsville, Queensland, Australia
| | - Sarah Abdo
- Department of Diabetes and Endocrinology, Bankstown-Lidcombe Hospital, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Gary Deed
- Monash University, Melbourne, Victoria, Australia
- HealthcarePlus Medical, Carindale, Queensland, Australia
| | - Richard O'Brien
- Austin Clinical School, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Jane Overland
- Total Diabetes Care, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Piccini S, Favacchio G, Panico C, Morenghi E, Folli F, Mazziotti G, Lania AG, Mirani M. Time-dependent effect of GLP-1 receptor agonists on cardiovascular benefits: a real-world study. Cardiovasc Diabetol 2023; 22:69. [PMID: 36966321 PMCID: PMC10039680 DOI: 10.1186/s12933-023-01800-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have shown cardiovascular benefits in cardiovascular outcome trials in type 2 diabetes mellitus. However, the most convincing evidence was obtained in subjects with established cardiovascular (CV) disease. We analyzed the determinants of GLP-1 RA-mediated CV protection in a real-world population of persons with type 2 diabetes with and without a history of CV events with long-term follow-up. METHODS Retrospective cohort study of 550 individuals with type 2 diabetes (395 in primary CV prevention, 155 in secondary CV prevention), followed at a single center after the first prescription of a GLP-1 RA between 2009 and 2019. CV and metabolic outcomes were assessed. RESULTS Median duration of follow-up was 5.0 years (0.25-10.8) in primary prevention and 3.6 years (0-10.3) in secondary prevention, with a median duration of treatment of 3.2 years (0-10.8) and 2.5 years (0-10.3) respectively. In the multivariable Cox regression model considering GLP-1 RA treatment as a time-dependent covariate, in the primary prevention group, changes in BMI and glycated hemoglobin did not have an impact on MACE risk, while age at the time of GLP-1 initiation (HR 1.08, 95% CI 1.03-1.14, p = 0.001) and GLP-1 RA cessation by time (HR 3.40, 95% CI 1.82-6.32, p < 0.001) increased the risk of MACE. Regarding the secondary prevention group, only GLP-1 RA cessation by time (HR 2.71, 95% CI 1.46-5.01, p = 0.002) increased the risk of MACE. With respect to those who withdrew treatment, subjects who continued the GLP-1 RA had significantly greater weight loss and lower glycated hemoglobin levels during follow-up. CONCLUSIONS In this real-world type 2 diabetes population, discontinuation of GLP-1 RA treatment was associated to a higher risk of major cardiovascular events, in both subjects with and without a history of CV events.
Collapse
Affiliation(s)
- Sara Piccini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giuseppe Favacchio
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Department of Cardiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Emanuela Morenghi
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Franco Folli
- Endocrinology and Metabolism, Department of Health Science, Università Degli Studi di Milano, Milan, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Andrea Gerardo Lania
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Marco Mirani
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
35
|
Mazaheri T, Ansari S, Nallagonda M, Kollmann L, Nickel F, Seyfried F, Miras AD. [Pharmacotherapy of obesity-Competition to bariatric surgery or a meaningful supplement?]. CHIRURGIE (HEIDELBERG, GERMANY) 2023; 94:497-505. [PMID: 36918431 DOI: 10.1007/s00104-023-01830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Abstract
Obesity is a complex chronic disease and requires a long-term multimodal approach. The current treatment algorithm for treatment of obesity mainly consists of a stepwise approach, which starts with a lifestyle intervention followed by or combined with medication treatment, whereas bariatric surgery is often reserved for the last option. This article provides an overview of the currently available conservative medicinal treatment regimens and the currently approved medications as well as medications currently undergoing approval studies with respect to the efficacy and possible side effects. Special attention is paid to the importance of combination treatment of pharmacotherapy and surgery in the sense of a multimodal treatment. The data so far show that using a multimodal approach an improvement in the long-term weight loss and metabolic benefits can be achieved for the patients.
Collapse
Affiliation(s)
- Tina Mazaheri
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, Großbritannien
| | - Saleem Ansari
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, Großbritannien
| | - Madhavi Nallagonda
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, Großbritannien
| | - Lars Kollmann
- Klinik für Allgemein‑, Viszeral‑, Transplantation‑, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Felix Nickel
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg Eppendorf, Hamburg, Deutschland
| | - Florian Seyfried
- Klinik für Allgemein‑, Viszeral‑, Transplantation‑, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland. .,Head Upper Gastrointestinal and Bariatric Surgery, Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery; Center of Operative Medicine (ZOM), University Hospital of Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Deutschland.
| | - Alexander Dimitri Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, Großbritannien.,School of Medicine, Ulster University, Londonderry, Ulster, Großbritannien
| |
Collapse
|
36
|
Di Giuseppe G, Ciccarelli G, Soldovieri L, Capece U, Cefalo CMA, Moffa S, Nista EC, Brunetti M, Cinti F, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. First-phase insulin secretion: can its evaluation direct therapeutic approaches? Trends Endocrinol Metab 2023; 34:216-230. [PMID: 36858875 DOI: 10.1016/j.tem.2023.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Our work is aimed at unraveling the role of the first-phase insulin secretion in the natural history of type 2 diabetes mellitus (T2DM) and its interrelationship with insulin resistance and with β cell function and mass. Starting from pathophysiology, we investigate the impact of impaired secretion on glucose homeostasis and explore postmeal hyperglycemia as the main clinical feature, underlining its relevance in the management of the disease. We also review dietary and pharmacological approaches aimed at improving early secretory defects and restoring residual β cell function. Furthermore, we discuss possible approaches to detect early secretory defects in clinical practice. By providing a journey through human and animal data, we attempt a unification of the recent evidence in an effort to offer a new outlook on β cell secretion.
Collapse
Affiliation(s)
- Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M A Cefalo
- Department of Clinical and Molecular Medicine, University of Rome - Sapienza, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico C Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
37
|
Zhao Y, Zhao W, Bu H, Toshiyoshi M, Zhao Y. Liraglutide on type 2 diabetes mellitus with nonalcoholic fatty liver disease: A systematic review and meta-analysis of 16 RCTs. Medicine (Baltimore) 2023; 102:e32892. [PMID: 36820578 PMCID: PMC9907937 DOI: 10.1097/md.0000000000032892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common comorbidity of type 2 diabetes mellitus (T2DM). Our aim is to investigate the effects of liraglutide on T2DM with NAFLD. METHODS Relevant articles published from the earliest publication to March 2022 were selected from several databases. The Cochrane Collaboration's RevMan software was used for the analysis. RESULTS Sixteen studies are selected for this meta-analysis, which includes totally 634 patients in the treatment group and 630 patients in the control group. As a result, 14 studies show that fasting plasma glucose levels of the experimental group are lower than that of the control group; 15 studies show that glycosylated hemoglobin A1c levels of the experimental group are lower than that of the control group; 13 studies show that triglyceride levels of the experimental group are lower than that of the control group; twelve studies show that total cholesterol levels of the experimental group are lower than that of the control group; 10 studies show that alanine aminotransferase levels of the experimental group is lower than that of the control group; 10 studies show that no significant difference in changes in aspartate transaminase between 2 groups; 13 studies show that low density lipoprotein cholesterol levels of the experimental group is lower than that of the control group; 9 studies show that no significant difference in changes in high density lipoprotein cholesterol between 2 groups; 7 studies mentioned adverse effects and the difference is significant. CONCLUSION Liraglutide is potentially curative for T2DM with NAFLD.
Collapse
Affiliation(s)
- Yan Zhao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenli Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
- Liver Center, Saga University Hospital, Saga University, Saga, Japan
| | - Huaien Bu
- School of Health Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maeda Toshiyoshi
- International Education College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
- * Correspondence: Ye Zhao, Department of Public Health, International College, Krirk University, Bangkok 10220, Thailand (e-mail: )
| |
Collapse
|
38
|
de Laat MA, Fitzgerald DM, Harris PA, Bailey SR. A glucagon-like peptide-1 receptor antagonist reduces the insulin response to a glycemic meal in ponies. J Anim Sci 2023; 101:skad389. [PMID: 38066683 PMCID: PMC10724109 DOI: 10.1093/jas/skad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
High plasma concentrations of insulin can cause acute laminitis. Ponies and horses with insulin dysregulation (ID) exhibit marked hyperinsulinemia in response to dietary hydrolyzable carbohydrates. Glucagon-like peptide-1 (GLP-1), an incretin hormone released from the gastrointestinal tract, enhances insulin release, and is increased postprandially in ponies with ID. The aim of this study was to determine whether blocking the GLP-1 receptor reduces the insulin response to a high glycemic meal. Five adult ponies were adapted to a cereal meal and then given two feed challenges 24 h apart of a meal containing 3 g/kg BW micronized maize. Using a randomized cross-over design all ponies received both treatments, where one of the feeds was preceded by the IV administration of a GLP-1 receptor blocking peptide, Exendin-3 (9-39) amide (80 µg/kg), and the other feed by a sham treatment of peptide diluent only. Blood samples were taken before feeding and peptide administration, and then at 30-min intervals via a jugular catheter for 6 h for the measurement of insulin, glucose, and active GLP-1. The peptide and meal challenge caused no adverse effects, and the change in plasma glucose in response to the meal was not affected (P = 0.36) by treatment: peak concentration 9.24 ± 1.22 and 9.14 ± 1.08 mmol/L without and with the antagonist, respectively. Similarly, there was no effect (P = 0.35) on plasma active GLP-1 concentrations: peak concentration 14.3 ± 1.36 pM and 13.7 ± 1.97 pM without and with the antagonist, respectively. However, the antagonist caused a significant decrease in the area under the curve for insulin (P = 0.04), and weak evidence (P = 0.06) of a reduction in peak insulin concentration (456 ± 147 μIU/mL and 370 ± 146 μIU/mL without and with the antagonist, respectively). The lower overall insulin response to the maize meal after treatment with the antagonist demonstrates that blocking the GLP-1 receptor partially reduced insulin production in response to a high starch, high glycemic index, diet. Using a different methodological approach to published studies, this study also confirmed that GLP-1 does contribute to the excessive insulin production in ponies with ID.
Collapse
Affiliation(s)
- Melody A de Laat
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, UK
| | - Simon R Bailey
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Hinnen D, Kruger D, Magwire M. Type 2 diabetes and cardiovascular disease: risk reduction and early intervention. Postgrad Med 2023; 135:2-12. [PMID: 36154802 DOI: 10.1080/00325481.2022.2126235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
People with type 2 diabetes (T2D) have a higher risk of cardiovascular (CV) disease (CVD) than those without. This increased risk begins with pre-diabetes, potentially 7-10 years before T2D is diagnosed. Selecting medication for patients with T2D should focus on reducing the risk of CVD and established CVD. Within the last decade, several antihyperglycemic agents with proven CV benefit have been approved for the treatment of hyperglycemia and for the prevention of primary and secondary CV events, including glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors. T2D treatment guidelines recommend that an antihyperglycemic agent with proven CV benefit should be used after metformin in patients with high risk of or established CVD, regardless of glycated hemoglobin levels. Despite the availability of antihyperglycemic agents with proven CV benefit, and guidelines on when to use them, less than one in four patients with T2D and CVD receive this type of therapy. These findings suggest a potential gap between current recommendations and clinical practice. This article reviews the approved agents with CV indications, with a focus on injectable GLP-1RAs, and their place in the T2D treatment paradigm according to current guidelines. We aim to provide primary healthcare providers with in-depth information on subsets of patients who would benefit from this type of therapy and when it should be initiated, taking into consideration safety and tolerability and other disease factors. An individualized treatment approach is increasingly recommended in the management of T2D, employing a shared decision-making strategy between patients and healthcare professionals.
Collapse
Affiliation(s)
- Debbie Hinnen
- University of Colorado Health, Colorado Springs, Colorado, USA
| | - Davida Kruger
- Henry Ford Health System, Division of Endocrinology, Diabetes, Bone, and Mineral Disease, Detroit, Michigan, USA
| | - Melissa Magwire
- Saint Luke's Mid-America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
40
|
Wang Y, Wu Y, Wang A, Wang A, Alkhalidy H, Helm R, Zhang S, Ma H, Zhang Y, Gilbert E, Xu B, Liu D. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front Nutr 2022; 9:1051452. [PMID: 36386896 PMCID: PMC9664001 DOI: 10.3389/fnut.2022.1051452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yajun Wu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aihua Wang
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Helm
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Gilbert
- School of Animal Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Drug Discovery Center, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
41
|
Wołos-Kłosowicz K, Matuszewski W, Rutkowska J, Krankowska K, Bandurska-Stankiewicz E. Will GLP-1 Analogues and SGLT-2 Inhibitors Become New Game Changers for Diabetic Retinopathy? J Clin Med 2022; 11:6183. [PMID: 36294503 PMCID: PMC9604821 DOI: 10.3390/jcm11206183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus (DM), estimated to affect approximately one-third of the diabetic population, and the most common cause of preventable vision loss. The available treatment options focus on the late stages of this complication, while in the early stages there is no dedicated treatment besides optimizing blood pressure, lipid and glycemic control; DR is still lacking effective preventive methods. glucagon-like peptide 1 receptor agonists (GLP-1 Ras) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors have a proven effect in reducing risk factors of DR and numerous experimental and animal studies have strongly established its retinoprotective potential. Both drug groups have the evident potential to become a new therapeutic option for the prevention and treatment of diabetic retinopathy and there is an urgent need for further comprehensive clinical trials to verify whether these findings are translatable to humans.
Collapse
Affiliation(s)
- Katarzyna Wołos-Kłosowicz
- Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-900 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
42
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
43
|
Pavan J, Dalla Man C, Herzig D, Bally L, Del Favero S. Gluclas: A software for computer-aided modulation of glucose infusion in glucose clamp experiments. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107104. [PMID: 36088892 DOI: 10.1016/j.cmpb.2022.107104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The glucose clamp (GC) is an experimental technique for assessing several aspects of glucose metabolism. In these experiments, investigators face the non-trivial challenge of accurately adjusting the rate of intravenous glucose infusion to drive subjects' blood glucose (BG) concentration towards a desired plateau level. In this work we present Gluclas, an open-source software to support researchers in the modulation of glucose infusion rate (GIR) during GC experiments. METHODS Gluclas uses a proportional-integrative-derivative controller to provide GIR suggestions based on BG measurements. The controller embeds an anti-wind-up scheme to account for actuator physical limits and suitable corrections of control action to accommodate for possible sampling jitter due to manual measurement and actuation. The software also provides a graphic user interface to increase its usability. A preliminary validation of the controller is performed for different clamp scenarios (hyperglycemic, euglycemic, hypoglycemic) on a simulator of glucose metabolism in healthy subjects, which also includes models of measurement error and sampling delay for increased realism. In silico trials are performed on 50 virtual subjects. We also report the results of the first in-vivo application of the software in three subjects undergoing a hypoglycemic clamp. RESULTS In silico, during the plateau period, the coefficient of variation (CV) is in median below 5% for every protocol, with 5% being considered the threshold for sufficient quality. In terms of median [5th percentile, 95th percentile], average BG level during the plateau period is 12.18 [11.58 - 12.53] mmol/l in the hyperglycemic clamp (target: 12.4 mmol/), 4.92 [4.51 - 5.14] mmol/l in the euglycemic clamp (target: 5.5 mmol/) and 2.38 [2.33 - 2.64] in the hypoglycemic clamp (target: 2.5 mmol/). Results in vivo are consistent with those obtained in silico during the plateau period: average BG levels are between 2.56 and 2.68 mmol/l (target: 2.5 mmol/l); CV is below 5% for all three experiments. CONCLUSIONS Gluclas offered satisfactory control for tested GC protocols. Although its safety and efficacy need to be further validated in vivo, this preliminary validation suggest that Gluclas offers a reliable and non-expensive solution for reducing investigator bias and improving the quality of GC experiments.
Collapse
Affiliation(s)
- J Pavan
- Department of Information Engineering, University of Padova, Padova, Italy
| | - C Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - D Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - L Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - S Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
44
|
Nauck MA, D'Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol 2022; 21:169. [PMID: 36050763 PMCID: PMC9438179 DOI: 10.1186/s12933-022-01604-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Tirzepatide is the first dual GIP/GLP-1 receptor co-agonist approved for the treatment of type 2 diabetes in the USA, Europe, and the UAE. Tirzepatide is an acylated peptide engineered to activate the GIP and GLP-1 receptors, key mediators of insulin secretion that are also expressed in regions of the brain that regulate food intake. Five clinical trials in type 2-diabetic subjects (SURPASS 1-5) have shown that tirzepatide at 5-15 mg per week reduces both HbA1c (1.24 to 2.58%) and body weight (5.4-11.7 kg) by amounts unprecedented for a single agent. A sizable proportion of patients (23.0 to 62.4%) reached an HbA1c of < 5.7% (which is the upper limit of the normal range indicating normoglycaemia), and 20.7 to 68.4% lost more than 10% of their baseline body weight. Tirzepatide was significantly more effective in reducing HbA1c and body weight than the selective GLP-1 RA semaglutide (1.0 mg per week), and titrated basal insulin. Adverse events related to tirzepatide were similar to what has been reported for selective GLP-1RA, mainly nausea, vomiting, diarrhoea, and constipation, that were more common at higher doses. Cardiovascular events have been adjudicated across the whole study program, and MACE-4 (nonfatal myocardial infarction, non-fatal stroke, cardiovascular death and hospital admission for angina) events tended to be reduced over up to a 2 year-period, albeit with low numbers of events. For none of the cardiovascular events analysed (MACE-4, or its components) was a hazard ratio > 1.0 vs. pooled comparators found in a meta-analysis covering the whole clinical trial program, and the upper bounds of the confidence intervals for MACE were < 1.3, fulfilling conventional definitions of cardiovascular safety. Tirzepatide was found to improve insulin sensitivity and insulin secretory responses to a greater extent than semaglutide, and this was associated with lower prandial insulin and glucagon concentrations. Both drugs caused similar reductions in appetite, although tirzepatide caused greater weight loss. While the clinical effects of tirzepatide have been very encouraging, important questions remain as to the mechanism of action. While GIP reduces food intake and body weight in rodents, these effects have not been demonstrated in humans. Moreover, it remains to be shown that GIPR agonism can improve insulin secretion in type 2 diabetic patients who have been noted in previous studies to be unresponsive to GIP. Certainly, the apparent advantage of tirzepatide, a dual incretin agonist, over GLP-1RA will spark renewed interest in the therapeutic potential of GIP in type 2 diabetes, obesity and related co-morbidities.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, Katholisches Klinikum Bochum gGmbH, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791, Bochum, Germany.
| | - David A D'Alessio
- Division of Endocrinology and Metabolism, Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| |
Collapse
|
45
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Spiliotis II, Chalk R, Gough S, Rorsman P. Reducing hyperglucagonaemia in type 2 diabetes using low-dose glibenclamide: Results of the LEGEND-A pilot study. Diabetes Obes Metab 2022; 24:1671-1675. [PMID: 35491519 PMCID: PMC9543075 DOI: 10.1111/dom.14740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Ioannis I. Spiliotis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxford
| | - Rod Chalk
- Centre for Medicines DiscoveryUniversity of OxfordOxfordUK
| | - Stephen Gough
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxford
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of MedicineUniversity of OxfordOxford
| |
Collapse
|
47
|
Rezaie P, Bitarafan V, Rose BD, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Quinine Effects on Gut and Pancreatic Hormones and Antropyloroduodenal Pressures in Humans-Role of Delivery Site and Sex. J Clin Endocrinol Metab 2022; 107:e2870-e2881. [PMID: 35325161 PMCID: PMC9250303 DOI: 10.1210/clinem/dgac182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 02/07/2023]
Abstract
CONTEXT The bitter substance quinine modulates the release of a number of gut and gluco-regulatory hormones and upper gut motility. As the density of bitter receptors may be higher in the duodenum than the stomach, direct delivery to the duodenum may be more potent in stimulating these functions. The gastrointestinal responses to bitter compounds may also be modified by sex. BACKGROUND We have characterized the effects of intragastric (IG) versus intraduodenal (ID) administration of quinine hydrochloride (QHCl) on gut and pancreatic hormones and antropyloroduodenal pressures in healthy men and women. METHODS 14 men (26 ± 2 years, BMI: 22.2 ± 0.5 kg/m2) and 14 women (28 ± 2 years, BMI: 22.5 ± 0.5 kg/m2) received 600 mg QHCl on 2 separate occasions, IG or ID as a 10-mL bolus, in randomized, double-blind fashion. Plasma ghrelin, cholecystokinin, peptide YY, glucagon-like peptide-1 (GLP-1), insulin, glucagon, and glucose concentrations and antropyloroduodenal pressures were measured at baseline and for 120 minutes following QHCl. RESULTS Suppression of ghrelin (P = 0.006), stimulation of cholecystokinin (P = 0.030), peptide YY (P = 0.017), GLP-1 (P = 0.034), insulin (P = 0.024), glucagon (P = 0.030), and pyloric pressures (P = 0.050), and lowering of glucose (P = 0.001) were greater after ID-QHCl than IG-QHCl. Insulin stimulation (P = 0.021) and glucose reduction (P = 0.001) were greater in females than males, while no sex-associated effects were found for cholecystokinin, peptide YY, GLP-1, glucagon, or pyloric pressures. CONCLUSION ID quinine has greater effects on plasma gut and pancreatic hormones and pyloric pressures than IG quinine in healthy subjects, consistent with the concept that stimulation of small intestinal bitter receptors is critical to these responses. Both insulin stimulation and glucose lowering were sex-dependent.
Collapse
Affiliation(s)
- Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide SA 5005, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
48
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 525] [Impact Index Per Article: 175.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
49
|
Gautier T, Silwal R, Saremi A, Boss A, Breton MD. Modeling the Effect of Subcutaneous Lixisenatide on Glucoregulatory Endocrine Secretions and Gastric Emptying in Type 2 Diabetes to Simulate the Effect of iGlarLixi Administration Timing on Blood Sugar Profiles. J Diabetes Sci Technol 2022; 16:428-433. [PMID: 34013770 PMCID: PMC8847729 DOI: 10.1177/19322968211015671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND As type 2 diabetes (T2D) progresses, intensification to combination therapies, such as iGlarLixi (a fixed-ratio GLP-1 RA and basal insulin combination), may be required. Here a simulation study was used to assess the effect of iGlarLixi administration timing (am vs pm) on blood sugar profiles. METHODS Models of lixisenatide were built with a selection procedure, optimizing measurement fits and model complexity, and were included in a pre-existing T2D simulation platform containing glargine models. With the resulting tool, a simulated trial was conducted with 100 in-silico participants with T2D. Individuals were given iGLarLixi either before breakfast or before an evening meal for 2 weeks and daily glycemic profiles were analyzed. In the model, breakfast was considered the largest meal of the day. RESULTS A similar percentage of time within 24 hours was spent with blood sugar levels between 70 to 180 mg/dL when iGlarLixi was administered pre-breakfast or pre-evening meal (73% vs 71%, respectively). Overall percent of time with blood glucose levels above 180 mg/dL within a 24-hour period was similar when iGlarLixi was administered pre-breakfast or pre-evening meal (26% vs 28%, respectively). Rates of hypoglycemia were low in both regimens, with a blood glucose concentration of below 70 mg/dL only observed for 1% of the 24-hour time period for either timing of administration. CONCLUSIONS Good efficacy was observed when iGlarlixi was administered pre-breakfast; however, administration of iGlarlixi pre-evening meal was also deemed to be effective, even though in the model the size of the evening meal was smaller than that of the breakfast.
Collapse
Affiliation(s)
- Thibault Gautier
- Center for Diabetes Technology, University of
Virginia, Charlottesville, VA, USA
| | - Rupesh Silwal
- Center for Diabetes Technology, University of
Virginia, Charlottesville, VA, USA
| | | | - Anders Boss
- Medical Affairs, Sanofi, Bridgewater, NJ,
USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of
Virginia, Charlottesville, VA, USA
| |
Collapse
|
50
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Krishnan GP, Keim NL, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv Nutr 2022; 13:792-820. [PMID: 35191467 PMCID: PMC9156388 DOI: 10.1093/advances/nmac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR) is a common approach to inducing negative energy balance. Recently, time-restricted feeding (TRF), which involves consuming food within specific time windows during a 24-h day, has become popular owing to its relative ease of practice and potential to aid in achieving and maintaining a negative energy balance. TRF can be implemented intentionally with CR, or TRF might induce CR simply because of the time restriction. This review focuses on summarizing our current knowledge on how TRF and continuous CR affect gut peptides that influence satiety. Based on peer-reviewed studies, in response to CR there is an increase in the orexigenic hormone ghrelin and a reduction in fasting leptin and insulin. There is likely a reduction in glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK), albeit the evidence for this is weak. After TRF, unlike CR, fasting ghrelin decreased in some TRF studies, whereas it showed no change in several others. Further, a reduction in fasting leptin, insulin, and GLP-1 has been observed. In conclusion, when other determinants of food intake are held equal, the peripheral satiety systems appear to be somewhat similarly affected by CR and TRF with regard to leptin, insulin, and GLP-1. But unlike CR, TRF did not appear to robustly increase ghrelin, suggesting different influences on appetite with a potential decrease of hunger after TRF when compared with CR. However, there are several established and novel gut peptides that have not been measured within the context of CR and TRF, and studies that have evaluated effects of TRF are often short-term, with nonuniform study designs and highly varying temporal eating patterns. More evidence and studies addressing these aspects are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | |
Collapse
|