1
|
Zhang S, Wang J, Liu X, Kan Z, Zhang Y, Niu Z, Hu X, Zhang L, Zhang X, Song Z. Pemetrexed alleviates piglet diarrhea by blocking the interaction between porcine epidemic diarrhea virus nucleocapsid protein and Ezrin. J Virol 2024; 98:e0162523. [PMID: 38084960 PMCID: PMC10804979 DOI: 10.1128/jvi.01625-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes high mortality in piglets, thus posing a serious threat to the world pig industry. Porcine epidemic diarrhea (PED) is related to the imbalance of sodium absorption by small intestinal epithelial cells; however, the etiology of sodium imbalanced diarrhea caused by PEDV remains unclear. Herein, we first proved that PEDV can cause a significant decrease in Na+/H+ exchanger 3 (NHE3) expression on the cell membrane, in a viral dose-dependent manner. Further study showed that the PEDV nucleocapsid (N) protein participates in the regulation of NHE3 activity through interacting with Ezrin. Flame atomic absorption spectroscopy results indicated a serious imbalance in Na+ concentration inside and outside cells following overexpression of PEDV N. Meanwhile, molecular docking technology identified that the small molecule drug Pemetrexed acts on the PEDV N-Ezrin interaction region. It was confirmed that Pemetrexed can alleviate the imbalanced Na+ concentration in IPEC-J2 cells and the diarrhea symptoms of Rongchang pigs caused by PEDV infection. Overall, our data suggest that the interaction between PEDV N and Ezrin reduces the level of phosphorylated Ezrin, resulting in a decrease in the amount of NHE3 protein on the cell membrane. This leads to an imbalance of intracellular and extracellular Na+, which causes diarrhea symptoms in piglets. Pemetrexed is effective in relieving diarrhea caused by PEDV. Our results provide a reference to screen for anti-PEDV targets and to develop drugs to prevent PED.IMPORTANCEPorcine epidemic diarrhea (PED) has caused significant economic losses to the pig industry since its initial outbreak, and the pathogenic mechanism of porcine epidemic diarrhea virus (PEDV) is still under investigation. Herein, we found that the PEDV nucleocapsid protein interacts with Ezrin to regulate Na+/H+ exchanger 3 activity. In addition, we screened out Pemetrexed, a small molecule drug, which can effectively alleviate pig diarrhea caused by PEDV. These results provide support for further exploration of the pathogenesis of PEDV and the development of drugs to prevent PED.
Collapse
Affiliation(s)
- Shujuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jing Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiangyang Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Zifei Kan
- College of Veterinary Medicine, Southwest University, Chongqing, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiling Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing, China
- College of Veterinary Medicine, Northwest A and F University, Shanxi, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xingcui Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Cumhur Cure M, Cure E. Severe acute respiratory syndrome coronavirus 2 may cause liver injury via Na +/H + exchanger. World J Virol 2023; 12:12-21. [PMID: 36743661 PMCID: PMC9896593 DOI: 10.5501/wjv.v12.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
The liver has many significant functions, such as detoxification, the urea cycle, gluconeogenesis, and protein synthesis. Systemic diseases, hypoxia, infections, drugs, and toxins can easily affect the liver, which is extremely sensitive to injury. Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage. The primary regulator of intracellular pH in the liver is the Na+/H+ exchanger (NHE). Physiologically, NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline. Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensin-converting enzyme 2. In severe cases of coronavirus disease 2019, high angi-otensin II levels may cause NHE overstimulation and lipid accumulation in the liver. NHE overstimulation can lead to hepatocyte death. NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver. Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation, the virus may indirectly cause an increase in fibrinogen and D-dimer levels. NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release. Also, NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver. Increasing NHE3 activity leads to Na+ loading, which impairs the containment and fluidity of bile acid. NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid, thus triggering systemic damage. Unlike other tissues, tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine. Thus, increased luminal Na+ leads to diarrhea and cytokine release. Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Department of Biochemistry, Private Tanfer Hospital, Istanbul 34394, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul 34200, Turkey
| |
Collapse
|
3
|
Dong Y, Li H, Ilie A, Gao Y, Boucher A, Zhang XC, Orlowski J, Zhao Y. Structural basis of autoinhibition of the human NHE3-CHP1 complex. SCIENCE ADVANCES 2022; 8:eabn3925. [PMID: 35613257 PMCID: PMC9132474 DOI: 10.1126/sciadv.abn3925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Sodium-proton exchanger 3 (NHE3/SLC9A3) located in the apical membrane of renal and gastrointestinal epithelia mediates salt and fluid absorption and regulates pH homeostasis. As an auxiliary regulatory factor of NHE proteins, calcineurin B homologous protein 1 (CHP1) facilitates NHE3 maturation, plasmalemmal expression, and pH sensitivity. Dysfunctions of NHE3 are associated with renal and digestive system disorders. Here, we report the cryo-electron microscopy structure of the human NHE3-CHP1 complex in its inward-facing conformation. We found that a cytosolic helix-loop-helix motif in NHE3 blocks the intracellular cavity formed between the core and dimerization domains, functioning as an autoinhibitory element and hindering substrate transport. Furthermore, two phosphatidylinositol molecules are found to bind to the peripheric juxtamembrane sides of the complex, function as anchors to stabilize the complex, and may thus enhance its transport activity.
Collapse
Affiliation(s)
- Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Canada
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Annie Boucher
- Department of Physiology, McGill University, Montreal, Canada
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
E S, Srikanth MS, Shreyas A, Desai S, Mehdi S, Gangadharappa HV, Suman, Krishna KL. Recent advances, novel targets and treatments for cholelithiasis; a narrative review. Eur J Pharmacol 2021; 908:174376. [PMID: 34303667 DOI: 10.1016/j.ejphar.2021.174376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022]
Abstract
Cholelithiasis is a common and frequent condition all over the world with a high prevalence rate in western countries. Individuals with cholesterol gallstone disease experience intense gastrointestinal symptoms and have a high risk of developing comorbidities like cholecystitis, Gall bladder (GB) cancer and pancreatitis. Multiple risk factors associated with cholesterol gallstones include but not limited to genetics, dietary habits, lifestyle changes, comorbid conditions and various drugs. These factors may lead to alteration in bile, cholesterol & phospholipids homeostasis in the GB, intestine and hepatocytes culminating in cholesterol gallstones formation. Surgical (cholecystectomy) and non-surgical (oral dissolution therapy) treatments are available for the disease, albeit with certain complications and high treatment cost. Thus, there is a need for interventions, complementary or alternative therapies for the treatment and prevention of cholesterol gallstones. Currently available drug therapies used for cholesterol gallstones include statins and ezetimibe. Many patients consider traditional herbal practitioners due to their promise of non-invasive and pain free management of gall stones. This present a positive shift towards generally acceptable safety and cost effectiveness of herbal treatment warranting extensive research for alternative or complementary choice such as herbal plants as an emerging area for their potential therapeutic effects. This review discusses current strategies, latest trends available in the disease pathogenesis, drug development for novel targets, risk management, newer anti-lithogenic drugs and herbal plants that target the different aspects of the disease.
Collapse
Affiliation(s)
- Swarne E
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - M S Srikanth
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Ayachit Shreyas
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Sneha Desai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India
| | - Suman
- Department of Dravya Guna, Government Ayurvedic Medical College and Hospital, New Sayyaji Rao Road, Mysuru, 570 001, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570 015, Karnataka, India.
| |
Collapse
|