1
|
Ayoub KM, Nagy MM, Aly RM, El Deen GN, El-Batouty K. Effect of Bio MTA plus & ProRoot MTA pulp capping materials on the regenerative properties of human dental pulp stem cells. Sci Rep 2025; 15:4749. [PMID: 39922901 PMCID: PMC11807190 DOI: 10.1038/s41598-025-88816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
The aim of the present study was to investigate the effects of the biological properties of hDPSCs exposed to Bio MTA+ & ProRoot MTA pulp capping materials on the proliferation and odontogenic differentiation of hDPSCs. Human dental pulp stem cells (hDPSCs) were isolated from impacted third molars. Extracts of Bio MTA + and ProRoot MTA were prepared at a 1:1 ratio. The effects of the extracts on hDPSCs cytotoxicity and proliferation were assessed via a CCK-8 assay. Annexin V expression was investigated to assess the effects of both materials on the induction of apoptosis. The effects of ProRoot MTA and Bio MTA + extraction media on the stemness properties of hDPSCs were assessed via real-time quantitative PCR, and the expression of odontogenic markers (RUNX2, DMP1 & DSSP) was analyzed via RT‒PCR Alizarin Red staining. Cells exposed to Bio MTA + had the greatest degree of proliferation. The results of Annexin V staining indicated that Bio MTA + caused the least amount of apoptosis. RUNX2, DMP1 and DSSP were highly expressed by Bio MTA + and indicated successful odontogenic differentiation. Compared with ProRoot MTA, Bio MTA + exhibited an exceptional level of cytocompatibility, as well as advantageous bioactivities, including the preservation of stemness and an increase in the proliferation capacity of hDPSCs. In addition, it demonstrated favorable bioactive properties by stimulating odontogenic differentiation. Bio MTA + offers significant advantages in terms of biocompatibility, bioactivity, and regenerative potential, making it an excellent choice for procedures aimed at preserving or regenerating dental pulp tissue. However, additional research is required to address the lack of in vivo validation, as replicating physiological conditions is crucial for accurately assessing clinical outcomes and comparing them with results obtained from in vitro experiments.
Collapse
Affiliation(s)
| | - Mohamed Mokhtar Nagy
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
- Endodontic Department, Faculty of Dentistry, Galala University, Suez, Egypt
| | - Riham Mohamed Aly
- Department of Basic Dental Science, Oral and Dental Research Institute, National Research Centre, Cairo, Dokki, Egypt.
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.
| | - Ghada Nour El Deen
- Molecular Genetics and Enzymology Department, Human Genetic and Genome Research Institute, National Research Centre, Cairo, Dokki, Egypt
| | - Karim El-Batouty
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Khoshbin E, Karkehabadi H, Salehi R, Farmany A, Najafi R, Abbasi R. Comparative study of nanohydroxyapatite-emdogain effects on apical papilla stem cell survival and differentiation. Biotechnol Lett 2025; 47:24. [PMID: 39907710 DOI: 10.1007/s10529-024-03557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The study was designed to explore the enhanced impact of nano-hydroxyapatite and emdogain on the survival and osteogenic/odontogenic differentiation of human stem cells isolated from the apical papilla (hSCAPs). MATERIALS AND METHODS In this in vitro trial, hSCAPS obtained from intact impacted immature third molars were confirmed to have characteristic cell surface markers, then exposed to nanohydroxyapatite, emdogain, and nanohydroxyapatite coated with emdogain for durations of 1-3 days. The survival of apical papilla stem cells was measured using a methyl thiazolyl tetrazolium assay. The quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity (ALP) and Alizarin red staining were used to evaluate osteogenic-odontogenic differentiation. Analysis of the data was done using one-way ANOVA, t-test, and Mann-Whitney test (α = 0.05). RESULTS At 1-3 days, emdogain exhibited no significant impact on the survival of human stem cells from the apical papilla. In contrast, nanohydroxyapatite (α > 0.05) and nanohydroxyapatite coated with emdogain demonstrated a notable reduction in cell survival compared to the control group (α < 0.05). The expression of dentin sialophosphoprotein, dentin matrix protein 1, and bone sialoprotein genes demonstrated a notable increase in the group treated with nanohydroxyapatite coated with emdogain compared to the other groups (α < 0.05), and furthermore, this group exhibited more pronounced mineralized nodules than the other experimental groups. CONCLUSION In contrast to nanohydroxyapatite, Emdogain did not demonstrate a detrimental effect on the survival of hSCAPs. Nanohydroxyapatite, emdogain, and nanohydroxyapatite coated with emdogain increased osteogenic/odontogenic differentiation of hSCAPs.
Collapse
Affiliation(s)
- Elham Khoshbin
- Department of Endodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Salehi
- Department of Endodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Huang L, Chen X, Yang X, Zhang Y, Liang Y, Qiu X. Elucidating epigenetic mechanisms governing odontogenic differentiation in dental pulp stem cells: an in-depth exploration. Front Cell Dev Biol 2024; 12:1394582. [PMID: 38863943 PMCID: PMC11165363 DOI: 10.3389/fcell.2024.1394582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Epigenetics refers to the mechanisms such as DNA methylation and histone modification that influence gene expression without altering the DNA sequence. These epigenetic modifications can regulate gene transcription, splicing, and stability, thereby impacting cell differentiation, development, and disease occurrence. The formation of dentin is intrinsically linked to the odontogenic differentiation of dental pulp stem cells (DPSCs), which are recognized as the optimal cell source for dentin-pulp regeneration due to their varied odontogenic potential, strong proliferative and angiogenic characteristics, and ready accessibility Numerous studies have demonstrated the critical role of epigenetic regulation in DPSCs differentiation into specific cell types. This review thus provides a comprehensive review of the mechanisms by which epigenetic regulation controls the odontogenesis fate of DPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Koutrouli A, Machla F, Arapostathis K, Kokoti M, Bakopoulou A. "Biological responses of two calcium-silicate-based cements on a tissue-engineered 3D organotypic deciduous pulp analogue". Dent Mater 2024; 40:e14-e25. [PMID: 38431482 DOI: 10.1016/j.dental.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVES The biological responses of MTA and Biodentine™ has been assessed on a three-dimensional, tissue-engineered organotypic deciduous pulp analogue. METHODS Human endothelial (HUVEC) and dental mesenchymal stem cells (SHED) at a ratio of 3:1, were incorporated into a collagen I/fibrin hydrogel; succeeding Biodentine™ and MTA cylindrical specimens were placed in direct contact with the pulp analogue 48 h later. Cell viability/proliferation and morphology were evaluated through live/dead staining, MTT assay and Scanning Electron Microscopy (SEM), and expression of angiogenic, odontogenic markers through real time PCR. RESULTS Viable cells dominated at day 3 after treatment presenting typical morphology, firmly attached within the hydrogel structures, as shown by live/dead staining and SEM images. MTT assay at day 1 presented a significant increase of cell proliferation in Biodentine™ group. Real-time PCR showed significant upregulation of odontogenic markers DSPP, BMP-2 (day 3,6), RUNX2, ALP (day 3) in contact with Biodentine™ compared to MTA and the control, whereas MTA promoted significant upregulation of DSPP, BMP-2, RUNX2, Osterix (day 3) and ALP (day 6) compared to the control. MSX1 presented downregulation in both experimental groups. Expression of angiogenic markers VEGFa and ANGPT-1 at day 3 was significantly upregulated in contact with Biodentine™ and MTA respectively, while the receptors VEGFR1, VEGFR2 and Tie-2, as well as PECAM-1 were downregulated. SIGNIFICANCE Both calcium silicate-based materials are biocompatible and exert positive angiogenic and odontogenic effects, although Biodentine™ during the first days of culture, seems to induce higher cell proliferation and provoke a more profound odontogenic and angiogenic response from SHED.
Collapse
Affiliation(s)
- A Koutrouli
- Department of Paediatric Dentistry, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - F Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - K Arapostathis
- Department of Paediatric Dentistry, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - M Kokoti
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - A Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| |
Collapse
|
5
|
Huang L, Chen X, Yang X, Zhang Y, Qiu X. GelMA-based hydrogel biomaterial scaffold: A versatile platform for regenerative endodontics. J Biomed Mater Res B Appl Biomater 2024; 112:e35412. [PMID: 38701383 DOI: 10.1002/jbm.b.35412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/26/2024] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
Endodontic therapy, while generally successful, is primarily limited to mature teeth, hence the pressing need to explore regenerative approaches. Gelatin methacryloyl (GelMA) hydrogels have emerged as pivotal biomaterials, promising a bright future for dental pulp regeneration. Despite advancements in tissue engineering and biomaterials, achieving true pulp tissue regeneration remains a formidable task. GelMA stands out for its injectability, rapid gelation, and excellent biocompatibility, serving as the cornerstone of scaffold materials. In the pursuit of dental pulp regeneration, GelMA holds significant potential, facilitating the delivery of stem cells, growth factors, and other vital substances crucial for tissue repair. Presently, in the field of dental pulp regeneration, researchers have been diligently utilizing GelMA hydrogels as engineering scaffolds to transport various effective substances to promote pulp regeneration. However, existing research is relatively scattered and lacks comprehensive reviews and summaries. Therefore, the primary objective of this article is to elucidate the application of GelMA hydrogels as regenerative scaffolds in this field, thereby providing clear direction for future researchers. Additionally, this article provides a comprehensive discussion on the synthesis, characterization, and application of GelMA hydrogels in root canal therapy regeneration. Furthermore, it offers new application strategies and profound insights into future challenges, such as optimizing GelMA formulations to mimic the complex microenvironment of pulp tissue and enhancing its integration with host tissues.
Collapse
Affiliation(s)
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - XiaoXia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
6
|
Amer NA, Badawi MF, Elbeltagi MG, Badr AE. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023; 24:957-966. [PMID: 38317393 DOI: 10.5005/jp-journals-10024-3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AIM This study was aimed at evaluating the effect of acetyl-11-keto-β-boswellic acid (AKBA) on dental pulp stem cells (DPSCs) viability and proliferation to be used as a potential root canal medicament. MATERIALS AND METHODS Dental pulp stem cells were isolated from human third molars. The phenotypic characterization of DPSCs was verified by flow cytometry analysis. The viability assay was performed using the methyl-thiazoltetrazolium (MTT) assay. Cells were treated with different concentration of triple antibiotic paste (TAP) and calcium hydroxide Ca(OH2) (5, 2.5, 1, 0.5, and 0.25 mg/mL), AKBA (10, 5, 1, 0.1, and 0.01 µM). All experiments were done in separate triplicate experiments. Results: Dental pulp stem cells were characterized by flow cytometry. Cells treated with Ca(OH)2 (1, 2.5, and 5 mg/mL) showed significantly reduced viability compared with the control cells (p < 0.05). Dental pulp stem cells treated with 1, 2.5, and 5 mg/mL TAP resulted in a significant decrease in viability (p < 0.05). Cells treated with AKBA in concentrations (1, 0.1, and 0.01 µM) demonstrated higher viability than the control group (p < 0.05), while AKBA in concentrations (5 and 10 µM) showed equal or decreased viability than the control group. (p > 0.05). Regarding cell density assay, AKBA showed significant increase in cell density after 5 and 7 days compared with cells medicated with TAP and Ca(OH)2 while TAP revealed marked reduction in cell density in all the tested intervals. CONCLUSION Acetyl-11-keto-β-boswellic acid in lower concentrations (0.01, 0.1, and 1 µM) demonstrated superior cell viability than TAP and Ca(OH)2, and it may possess the potential to be an intracanal medicament in regenerative endodontics. CLINICAL SIGNIFICANCE Studying the effect of different potential root canal medicaments and their capability to induce DPSCs proliferation might be of value. The influence of AKBA on the viability and proliferation of DPSCs tested in this study sheds light on its use as a potential intracanal medication especially in regenerative endodontics. How to cite this article: Amer NA, Badawi MF, Elbeltagi MG, et al. Effect of Boswellic Acid on Viability of Dental Pulp Stem Cells Compared to the Commonly Used Intracanal Medications: An In Vitro Study. J Contemp Dent Pract 2023;24(12):957-966.
Collapse
Affiliation(s)
- Nouran Ahmad Amer
- Department of Endodontics, Faculty of Dentistry, Mansoura University; Horus University, Egypt, Phone: +201068857871, e-mail: , Orcid: https://orcid.org/0000-0001-6818-8626
| | - Manal Farouk Badawi
- Dental Biomaterials, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0001-9979-4354
| | - Mohamed Gamal Elbeltagi
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0003-3309-4480
| | - Amany Elsaid Badr
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0002-3811-149X
| |
Collapse
|
7
|
Yousefi-Koma AA, Assadian H, Mohaghegh S, Nokhbatolfoghahaei H. Comparative Biocompatibility and Odonto-/Osteogenesis Effects of Hydraulic Calcium Silicate-Based Cements in Simulated Direct and Indirect Approaches for Regenerative Endodontic Treatments: A Systematic Review. J Funct Biomater 2023; 14:446. [PMID: 37754860 PMCID: PMC10532331 DOI: 10.3390/jfb14090446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Regenerative dentistry is the operation of restoring dental, oral and maxillofacial tissues. Currently, there are no guidelines for the ideal cement/material in regenerative endodontic treatments (RET). Hydraulic calcium silicate-based cements (hCSCs) are currently the material of choice for RET. OBJECTIVES This systematic review was conducted to gather all of the different direct and indirect approaches of using hCSCs in RET in vitro and in vivo, and to ascertain if there are any superiorities to indirect approaches. METHODS AND MATERIALS This systematic review was conducted according to the 2020 PRISMA guidelines. The study question according to the PICO format was as follows: Comparison of the biological behavior (O) of stem cells (P) exposed to hCSCs through direct and indirect methods (I) with untreated stem cells (C). An electronic search was executed in Scopus, Google Scholar, and PubMed. RESULTS A total of 78 studies were included. Studies were published between 2010 and 2022. Twenty-eight commercially available and eighteen modified hCSCs were used. Seven exposure methods (four direct and three indirect contacts) were assessed. ProRoot MTA and Biodentine were the most used hCSCs and had the most desirable results. hCSCs were either freshly mixed or set before application. Most studies allowed hCSCs to set in incubation for 24 h before application, which resulted in the most desirable biological outcomes. Freshly mixed hCSCs had the worst outcomes. Indirect methods had significantly better viability/proliferation and odonto-/osteogenesis outcomes. CONCLUSION Biodentine and ProRoot MTA used in indirect exposure methods result in desirable biological outcomes.
Collapse
Affiliation(s)
- Amir-Ali Yousefi-Koma
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hadi Assadian
- Department of Endodontics, Tehran University of Medical Sciences, Tehran 1417614418, Iran
| | - Sadra Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
8
|
Algazlan AS, Almuraikhi N, Muthurangan M, Balto H, Alsalleeh F. Silver Nanoparticles Alone or in Combination with Calcium Hydroxide Modulate the Viability, Attachment, Migration, and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 24:702. [PMID: 36614148 PMCID: PMC9821315 DOI: 10.3390/ijms24010702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the effect of silver nanoparticles (AgNPs) alone or in combination with calcium hydroxide (Ca(OH)2) on the proliferation, viability, attachment, migration, and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different concentrations of AgNPs alone or mixed with Ca(OH)2 were prepared. Cell proliferation was measured using AlamarBlue, and hMSCs attachment to dentin disks was evaluated using scanning electron microscopy. Live-dead imaging was performed to assess apoptosis. Wound healing ability was determined using the scratch-migration assay. To evaluate osteogenic differentiation, the expression of Runt-related transcription factor (RUNX2), Transforming growth factor beta-1 (TGF-β1), Alkaline Phosphatase (ALP), and Osteocalcin (OCN) were measured using real-time reverse transcriptase polymerase chain reaction. ALP staining and activity were also performed as indicators of osteogenic differentiation. AgNPs alone seemed to favor cell attachment. Lower concentrations of AgNPs enhanced cell proliferation. AgNP groups showed markedly less apoptosis. None of the medicaments had adverse effects on wound closure. The expression of TGF-β1 was significantly upregulated in all groups, and OCN was highly expressed in the AgNP groups. AgNPs 0.06% showed the most enhanced ALP gene expression levels, activity, and marked cytochemical staining. In conclusion, AgNPs positively affect hMSCs, making them a potential biomaterial for various clinical applications.
Collapse
Affiliation(s)
- Almaha S. Algazlan
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| | - Nihal Almuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hanan Balto
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| | - Fahd Alsalleeh
- Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
9
|
Biocompatibility and Osteogenic Potential of Calcium Silicate-Based Cement Combined with Enamel Matrix Derivative: Effects on Human Bone Marrow-Derived Stem Cells. MATERIALS 2021; 14:ma14247750. [PMID: 34947344 PMCID: PMC8706689 DOI: 10.3390/ma14247750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
The characteristics of retrograde filling material are important factors that can affect the long-term success of apical microsurgery. Various calcium silicate-based cements (CSC) were introduced to overcome drawbacks of mineral trioxide aggregate (MTA), while Emdogain is known to be effective in the regeneration of periodontal tissues. The aim of this study is to evaluate the biocompatibility and osteogenic potential of various CSCs combined with Emdogain on human bone marrow-derived mesenchymal stem cells. Experimental groups were classified into eight groups depending on the material and the presence of Emdogain. In the cell-counting kit test, all experimental groups combined with Emdogain showed higher cell viability compared with those without Emdogain at days 1 and 2. In the wound-healing assay, cell migration increased significantly over time, with or without Emdogain. In the alkaline phosphatase assay, all groups treated with Emdogain showed higher activity compared with those without Emdogain at day 3 (p < 0.05). Using alizarin red S staining, all groups treated with Emdogain showed greater calcium nodule formation compared with those without Emdogain at days 7 and 14 (p < 0.05). In conclusion, using CSCs as retrograde filling materials and the application of additional Emdogain will increase bone regeneration and improve the prognosis of apical microsurgery.
Collapse
|
10
|
Toida Y, Kawano S, Islam R, Jiale F, Chowdhury AA, Hoshika S, Shimada Y, Tagami J, Yoshiyama M, Inoue S, Carvalho RM, Yoshida Y, Sano H. Pulpal response to mineral trioxide aggregate containing phosphorylated pullulan-based capping material. Dent Mater J 2021; 41:126-133. [PMID: 34602588 DOI: 10.4012/dmj.2021-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate the pulpal responses of monkey's pulp after direct pulp capping (DPC) with the novel mineral trioxide aggregate containing phosphorylated pullulan-based material (MTAPPL). Seventy-two teeth were randomly divided into four groups: MTAPPL; Nex-Cem MTA (NX); TheraCal LC (TH); and Dycal (DY). Histopathological changes in the pulps were observed at days 3, 7 and 70. On day 3, mild inflammatory responses were observed in the MTAPPL, no to moderate inflammatory responses in the TH, whereas moderate inflammatory responses in the NX and DY. No mineralized tissue formation (MTF) was observed in all groups. On day 7, no or mild inflammatory responses were observed in all groups. Initial MTF was observed except for DY. No inflammation with complete MTF including presence of odontoblast-like cells was observed in the MTAPPL, NX and TH groups at day 70. These findings indicate that MTAPPL could be an efficient DPC material.
Collapse
Affiliation(s)
- Yu Toida
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| | - Shimpei Kawano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University.,Sapporo Prison, Sapporo Regional Correction Headquarters, Correction Bureau, Ministry of Justice, Government of Japan
| | - Rafiqul Islam
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| | - Fu Jiale
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease
| | - Afm A Chowdhury
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University.,Department of Conservative Dentistry and Endodontics, Sapporo Dental College and Hospital
| | - Shuhei Hoshika
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| | - Yasushi Shimada
- Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Masahiro Yoshiyama
- Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Satoshi Inoue
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University
| | - Ricardo M Carvalho
- Division of Biomaterials, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University
| |
Collapse
|
11
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Hayashi Y, Kawaki H, Hori M, Shintani K, Hasegawa T, Tanaka M, Kondoh N, Yoshida T, Kawano S, Tamaki Y. Evaluation of the mechanical properties and biocompatibility of gypsum-containing calcium silicate cements. Dent Mater J 2021; 40:863-869. [PMID: 33642445 DOI: 10.4012/dmj.2020-086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mineral trioxide aggregate (MTA) cement is widely used in the field of endodontic treatment. We herein synthesized calcium silicates from calcium carbonate and silicon dioxide, with the aim of reducing the cost associated with the MTA. Additionally, we prepared gypsum-containing calcium silicate cement to reduce the setting time while enhancing the mechanical strength. We evaluated the physical properties of this cement and investigated the response of human dental pulp stem cells (hDPSCs) grown in culture media containing cement eluate. Our results revealed that calcium silicates could be easily synthesized in lab-scale. Furthermore, we demonstrate that gypsum addition helps shorten the setting time while increasing the compressive strength of dental cements. The synthesized gypsum-containing calcium silicate cement showed minimal cytotoxicity and did not inhibit the proliferation of hDPSCs. These results suggested that the newly developed calcium silicate material could be a promising pulp capping material.
Collapse
Affiliation(s)
- Yumiyo Hayashi
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Masaharu Hori
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Kohei Shintani
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Tomoya Hasegawa
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Masashi Tanaka
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Takakazu Yoshida
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Satoshi Kawano
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Yukimichi Tamaki
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| |
Collapse
|
13
|
Babaki D, Yaghoubi S, Matin MM. The effects of mineral trioxide aggregate on osteo/odontogenic potential of mesenchymal stem cells: a comprehensive and systematic literature review. Biomater Investig Dent 2020; 7:175-185. [PMID: 33313519 PMCID: PMC7717865 DOI: 10.1080/26415275.2020.1848432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
The significance of dental materials in dentin-pulp complex tissue engineering is undeniable. The mechanical properties and bioactivity of mineral trioxide aggregate (MTA) make it a promising biomaterial for future stem cell-based endodontic therapies. There are numerous in vitro studies suggesting the low cytotoxicity of MTA towards various types of cells. Moreover, it has been shown that MTA can enhance mesenchymal stem cells' (MSCs) osteo/odontogenic ability. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA), a literature review was conducted in the Medline, PubMed, and Scopus databases. Among the identified records, the cytotoxicity and osteo/odontoblastic potential of MTA or its extract on stem cells were investigated. Previous studies have discovered the differentiation-inducing potential of MTA on MSCs, providing a background for dentin-pulp complex cell therapies using the MTA, however, animal trials are needed before moving into clinical trials. In conclusion, MTA can be a promising candidate dental biomaterial for futuristic stem cell-based endodontic therapies.
Collapse
Affiliation(s)
- Danial Babaki
- Department of Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, USA
| | - Sanam Yaghoubi
- Visiting Scholar at Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
15
|
Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA, Siddiqui SS. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 2019; 19:133. [PMID: 31266498 PMCID: PMC6604301 DOI: 10.1186/s12903-019-0827-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vital pulp therapy preserves and maintains the integrity and the health of dental pulp tissue that has been injured by trauma, caries or restorative procedures. The enhancement of cells viability and formation of reparative dentine and new blood vessels are vital determinants of the success of direct pulp capping. Therefore, the aims of this study was to evaluate and compare the in vitro osteogenic, odontogenic and angiogenic effects of mineral trioxide aggregate (MTA), calcium hydroxide [Ca(OH)2], Biodentine and Emdogain on dental pulp stem cells (DPSCs) and examine the effects of the tested materials on cell viability. METHODS DPSCs were treated with MTA, Ca(OH)2, Biodentine or Emdogain. Untreated cells were used as control. The cell viability was measured by MTT assay on day 3. Real-Time PCR with SYBR green was used to quantify the gene expression levels of osteogenic markers (alkaline phosphatase and osteopontin), odontogenic marker (dentin sialophosphoprotein) and angiogenic factor (vascular endothelial growth factor) on day 7 and day 14. RESULTS All capping materials showed variable cytotoxicity against DPSCs (77% for Emdogain, 53% for MTA, 26% for Biodentine and 16% for Ca(OH)2 compared to control (P value < 0.0001). Osteopontin (OPN) and dentin sialophosphoprotein (DSPP) gene expression was increased by all four materials. However, alkaline phosphatase (ALP) was upregulated by all materials except Emdogain. Vascular endothelial growth factor (VEGF) expression was upregulated by all four tested materials except Ca(OH)2. CONCLUSIONS Our results suggest MTA, Biodentine and Emdogain exhibit similar attributes and may score better than Ca(OH)2. Emdogain could be a promising alternative to MTA and Biodentine in enhancing pulp repair capacity following dental pulp injury. However, further future research is required to assess the clinical outcomes and compare it with the in vitro findings.
Collapse
Affiliation(s)
- Abdel-Rahman Youssef
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia. .,Department of Microbiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ramy Emara
- Department of Restorative dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Science and Technology Unit Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Science and Technology Unit Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Majed Almalki
- Department of Restorative dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mazen A Almasri
- Oral Maxillofacial Surgery Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shahid S Siddiqui
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Ranjkesh B, Isidor F, Kraft DCE, Løvschall H. In vitro cytotoxic evaluation of novel fast-setting calcium silicate cement compositions and dental materials using colorimetric methyl-thiazolyl-tetrazolium assay. J Oral Sci 2018; 60:82-88. [PMID: 29576580 DOI: 10.2334/josnusd.16-0751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A novel fast-setting calcium silicate cement with fluoride (CSC) has been developed for potential application in tooth crowns. This study compared the cytotoxicity of CSC compositions and a variety of dental materials. We tested CSC compositions (Protooth), MTA, Biodentine, Ketac Molar, Fuji II LC, Vitrebond, DeTrey Zinc, Dycal, and IRM, DMEM (negative control) and 1% NaOCl (positive control). After setting of cements for 24 h, specimens were immersed in DMEM for 24 h to obtain material elutes. The elutes were serially diluted in serum-free DMEM to obtain three dilutions. L929 mouse fibroblast cells (1 × 104 cells per well) were treated for 24 h with elute dilutions (n = 3). Cytotoxicity was determined using methyl-thiazolyl-tetrazolium assay in triplicate. CSC compositions, MTA, and Biodentine showed no significant reduction in cell viability compared to DMEM. There was no significant difference in cell viability, at any of three dilutions, between CSC compositions and either MTA or Biodentine. Cytotoxicity was significantly lower for CSC compositions than for Vitrebond, DeTrey Zinc, Dycal, IRM, and 1% NaOCl, at all three dilutions, and undiluted Fuji II LC elute. In contrast to resin-modified glass ionomers, zinc phosphate cements, Dycal, and IRM, the CSC compositions showed no cytotoxic potential.
Collapse
|
17
|
Emara R, Elhennawy K, Schwendicke F. Effects of calcium silicate cements on dental pulp cells: A systematic review. J Dent 2018; 77:18-36. [DOI: 10.1016/j.jdent.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
|
18
|
Gypsum-Based Material for Dental Pulp Capping: Effect of Chitosan and BMP-2 on Physical, Mechanical, and Cellular Properties. Int J Biomater 2018; 2018:3804293. [PMID: 30147725 PMCID: PMC6083637 DOI: 10.1155/2018/3804293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022] Open
Abstract
Effective pulp capping material must be biocompatible and have the ability to induce dentin bridge formation as well as having suitable physical and mechanical properties; however, many current materials do not satisfy the clinical requirements. This study aimed to assess the physical and mechanical properties of gypsum-based chitosan material (Gp-CT) and to evaluate its effects on cellular properties of stem cells from human exfoliated deciduous teeth (SHED). The experimental material was prepared with different concentrations of chitosan (CT) with or without BMP-2. Then, setting time, compressive strength, and pH were determined. In addition, cell viability, alkaline phosphatase (ALP) activity, and cell attachment were assessed. The setting time, compressive strength, and pH obtained were 4.1-6.6 min, 2.63-5.83 MPa, and 6.5-5.7, respectively. The cell viability to gypsum (Gp) with different CT concentrations was similar to that of the control on day 1 but statistically different from that of Gp alone on day 3. The ALP activity of SHED was significantly higher (p < 0.05) in CT- and BMP-2-containing materials than those in the control and Dycal at days 3 and 14. The scanning electron microscopy (SEM) image revealed that flattened cells were distributed across and adhered to the material surface. In conclusion, Gp-CT material shows promise as a potential material for direct pulp capping.
Collapse
|
19
|
Araújo LB, Cosme-Silva L, Fernandes AP, Oliveira TMD, Cavalcanti BDN, Gomes Filho JE, Sakai VT. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 2018; 26:e20160629. [PMID: 29412365 PMCID: PMC5777405 DOI: 10.1590/1678-7757-2016-0629] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/07/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.
Collapse
Affiliation(s)
- Leandro Borges Araújo
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| | - Leopoldo Cosme-Silva
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil.,Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Odontologia Restauradora, Araçatuba, São Paulo, Brasil
| | - Ana Paula Fernandes
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil.,Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, São Paulo, Brasil
| | - Thais Marchini de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Odontopediatria, Ortodontia e Saúde Coletiva, Bauru, São Paulo, Brasil
| | | | - João Eduardo Gomes Filho
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Odontologia Restauradora, Araçatuba, São Paulo, Brasil
| | - Vivien Thiemy Sakai
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, Minas Gerais, Brasil
| |
Collapse
|
20
|
de Souza LC, Yadlapati M, Lopes HP, Silva R, Letra A, Elias CN. Physico-chemical and Biological Properties of a New Portland Cement-based Root Repair Material. Eur Endod J 2017; 3:38-47. [PMID: 32161849 PMCID: PMC7024716 DOI: 10.5152/eej.2017.17008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022] Open
Abstract
Could conventional endodontic treatment have an impact on oral health-related quality of life? There are still unresolved questions regarding this theme. In order to answer them, a systematic review on the available literature was undertaken to identify the methodological quality of and the risk of bias in all relevant studies. A broad search for articles was conducted, and only articles published before May 2016 were considered for review. The following portals were used: Pubmed, VHL (Medline, SciELO, Lilacs and BBO), Cochrane Library, and Web of Science. The keywords used for the search were ‘quality of life’ and ‘root canal treatment.’ Furthermore, we included MeSH synonyms, related terms and free terms. Articles written in any language were included according to the PICOS approach (population, intervention, comparison, outcome and study design). After application of these eligibility criteria, selected articles were qualified by assessing their methodological quality and potential risk of bias. The initial search identified 302 references. After excluding duplicated abstracts and analysing the titles and abstracts, 6 were selected. One study was added via manual search of the reference lists. From these, 2 were eligible for quality assessment and were classified as being of high methodological quality and as having low risk of bias. Based on these studies, it can be concluded that conventional endodontic treatment improves oral health-related quality of life. However, these results should be interpreted with caution, due to the lack of important methodological details in the included studies. Additional investigations are warranted to provide more evidence on this subject.
Collapse
Affiliation(s)
- Letícia Chaves de Souza
- Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.,School of Dentistry, University of Texas Health Science Center at Houston, TX, USA
| | - Mamatha Yadlapati
- School of Dentistry, University of Texas Health Science Center at Houston, TX, USA
| | - Hélio Pereira Lopes
- Department of Endodontics, Estácio de Sá University, Rio de Janeiro, RJ, Brazil
| | - Renato Silva
- School of Dentistry, University of Texas Health Science Center at Houston, TX, USA
| | - Ariadne Letra
- School of Dentistry, University of Texas Health Science Center at Houston, TX, USA
| | - Carlos Nelson Elias
- Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Scelza MZ, Nascimento JC, Silva LED, Gameiro VS, DE Deus G, Alves G. BiodentineTM is cytocompatible with human primary osteoblasts. Braz Oral Res 2017; 31:e81. [PMID: 29019553 DOI: 10.1590/1807-3107bor-2017.vol31.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/27/2017] [Indexed: 11/22/2022] Open
Abstract
Calcium silicate-based materials have been widely studied due to their resemblance to, and similar applicability of, mineral trioxide aggregate (MTA). Among these, Biodentine™ (BD) was specifically designed as a "dentin replacement" material for applications such as root perforations, apexification, treatment of resorptive lesions, and as a retrograde filling material. The present study aimed to assess the in vitro response of human primary osteoblasts to BD using MTA AngelusTM as a reference material, by simultaneously analyzing three different cell viability parameters, namely mitochondrial activity, membrane integrity, and cell density. BD and MTA extracts were prepared by incubation on culture media for 24 h or 42 days after mixing. Primary human osteoblasts were exposed to extracts for 24 h, at 37oC with 5% CO2, and cell viability was evaluated by the XTT, NRU, and CVDE assays. Both materials induced cell viability levels higher than 70% when extracted for 24 h. However, when cells were exposed to extracts with increased conditioning times, MTA presented significant cytotoxic effects (p < 0.05) in comparison to the control and MTA at 24 h. After 42 days, the XTT assay identified a significant reduction in cell viability by BD when compared to the control (p<0.05), despite the fact that levels above the 70% viability cutoff were attained for biocompatible materials. It can be concluded that BD is cytocompatible with human primary osteoblasts, indicating its adequacy in direct contact with bone tissues.
Collapse
Affiliation(s)
- Miriam Zaccaro Scelza
- Universidade Federal Fluminense - UFF, Department of Endodontics, Laboratory of Experimental Cell Culture, Niteroi, RJ, Brazil
| | - Joyce Costa Nascimento
- Universidade Federal Fluminense - UFF, Post Graduation Program on Dentistry, Niteroi, RJ, Brazil
| | | | - Vinícius Shott Gameiro
- Universidade Federal Fluminense - UFF, Hospital Universitário Antônio Pedro, Department of General Surgery, Niteroi, RJ, Brazil
| | - Gustavo DE Deus
- Universidade Federal Fluminense - UFF, Department of Endodontics, Niteroi, RJ, Brazil
| | - Gutemberg Alves
- Universidade Federal Fluminense - UFF, Department Cell and Molecular Biology, Niteroi, RJ, Brazil
| |
Collapse
|
22
|
Najeeb S, Khurshid Z, Sohail Zafar M, Zohaib S, Siddiqui F. Efficacy of Enamel Matrix Derivative in Vital Pulp Therapy: A Review of Literature. IRANIAN ENDODONTIC JOURNAL 2017; 12:269-275. [PMID: 28808449 PMCID: PMC5527198 DOI: 10.22037/iej.v12i3.12036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Introduction: Vital pulp therapy (VPT) aims to preserve the health and maintain life of the tooth pulp which has been compromised by caries, trauma or restorative procedures. Recently, enamel matrix derivative (EMD) has been introduced as a material for vital pulp therapy. The aim of this review is to critically analyze and summarize the available literature on EMD for VPT. Methods and Materials: Online databases (PubMED/MEDLINE, Google Scholar, ISI Web of Science, and Wiley-Online) were searched by using the following keywords in various combinations: Enamel Matrix Derivative, Emdogain, ‘Vital Pulp Therapy, ‘Apexogenisis’, Apexification, Pulp Capping, Endodontics, Dentine and Pulpotomy for studies indexed from January 1949 to April 2016. We used an English-limited search in Google.co.uk for the missing grey literature. All studies fulfilling the selection criteria were carefully reviewed for the focused question: “Does using EMD in VPT, compared with other materials, result in better clinical, radiographic and histological outcomes?”. Results: The primary search resulted in 18 articles of which, 14 articles (including 6 animal studies and 6 clinical trials and 2 case reports) met the inclusion criteria for this review and hence were included. The number of teeth tested in the animal studies ranged from 8 to 144 including pigs, rats and dogs teeth. A number of studies used EMD in the experimental group in comparison with calcium hydroxide, propylene glycol alginate (PGA) and MTA as a control. The observation period ranged from 1 to 2 months and 4 out of 6 animal trials reported more favorable outcomes with EMD while two studies reported comparable outcomes. Conclusion: Although EMD has potential for various applications in endodontics, studies conducted to date have failed to demonstrate any significant advantage of EMD over conventional VPT materials. Additionally, the 5-year and 10-year survival rate of EMD-treated teeth is not yet known. Hence, studies with a longer follow-up periods are required to deduce the long-term viability of teeth treated with EMD.
Collapse
Affiliation(s)
- Shariq Najeeb
- Restorative Dental Sciences, Al-Farabi Colleges, Saudi Arabia
| | - Zohaib Khurshid
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Sana Zohaib
- Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Fahad Siddiqui
- Division of Oral Health & Society, McGill College, Montreal, Canada
| |
Collapse
|
23
|
CHEN L, SUH BI. Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: A state-of-the-art review. Dent Mater J 2017; 36:1-7. [DOI: 10.4012/dmj.2016-107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Liang CHEN
- Department of Research and Development, Bisco Inc
| | | |
Collapse
|
24
|
Gene Expression Profiling and Molecular Signaling of Various Cells in Response to Tricalcium Silicate Cements: A Systematic Review. J Endod 2016; 42:1713-1725. [DOI: 10.1016/j.joen.2016.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/15/2016] [Accepted: 08/27/2016] [Indexed: 01/09/2023]
|
25
|
Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. Effect of biomaterials on angiogenesis during vital pulp therapy. Dent Mater J 2016; 35:701-709. [PMID: 27546854 DOI: 10.4012/dmj.2015-332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review intended to provide an overview of the effects of dental materials, used in dentin-pulp complex and dental pulp regeneration, on angiogenesis processes during regenerative endodontic procedures. An electronic search was performed in PubMed and MEDLINE databases via OVID using the keywords mentioned in the PubMed and MeSH headings for English language published articles from January 2005-April 2014 that evaluated the angiogenic properties of different dental materials used in regenerative endodontic procedures. Of the articles identified in an initial search, only 40 articles met the inclusion criteria set for this review. Vital pulp therapy materials might have positive effects on angiogenesis events, while most of the canal irrigating solutions and antibiotic pastes have anti-angiogenic activity except for EDTA. Future clinical studies will be helpful in defining the mechanisms of action for dental materials that promote or inhibit angiogenesis events at applied areas.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Science and Biomedical Engineering, University of Wisconsin, School of Medicine and Public Health
| | | | | | | |
Collapse
|
26
|
Effects of pre-reacted glass-ionomer cement on the viability and odontogenic differentiation of human dental pulp cells derived from deciduous teeth. PEDIATRIC DENTAL JOURNAL 2016. [DOI: 10.1016/j.pdj.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Mestieri LB, Gomes-Cornélio AL, Rodrigues EM, Salles LP, Bosso-Martelo R, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells. J Appl Oral Sci 2016; 23:467-71. [PMID: 26537716 PMCID: PMC4621938 DOI: 10.1590/1678-775720150170] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023] Open
Abstract
Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus.
Collapse
Affiliation(s)
- Leticia Boldrin Mestieri
- Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Ana Lívia Gomes-Cornélio
- Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Elisandra Márcia Rodrigues
- Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Loise Pedrosa Salles
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Roberta Bosso-Martelo
- Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | - Mário Tanomaru-Filho
- Departamento de Odontologia Restauradora, Escola de Odontologia, Universidade Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
28
|
Park M, Pang NS, Jung IY. Effect of dentin treatment on proliferation and differentiation of human dental pulp stem cells. Restor Dent Endod 2015; 40:290-8. [PMID: 26587415 PMCID: PMC4650525 DOI: 10.5395/rde.2015.40.4.290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/29/2015] [Indexed: 11/15/2022] Open
Abstract
Objectives Sodium hypochlorite (NaOCl) is an excellent bactericidal agent, but it is detrimental to stem cell survival, whereas intracanal medicaments such as calcium hydroxide (Ca[OH]2) promote the survival and proliferation of stem cells. This study evaluated the effect of sequential NaOCl and Ca[OH]2 application on the attachment and differentiation of dental pulp stem cells (DPSCs). Materials and Methods DPSCs were obtained from human third molars. All dentin specimens were treated with 5.25% NaOCl for 30 min. DPSCs were seeded on the dentin specimens and processed with additional 1 mg/mL Ca[OH]2, 17% ethylenediaminetetraacetic acid (EDTA) treatment, file instrumentation, or a combination of these methods. After 7 day of culture, we examined DPSC morphology using scanning electron microscopy and determined the cell survival rate with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We measured cell adhesion gene expression levels after 4 day of culture and odontogenic differentiation gene expression levels after 4 wk using quantitative real-time polymerase chain reaction. Results DPSCs did not attach to the dentin in the NaOCl-treated group. The gene expression levels of fibronectin-1 and secreted phosphoprotein-1 gene in both the Ca[OH]2- and the EDTA-treated groups were significantly higher than those in the other groups. All Ca[OH]2-treated groups showed higher expression levels of dentin matrix protein-1 than that of the control. The dentin sialophosphoprotein level was significantly higher in the groups treated with both Ca[OH]2 and EDTA. Conclusions The application of Ca[OH]2 and additional treatment such as EDTA or instrumentation promoted the attachment and differentiation of DPSCs after NaOCl treatment.
Collapse
Affiliation(s)
- Minjeong Park
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Nan-Sim Pang
- Department of Advanced General Dentistry, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Il-Young Jung
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
29
|
Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health 2015; 15:132. [PMID: 26510991 PMCID: PMC4624653 DOI: 10.1186/s12903-015-0113-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
Background Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples of materials that act as signaling molecules to enhance periodontal regeneration. Mineral trioxide aggregate (MTA) has been proven to be biocompatible and appears to have some osteoconductive properties. The objective of this study was to evaluate the effects of EMD, MTA, and PDGF on DPSC osteogenic differentiation. Methods Human DPSCs were cultured in medium containing EMD, MTA, or PDGF. Control groups were also established. Evaluation of the achieved osteogenesis was carried out by computer analysis of alkaline phosphatase (ALP)-stained chambers, and spectrophotometric analysis of alizarin red S-stained mineralized nodules. Results EMD significantly increased the amounts of ALP expression and mineralization compared with all other groups (P < 0.05). Meanwhile, MTA gave variable results with slight increases in certain differentiation parameters, and PDGF showed no significant increase in the achieved differentiation. Conclusions EMD showed a very strong osteogenic ability compared with PDGF and MTA, and the present results provide support for its use in periodontal regeneration.
Collapse
|
30
|
Dental Stem Cell Migration on Pulp Ceiling Cavities Filled with MTA, Dentin Chips, or Bio-Oss. BIOMED RESEARCH INTERNATIONAL 2015; 2015:189872. [PMID: 26146613 PMCID: PMC4469752 DOI: 10.1155/2015/189872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
Abstract
MTA, Bio-Oss, and dentin chips have been successfully used in endodontics. The aim of this study was to assess the adhesion and migration of dental stem cells on human pulp ceiling cavities filled with these endodontic materials in an experimental model, which mimics the clinical conditions of regenerative endodontics. Cavities were formed, by a homemade mold, on untouched third molars, filled with endodontic materials, and observed with electron microscopy. Cells were seeded on cavities' surface and their morphology and number were analysed. The phenomenon of tropism was assessed in a migration assay. All three materials demonstrated appropriate microstructures for cell attachment. Cells grew on all reagents, but they showed a differential morphology. Moreover, variations were observed when comparing cells numbers on cavity's filling versus the surrounding dentine disc. The highest number of cells was recorded on dentin chips whereas the opposite was true for Bio-Oss. This was confirmed in the migration assay where a statistically significant lower number of cells migrated towards Bio-Oss as compared to MTA and dentin chips. This study highlights that MTA and dentin chips have a greater potential compared to Bio-Oss regarding the attraction of dental stem cells and are good candidates for bioengineered pulp regeneration.
Collapse
|
31
|
MIYAZAWA A, MATSUNO T, ASANO K, TABATA Y, SATOH T. Controlled release of simvastatin from biodegradable hydrogels promotes odontoblastic differentiation. Dent Mater J 2015; 34:466-74. [DOI: 10.4012/dmj.2014-272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Atsuko MIYAZAWA
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University
| | - Tomonori MATSUNO
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry
| | - Kazunari ASANO
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry
| | - Yasuhiko TABATA
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University
| | - Tazuko SATOH
- Department of Oral & Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry
| |
Collapse
|
32
|
Zhang X, Wu C, Chang J, Sun J. Odontogenic differentiation of human dental pulp cells induced by silicate-based bioceramics via activation of P38/MEPE pathway. RSC Adv 2015. [DOI: 10.1039/c5ra11706b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca7Si2P2O16 bioceramic significantly enhanced odontogenic protein expression (ALP activity and staining) of hDPCs.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Shanghai Biomaterials Research & Testing Center
- Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 200023
- People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center
- Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 200023
- People's Republic of China
| |
Collapse
|
33
|
Li Y, Shu LH, Yan M, Dai WY, Li JJ, Zhang GD, Yu JH. Adult stem cell-based apexogenesis. World J Methodol 2014; 4:99-108. [PMID: 25332909 PMCID: PMC4202485 DOI: 10.5662/wjm.v4.i2.99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/04/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here.
Collapse
|
34
|
Riksen EA, Landin MA, Reppe S, Nakamura Y, Lyngstadaas SP, Reseland JE. Enamel matrix derivative promote primary human pulp cell differentiation and mineralization. Int J Mol Sci 2014; 15:7731-49. [PMID: 24857913 PMCID: PMC4057702 DOI: 10.3390/ijms15057731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/26/2014] [Accepted: 04/14/2014] [Indexed: 11/16/2022] Open
Abstract
Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation.
Collapse
Affiliation(s)
- Elisabeth Aurstad Riksen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Maria A Landin
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, N-0450 Oslo, Norway.
| | - Yukio Nakamura
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
35
|
Yan M, Wu J, Yu Y, Wang Y, Xie L, Zhang G, Yu J, Zhang C. Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway. J Endod 2014; 40:640-7. [PMID: 24767557 DOI: 10.1016/j.joen.2014.01.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA) has been widely used in clinical apexification and apexogenesis. However, the effects of MTA on the stem cells from apical papilla (SCAPs) and the precise mechanism of apexogenesis have not been elucidated in detail. METHODS Multiple colony-derived stem cells were isolated from the apical papillae, and the effects of MTA on the proliferation and differentiation of SCAPs were investigated both in vitro and in vivo. Activation of nuclear factor kappa B (NFκB) pathway in MTA-treated SCAPs was analyzed by immunofluorescence assay and Western blot. RESULTS MTA at the concentration of 2 mg/mL did not affect the proliferation activity of SCAPs. However, 2 mg/mL MTA-treated SCAPs presented the ultrastructural changes, up-regulated alkaline phosphatase, increased calcium deposition, up-regulated expression of odontoblast markers (dentin sialoprotein and dentin sialophosphoprotein) and odonto/osteoblast markers (runt-related transcription factor 2 and osteocalcin), suggesting that MTA enhanced the odonto/osteoblastic differentiation of SCAPs in vitro. In vivo results confirmed that MTA can promote the regular dentinogenesis of SCAPs. Moreover, MTA-treated SCAPs exhibited the up-regulated cytoplasmic phos-IκBα and phos-P65, enhanced nuclear P65, and increased nuclear translocation of P65. When co-treated with BMS345541 (the specific NFκB inhibitor), MTA-mediated odonto/osteoblastic differentiation was significantly attenuated. CONCLUSIONS MTA at the concentration of 2 mg/mL can improve the odonto/osteogenic capacity of SCAPs via the activation of NFκB pathway.
Collapse
Affiliation(s)
- Ming Yan
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China; Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Wu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China; Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanping Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Endodontics, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
| | - Lizhe Xie
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangdong Zhang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China; Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Endodontics, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China.
| | - Chengfei Zhang
- Comprehensive Dental Care, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
36
|
Attik GN, Villat C, Hallay F, Pradelle-Plasse N, Bonnet H, Moreau K, Colon P, Grosgogeat B. In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine™ versus MTA(®). Int Endod J 2014; 47:1133-41. [PMID: 24517569 DOI: 10.1111/iej.12261] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
Abstract
AIM To compare the in vitro biocompatibility of Biodentine™ and White ProRoot(®) mineral trioxide aggregate (MTA(®) ) with MG63 osteoblast-like cells and to characterize the cement surface. METHODOLOGY A direct contact model for MG63 osteoblast-like cells with cements was used for 1, 3 and 5 days. Four end-points were investigated: (i) cement surface characterization by atomic force microscopy (AFM), (ii) cell viability by MTT assay, (iii) protein amount quantification by Bradford assay and (iv) cell morphology by SEM. Statistical analyses were performed by analysis of variance (anova) with a repetition test method. RESULTS The roughness of the cements was comparable as revealed by AFM analysis. The MTT test for Biodentine™ was similar to that of MTA(®) . Biodentine™ and MTA(®) induced a similar but slight decrease in metabolic activity. The amount of total protein was significantly enhanced at day three (P < 0.05) but slightly decreased at day five for both tested samples. Biodentine™ was tolerated as well as MTA(®) in all cytotoxicity assays. SEM observations showed improvement of cell attachment and proliferation on both material surfaces following the three incubation periods. CONCLUSION The biocompatibility of Biodentine™ to bone cells was comparable to MTA(®) .
Collapse
Affiliation(s)
- G N Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon1, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Seo MS, Hwang KG, Lee J, Kim H, Baek SH. The effect of mineral trioxide aggregate on odontogenic differentiation in dental pulp stem cells. J Endod 2014; 39:242-8. [PMID: 23321238 DOI: 10.1016/j.joen.2012.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/20/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
INTRODUCTION This study aimed to identify the early genetic changes related to odontogenic differentiation when mineral trioxide aggregate (MTA) is applied to dental pulp stem cells (DPSCs). METHODS Odontogenic-differentiated cells (induced DPSCs) were obtained by culturing DPSCs in odontoinduction medium for 14 days. Thereafter, MTA in Teflon tubes was applied to the induced DPSCs and uninduced cells. Cells exposed to empty tubes were used as negative controls. The total RNA was extracted from the MTA treated and MTA untreated cells 1 and 3 days after tube application and assessed by microarray analysis. The key results were confirmed selectively by reverse-transcription polymerase chain reaction. We also performed a gene set enrichment analysis. RESULTS In microarray analysis, although the expression levels of 460 genes were changed more than 2-fold in MTA-treated, uninduced DPSCs after 1 day, only 39 genes were altered in MTA-treated, induced DPSCs. In the odontoinduction medium-induced, MTA-treated DPCs, the value of correlation was 0.993 on 1 day and 0.986 on 3 day compared with 0.970 on 1 day and 0.975 on 3 day in the uninduced, MTA-treated DPSCs. Gene set enrichment analysis revealed that MTA significantly up-regulated gene sets involved in cell migration, the response to transforming growth factor β1, and the inflammation pathway in the uninduced DPSCs, whereas in the induced DPSCs it only up-regulated genes involved in cell migration after 1 day. CONCLUSIONS This result shows that MTA stimulates the odontogenic differentiation of DPSCs, and the effects of MTA are drastically increased in uninduced pulp cells compared with odontogenic-differentiated cells.
Collapse
Affiliation(s)
- Min-Seock Seo
- Department of Conservative Dentistry, Wonkang University Daejeon Dental Hospital, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Asgary S, Nazarian H, Khojasteh A, Shokouhinejad N. Gene expression and cytokine release during odontogenic differentiation of human dental pulp stem cells induced by 2 endodontic biomaterials. J Endod 2013; 40:387-92. [PMID: 24565658 DOI: 10.1016/j.joen.2013.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) have shown osteogenic/cementogenic/dentinogenic activities; however, their mechanism of action is not fully understood. We aimed to evaluate the effect of these biomaterials on odontogenic differentiation of human dental pulp stem cells (DPSCs). METHODS Flow cytometry with stem cell markers for the confirmation of stemness and homogeneity was first performed. Then isolated DPSCs were seeded on prepared discs of MTA, CEM, differentiation medium (DM), and growth medium (GM) and incubated up to 14 days. Concentrations of transforming growth factor-β1, bone morphogenetic protein (BMP)2, BMP4, and fibroblast growth factor 4 were measured at each interval using an enzyme-linked immunosorbent assay reader. Gene expression of dentin sialophosphoprotein, dentin matrix protein 1, and the cytokines were evaluated by reverse-transcription polymerase chain reaction. To evaluate the cell morphology, scanning electron micrographs were taken; mineralization potential was evaluated using alizarin red S staining. RESULTS Scanning electron micrographs showed that DPSCs spread/adhered/proliferated similarly on MTA and CEM. On day 14, alizarin red S staining confirmed that mineralization occurred in all groups except GM. Expressions of dentin matrix protein 1 and dentin sialophosphoprotein genes were similar in the CEM, MTA, and DM groups; they were significantly higher compared with the GM group (P < .05). A greater amount of transforming growth factor-β1 gene was expressed in MTA compared with the other groups (P < .05). However, the expression of fibroblast growth factor 4 and BMP2 genes was significantly greater in the CEM group (P < .05). In all the tested groups, the expression of BMP4 was less than GM (P < .01); however, CEM and DM were similar but more than MTA (P < .05). Concentrations of protein product detected using an enzyme-linked immunosorbent assay reader confirmed these gene expressions. CONCLUSIONS MTA and CEM can induce osteo-/odontogenic-like phenotype differentiation of human DPSCs; however, they stimulate different gene expressions and growth factor release.
Collapse
Affiliation(s)
- Saeed Asgary
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Shokouhinejad
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Endodontic Department, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Wang Y, Yan M, Fan Z, Ma L, Yu Y, Yu J. Mineral trioxide aggregate enhances the odonto/osteogenic capacity of stem cells from inflammatory dental pulps via NF-κB pathway. Oral Dis 2013; 20:650-8. [PMID: 24102926 DOI: 10.1111/odi.12183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/14/2013] [Accepted: 09/09/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study was designed to investigate the effects of mineral trioxide aggregate (MTA) on the osteo/odontogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). MATERIALS AND METHODS inflammatory DPSCs were isolated from the inflammatory pulps of rat incisors and cocultured with MTA-conditioned medium. MTT assay and flow cytometry were performed to evaluate the proliferation of iDPSCs. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and Western blot assay were used to investigate the differentiation capacity as well as the involvement of NF-κB pathway in iDPSCs. RESULTS Mineral trioxide aggregate-treated iDPSCs demonstrated the higher ALP activity and formed more mineralized nodules than the untreated group. The odonto/osteoblastic markers (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN, and Dspp/DSP, respectively) in MTA-treated iDPSCs were significantly upregulated as compared with untreated iDPSCs. Mechanistically, cytoplastic phos-P65 and nuclear P65 in MTA-treated iDPSCs were significantly increased in a time-dependent manner. Moreover, the inhibition of NF-κB pathway suppressed the MTA-induced odonto/osteoblastic differentiation of iDPSCs, as indicated by decreased ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic genes (Osx, Ocn, and Dspp). CONCLUSIONS Mineral trioxide aggregate enhances the odonto/osteogenic capacity of DPSCs from inflammatory sites via activating the NF-κB pathway.
Collapse
Affiliation(s)
- Y Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China; Endodontic Department, Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
| | | | | | | | | | | |
Collapse
|
40
|
Taşlı PN, Yalvaç ME, Sofiev N, Şahin F. Effect of F68, F127, and P85 Pluronic Block Copolymers on Odontogenic Differentiation of Human Tooth Germ Stem Cells. J Endod 2013; 39:1265-71. [DOI: 10.1016/j.joen.2013.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/15/2013] [Accepted: 06/29/2013] [Indexed: 11/28/2022]
|
41
|
Wang X, Jong G, Lin LM, Shimizu E. EphB-EphrinB interaction controls odontogenic/osteogenic differentiation with calcium hydroxide. J Endod 2013; 39:1256-60. [PMID: 24041387 DOI: 10.1016/j.joen.2013.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/03/2013] [Accepted: 06/29/2013] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Calcium hydroxide is used in direct pulp capping of uncontaminated exposed vital pulps caused by mechanical or traumatic injury. Calcium hydroxide creates a high alkaline pH environment and initiates a mineralized tissue formation in the pulp. The exact mechanism by which calcium hydroxide induces the reparative dentin formation is unknown. Because Eph receptors and ephrin ligands play a role in pulp stem cell migration and proliferation, our hypothesis is that calcium hydroxide-related odontogenic/osteogenic differentiation may be associated with Eph-ephrin interaction. The aim of this study was to investigate whether Eph-ephrin interaction regulates odontogenic/osteogenic differentiation with calcium hydroxide. METHODS Primary pulp cells were harvested from the molars of C57BL/6 mice. The cells were treated with calcium hydroxide. Immunofluorescence was used to detect protein expression. A knockout of the ephrinB1 or EphB2 gene was performed with short hairpin RNAs. Cell migration, proliferation, and gene expression were then analyzed. RESULTS Calcium hydroxide stimulated EphB2 gene expression but suppressed ephrinB1 gene expression at the proliferation stage. However, calcium hydroxide stimulated both ephrinB1 and EphB2 gene expression at the differentiation stage. In addition, EphB2 localized at ephrinB1-positive cells at the area of Dentin sialoprotein (DSP) staining, which increased with calcium hydroxide treatment. Knockdown of ephrinB1-EphB2 significantly suppressed cell proliferation. Additionally, knockdown of the ephrinB1 gene caused cell migration, whereas a lack of the EphB2 gene suppressed calcium hydroxide-induced mineralization from primary pulp cells. CONCLUSIONS EphrinB1-EphB2 interaction contributes to calcium hydroxide-induced odontogenic/osteogenic differentiation. This observation is the first finding of the mechanism of calcium hydroxide-induced odontogenic/osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaozhe Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York; Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | |
Collapse
|
42
|
Yalvaç ME, Yarat A, Mercan D, Rizvanov AA, Palotás A, Şahin F. Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tuning micro-environment. Brain Behav Immun 2013; 32:122-30. [PMID: 23517709 DOI: 10.1016/j.bbi.2013.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) demonstrate neuro-protective effects in several disease models. By producing growth-factors, cytokines and chemokines, they promote survival of neurons in damaged brain areas. Alternative MSC sources, such as human tooth germ stem cells (hTGSCs), have been investigated for their neuro-protective properties. They ameliorate effects of neuro-toxic agents by paracrine mechanisms, however these secreted bio-active molecules are not yet characterized. Therefore, the current study aimed to provide a detailed analysis of the secretome of hTGSCs. Brain cells were exposed to various toxic materials, including Alzheimer's β-amyloid peptide (β-AP) and 6-hydroxy-dopamine (6-OHDA). When co-cultured with hTGSCs, the activity of a number of anti-oxidant enzymes (catalase, glutathione-s-transferase, glutathione-peroxidase, superoxide-dismutase) was increased and neuronal death/apoptosis was subsequently reduced. The composition of the secreted bio-active materials is influenced by various pre-existing factors such as oxygen and glucose deprivation and the age of cells (passage number). This report reveals for the first time that the neuro-protective secretome of hTGSCs and the micro-environment of cells have a mutual and dynamic impact on one another.
Collapse
Affiliation(s)
- Mehmet Emir Yalvaç
- Center for Gene Therapy, Nationwide Children's Hospital, Ohio State University, 700 Children's Drive, Columbus, OH 43205, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Güven EP, Taşlı PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F. In vitrocomparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 2013; 46:1173-82. [DOI: 10.1111/iej.12115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/02/2013] [Indexed: 12/29/2022]
Affiliation(s)
- E. P. Güven
- Department of Endodontics; Faculty of Dentistry; Yeditepe University; Istanbul Turkey
| | - P. N. Taşlı
- Department of Genetics and Bioengineering; Faculty of Engineering and Architecture; Yeditepe University; Istanbul Turkey
| | - M. E. Yalvac
- Center for Gene Therapy; Department of Pediatrics; The Research Institute at Nationwide Children's Hospital; Ohio State University; Columbus OH USA
| | - N. Sofiev
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Istanbul University; Capa; Istanbul Turkey
| | - M. B. Kayahan
- Department of Endodontics; Faculty of Dentistry; Yeditepe University; Istanbul Turkey
| | - F. Sahin
- Department of Genetics and Bioengineering; Faculty of Engineering and Architecture; Yeditepe University; Istanbul Turkey
| |
Collapse
|
44
|
Silva GAB, Gava E, Lanza LD, Estrela C, Alves JB. Subclinical Failures of Direct Pulp Capping of Human Teeth by Using a Dentin Bonding System. J Endod 2013; 39:182-9. [DOI: 10.1016/j.joen.2012.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/10/2012] [Accepted: 09/24/2012] [Indexed: 12/31/2022]
|
45
|
Taşlı PN, Tapşın S, Demirel S, Yalvaç ME, Akyuz S, Yarat A, Şahin F. Isolation and Characterization of Dental Pulp Stem Cells from a Patient with Papillon–Lefèvre Syndrome. J Endod 2013; 39:31-8. [DOI: 10.1016/j.joen.2012.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
|
46
|
|
47
|
Wheater MA, Falvo J, Ruiz F, Byars M. Chlorhexidine, ethanol, lipopolysaccharide and nicotine do not enhance the cytotoxicity of a calcium hydroxide pulp capping material. Int Endod J 2012; 45:989-95. [DOI: 10.1111/j.1365-2591.2012.02057.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Apical Periodontium Response to Enamel Matrix Derivative as an Intracanal Medication in Rat Immature Teeth with Pulp Necrosis: Radiographic and Histologic Findings. J Endod 2012; 38:449-53. [DOI: 10.1016/j.joen.2011.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 01/09/2023]
|
49
|
Lee SY, Min KS, Choi GW, Park JH, Park SH, Lee SI, Kim EC. Effects of simvastain and enamel matrix derivative on Portland cement with bismuth oxide-induced growth and odontoblastic differentiation in human dental pulp cells. J Endod 2012; 38:405-10. [PMID: 22341085 DOI: 10.1016/j.joen.2011.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 01/09/2023]
Abstract
INTRODUCTION We previously reported that bismuth oxide containing Portland cement (BPC) showed similar biocompatibility to Portland cement (PC) in periodontal ligament cells. However, the bioactivity of simvastatin and Emdogain (Biora AB, Malmö, Sweden) on BPC was not reported. The aim of this study was to evaluate the effects of simvastatin and Emdogain on BPC compared with mineral trioxide aggregate (MTA) in human dental pulp cells (HDPCs). METHODS Cell growth was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay. Differentiation was evaluated by alkaline phosphatase (ALP) activity, alizarin red staining, and reverse-transcriptase polymerase chain reaction. RESULTS The cell growth of HDPCs exposed to Emdogain and simvastatin plus BPC was superior to those administered BPC alone and similar to those that received MTA for 14 days. The simvastatin and Emdogain groups increased the odontogenic potential of the BPC group with respect to ALP activity, mineralization nodules, messenger RNA expression of ALP, osteopontin, osteocalcin, Runx2, and osterix. CONCLUSIONS These results suggest that simvastatin and Emdogain improved cell growth and the differentiation of the BPC group in HDPCs and may be useful ingredients in BPC as pulp-capping material.
Collapse
Affiliation(s)
- So-Youn Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 2012; 38:475-80. [PMID: 22414832 DOI: 10.1016/j.joen.2011.12.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We have previously differentiated hepatocyte like cells from deciduous tooth pulp stem and extracted third molar pulp stem cells with a protocol that used fetal bovine serum, but it showed high contaminations of nondifferentiated cells. Both the lower purity of hepatically differentiated cells and usage of serum are obstacles for application of cell therapy or regenerative medicine. Objective of this study was to investigate the capacity for and purity of hepatocyte-like differentiation of CD117-positive dental pulp stem cells without serum. METHODS Mesenchymal cells from human deciduous and extracted third molar pulp were isolated and expanded in vitro. We separated CD117-positive cells by using a magnetic-activated cell sorter. The cells were characterized immunofluorescently by using known stem cell markers. For hepatic differentiation, the media were supplemented with hepatic growth factor, insulin-transferrin-selenium-x, dexamethasone, and oncostatin M. Expression of hepatic markers alpha fetoprotein, albumin, hepatic nuclear factor-4 alpha, insulin-like growth factor-1, and carbamoyl phosphate synthetase was examined immunofluorescently after differentiation. The amount of differentiated cells was assessed by using flow cytometry. Glycogen storage and urea concentration in the medium were defined. RESULTS Both cell cultures demonstrated a number of cells positive for all tested hepatic markers after differentiation, ie, albumin-positive cells were almost 90% of differentiated deciduous pulp cells. The concentration of urea in the media increased significantly after differentiation. Significant amount of cytoplasmic glycogen storage was found in the cells. CONCLUSIONS Without serum both cell types differentiated into high-purity hepatocyte-like cells. These cells offer a source for hepatocyte lineage differentiation for transplantation in the future.
Collapse
|