1
|
Akbar S, Setia T, Das S, Kumari S, Rahaman SB, Wasim M, Ahmed B, Dewangan RP. Design, synthesis, and evaluation of 1,4-benzodioxane-hydrazone derivatives as potential therapeutics for skin cancer: In silico, in vitro, and in vivo studies. Bioorg Chem 2025; 160:108449. [PMID: 40220711 DOI: 10.1016/j.bioorg.2025.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
In the pursuit of novel chemotherapeutic agents for skin cancer, we synthesized a series of 1,4-benzodioxane-hydrazone derivatives (7a-l) using the Wolff-Kishner reaction. These compounds were initially screened against the NCI-60 oncological cell lines in a one-dose assay at 10 μM. Among them, compound 7e emerged as a potent inhibitor of cancer cell growth across 56 cell lines, with an average GI50 of 6.92 μM. Notably, it exhibited enhanced efficacy in melanoma cell lines, including MDA-MB-435, M14, SK-MEL-2, and UACC-62, with GI50 values of 0.20, 0.46, 0.57, and 0.27 μM, respectively. Apoptosis assay and cell cycle analysis studies revealed that compound 7e induced apoptosis and caused S-phase arrest in MDA-MB-435 cells. Furthermore, an in vitro enzyme inhibition assay against mTOR kinase yielded an IC50 of 5.47 μM, while molecular docking studies of compound 7e (docking score: -8.105 kcal/mol) supported its binding affinity. Compound 7e adhered to Lipinski's rule of five and displayed favourable ADMET properties. In vivo studies demonstrated its safety and efficacy in ameliorating skin cancer in a mice model when administered intraperitoneally at 20 mg/kg. Structure-activity relationships were established through in vitro, in vivo, molecular docking, and molecular dynamics analysis. Collectively, these findings highlight 1,4-benzodioxane-hydrazone derivatives as promising scaffold for the development of novel chemotherapeutic agents for skin cancer.
Collapse
Affiliation(s)
- Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Tushar Setia
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shalini Kumari
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Sk Batin Rahaman
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| |
Collapse
|
2
|
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, Islam MT, Sharifi-Rad J, Calina D, Cho WC. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22:284. [PMID: 36109789 PMCID: PMC9476305 DOI: 10.1186/s12935-022-02706-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The PI3K-Akt-mechanistic (formerly mammalian) target of the rapamycin (mTOR) signaling pathway is important in a variety of biological activities, including cellular proliferation, survival, metabolism, autophagy, and immunity. Abnormal PI3K-Akt-mTOR signalling activation can promote transformation by creating a cellular environment conducive to it. Deregulation of such a system in terms of genetic mutations and amplification has been related to several human cancers. Consequently, mTOR has been recognized as a key target for the treatment of cancer, especially for treating cancers with elevated mTOR signaling due to genetic or metabolic disorders. In vitro and in vivo, rapamycin which is an immunosuppressant agent actively suppresses the activity of mTOR and reduces cancer cell growth. As a result, various sirolimus-derived compounds have now been established as therapies for cancer, and now these medications are being investigated in clinical studies. In this updated review, we discuss the usage of sirolimus-derived compounds and other drugs in several preclinical or clinical studies as well as explain some of the challenges involved in targeting mTOR for treating various human cancers.
Collapse
Affiliation(s)
- Eunus S. Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042 Australia
- Gaco Pharmaceuticals, Dhaka, 1000 Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611 USA
| | - Kangkana Mitra
- Faculty of Medicine and Pharmacy, Université Grenoble Alpes, Grenoble, France
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA 22030 USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100 Pakistan
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
3
|
Jiang SL, Mo JL, Peng J, Lei L, Yin JY, Zhou HH, Liu ZQ, Hong WX. Targeting translation regulators improves cancer therapy. Genomics 2020; 113:1247-1256. [PMID: 33189778 DOI: 10.1016/j.ygeno.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Jun-Luan Mo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China; Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, PR China.
| | - Wen-Xu Hong
- Shenzhen Center for Chronic Disease Control and Prevention, Shenzhen 518020, PR China.
| |
Collapse
|
4
|
Expression of maspin tumor suppressor and mTOR in laryngeal carcinoma. Am J Otolaryngol 2020; 41:102322. [PMID: 31732312 DOI: 10.1016/j.amjoto.2019.102322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE The main aim of this study was to conduct a preliminary investigation into the possible relationship between mTOR and the nuclear tumor suppressor maspin in laryngeal carcinoma (LSCC). MATERIALS AND METHODS mTOR expression and maspin pattern were ascertained, also with the aid of image analysis in 79 consecutive LSCCs. RESULTS Considering the whole series, univariate statistical analysis identified significant differences in the distributions by lymph node status (N0 vs N+) between two subgroups of patients with and without loco-regional carcinoma recurrences (p = 0.017). The log-rank test also showed a shorter disease-free survival (DFS) in pN+ patients (p = 0.0008). mTOR expression was significantly higher in patients whose disease recurred (p = 0.009). The DFS rate was also significantly shorter in cases of LSCC with an mTOR expression ≥11.55% (p = 0.049). Multivariate analysis showed that N status (p = 0.002) and mTOR expression (p = 0.037) retained their prognostic significance in relation to cancer recurrence. In a subgroup of LSCCs with a non-nuclear maspin pattern, mTOR expression was significantly higher in patients whose disease recurred. Multivariate analysis disclosed that N stage (p = 0.012) retained its independent prognostic significance for disease recurrence in this setting. mTOR expression showed a trend towards independent significance in terms of carcinoma recurrence (p = 0.083). CONCLUSIONS mTOR inhibitors seem promising for use in cancer therapies. Further investigations are needed on the prospects of incorporating modern mTOR inhibitors in multimodality or multitarget strategies against advanced LSCCs, also considering the role and expression of tumor suppressor genes.
Collapse
|
5
|
Martins D, Spada F, Lambrescu I, Rubino M, Cella C, Gibelli B, Grana C, Ribero D, Bertani E, Ravizza D, Bonomo G, Funicelli L, Pisa E, Zerini D, Fazio N. Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors. Target Oncol 2017; 12:611-622. [PMID: 28634872 DOI: 10.1007/s11523-017-0506-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroendocrine tumors (NETs) represent a large and heterogeneous group of malignancies with various biological and clinical characteristics, depending on the site of origin and the grade of tumor proliferation. In NETs, as in other cancer types, molecularly targeted therapies have radically changed the therapeutic landscape. Recently two targeted agents, the mammalian target of rapamycin inhibitor everolimus and the tyrosine kinase inhibitor sunitinib, have both demonstrated significantly prolonged progression free survival in patients with advanced pancreatic NETs. Despite these important therapeutic developments, there are still significant limitations to the use of these agents due to the lack of accurate biomarkers for predicting tumor response and efficacy of therapy. In this review, we provide an overview of the current clinical data for the evaluation of predictive factors of response to/efficacy of everolimus and sunitinib in advanced pancreatic NETs. Surrogate indicators discussed include circulating and tissue markers, as well as non-invasive imaging techniques.
Collapse
Affiliation(s)
- Diana Martins
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Francesca Spada
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Ioana Lambrescu
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Manila Rubino
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Chiara Cella
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy
| | - Bianca Gibelli
- Division of Otolaryngology-Head and Neck Surgery, European Institute of Oncology, IEO, Milan, Italy
| | - Chiara Grana
- Division of Nuclear Medicine, European Institute of Oncology, IEO, Milan, Italy
| | - Dario Ribero
- Division of Hepatobiliopancreatic Surgery, European Institute of Oncology, IEO, Milan, Italy
| | - Emilio Bertani
- Division of Hepatobiliopancreatic Surgery, European Institute of Oncology, IEO, Milan, Italy
| | - Davide Ravizza
- Division of Endoscopy, European Institute of Oncology, IEO, Milan, Italy
| | - Guido Bonomo
- Division of Interventional Radiology, European Institute of Oncology, IEO, Milan, Italy
| | - Luigi Funicelli
- Division of Radiology, European Institute of Oncology, IEO, Milan, Italy
| | - Eleonora Pisa
- Division of Pathology, European Institute of Oncology, IEO, Milan, Italy
| | - Dario Zerini
- Division of Radiotherapy, European Institute of Oncology, IEO, Milan, Italy
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, IEO, 20141 via Ripamonti, 435, Milan, Italy.
| |
Collapse
|
6
|
Antitumor activity of the dual PI3K/MTOR inhibitor, PF-04691502, in combination with radiation in head and neck cancer. Radiother Oncol 2017; 124:504-512. [PMID: 28823407 DOI: 10.1016/j.radonc.2017.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Head and neck squamous cell carcinoma (HNSCC) remains a clinical challenge where new treatments are required to supplement the current-standard-of care of concurrent chemoradiation. The PI3K/AKT/MTOR pathway has been identified from several next generation DNA sequencing studies to be commonly altered and activated in HNSCC. MATERIAL AND METHODS In this study we investigated the activity of PF-04691502, an orally active ATP-competitive, dual inhibitor of PI3K and mTOR, in combination with a clinically relevant fractionated radiation treatment in two contrasting, well characterized, low passage HNSCC models. RESULTS We found that PF-04691502 combined synergistically with radiation in the UT-SCC-14 model derived from a primary cancer but was ineffective in the UT-SCC-15 model which was derived from a nodal recurrence. Further examination of the status of key signaling pathways combined with next generation DNA sequencing of a panel of 160 cancer-associated genes revealed crucial differences between the two models that could account for the differential effect. The UT-SCC-15 cell line was characterized by a higher mutational burden, an excess of variants in the PI3K/AKT/MTOR pathway, increased constitutive activity of PI3K, AKT1 and 2 and MTOR and an inability to inhibit key phosphorylation events in response to the treatments. CONCLUSION This study clearly highlights the promise of agents such as PF-04691502 in selected HNSCCs but also emphasizes the need for molecular characterization and alternative treatment strategies in non-responsive HNSCCs.
Collapse
|
7
|
Geng X, Ma L, Li Z, Li Z, Li J, Li M, Wang Q, Chen Z, Sun Q. Bromocriptine Induces Autophagy-Dependent Cell Death in Pituitary Adenomas. World Neurosurg 2017; 100:407-416. [DOI: 10.1016/j.wneu.2017.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/11/2023]
|
8
|
Iezzi A, Caiola E, Broggini M. Activity of Pan-Class I Isoform PI3K/mTOR Inhibitor PF-05212384 in Combination with Crizotinib in Ovarian Cancer Xenografts and PDX. Transl Oncol 2016; 9:458-465. [PMID: 27751351 PMCID: PMC5067927 DOI: 10.1016/j.tranon.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The Phosphatidyl inositol-3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and c-Met signaling pathways are often deregulated in cancer. The two pathways are interconnected and at least c-Met has been implicated in drug resistance. The aim of the study was to assess in ovarian cancer preclinical models, the efficacy and tolerability of a dual PI3K mTOR inhibitor (PF-05212384 or gedatolisib) and a c-Met inhibitor (crizotinib) either as single agents or in combination. In vitro, both PF-05212384 and crizotinib showed a concentration dependent activity in the two ovarian cancer cell lines. The combination of the two did not result in synergistic activity. A subline resistant to gedatolisib was obtained and showed an increased expression of MDR-1 gene. In vivo results show that crizotinib alone did not display any activity in all the tumors investigated, while PF-05212384 alone had some marginal activity. The combination of the two resulted in all the experiments superior to single agents with a good tolerability. Considering that crizotinib did not show activity in the models used, the results indicate that crizotinib is able to potentiate the activity of PF-05212384. Although the activity of the combination was not striking in these three models of ovarian cancer, due to the good tolerability of the combination, the results would suggest the possibility to combine the two drugs in settings in which gedatolisib or crizotinib alone have already some significant activity.
Collapse
Affiliation(s)
- Alice Iezzi
- Laboratory of Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| |
Collapse
|
9
|
Zhang J, Jiang W, Liu W, Wu JJ, Song L, Cheng JX, Yao M, Yang LP, Yao DF. Effective targeting of colorectal cancer cells using TORC1/2 kinase inhibitors in vitro and in vivo. Future Oncol 2016; 12:515-24. [PMID: 26776341 DOI: 10.2217/fon.15.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: We investigated the effects of TORC1/2 kinase inhibitors on colorectal cancer (CRC) cell lines. Materials & methods: Using selective TORC1/2 inhibitors, rapamycin and PP242, we assessed their effect on the growth of CRC cells in vitro and tumor growth in vivo. Results: Rapamycin and PP242 inhibit proliferation and induce apoptosis of CRC cells. They also enhance proapoptotic effect of conventional chemo drug doxorubicin in CRC cells in vitro. When combined with doxorubicin, rapamycin and PP242 almost completely inhibit tumor growth in vivo. Rapamycin and PP242 inhibit phosphorylation of Akt, ribosomal S6 kinase, 4EBP1 and mTOR. Conclusion: Our study suggests rapamycin and PP242 may be a useful therapeutic agent and inhibiting mTOR signaling pathway represents a new targeted therapy for CRC.
Collapse
Affiliation(s)
- Jie Zhang
- The Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Medicine, Nantong University, Nantong 226019, China
| | - Wen Jiang
- Department of Internal Medicine, The Third People's Hospital of Nantong, Nantong 226001, China
| | - Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Juan-Juan Wu
- School of Medicine, Nantong University, Nantong 226019, China
| | - Lei Song
- Department of Paediatrics, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ji-Xian Cheng
- Department of Oncological Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, China
| | - Ming Yao
- The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Li-Ping Yang
- School of Medicine, Nantong University, Nantong 226019, China
| | - Deng-Fu Yao
- The Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
10
|
Wang L, Chen L, Yu M, Xu LH, Cheng B, Lin YS, Gu Q, He XH, Xu J. Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays. Sci Rep 2016; 6:18987. [PMID: 26732172 PMCID: PMC4702177 DOI: 10.1038/srep18987] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 11/27/2015] [Indexed: 12/31/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is an attractive target for new anticancer drug development. We recently developed in silico models to distinguish mTOR inhibitors and non-inhibitors. In this study, we developed an integrated strategy for identifying new mTOR inhibitors using cascaded in silico screening models. With this strategy, fifteen new mTOR kinase inhibitors including four compounds with IC50 values below 10 μM were discovered. In particular, compound 17 exhibited potent anticancer activities against four tumor cell lines, including MCF-7, HeLa, MGC-803, and C6, with IC50 values of 1.90, 2.74, 3.50 and 11.05 μM. Furthermore, cellular studies and western blot analyses revealed that 17 induces cell death via apoptosis by targeting both mTORC1 and mTORC2 within cells and arrests the cell cycle of HeLa at the G1/G0-phase. Finally, multi-nanosecond explicit solvent simulations and MM/GBSA analyses were carried out to study the inhibitory mechanisms of 13, 17, and 40 for mTOR. The potent compounds presented here are worthy of further investigation.
Collapse
Affiliation(s)
- Ling Wang
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.,Pre-Incubator for Innovative Drugs &Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Chen
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Miao Yu
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Li-Hui Xu
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China
| | - Bao Cheng
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yong-Sheng Lin
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xian-Hui He
- Department of Immunobiology, Jinan University, Guangzhou, 510632, China
| | - Jun Xu
- Research Center for Drug Discovery &Institute of Human Virology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
11
|
Capozzi M, Caterina I, De Divitiis C, von Arx C, Maiolino P, Tatangelo F, Cavalcanti E, Di Girolamo E, Iaffaioli RV, Scala S, Tafuto S. Everolimus and pancreatic neuroendocrine tumors (PNETs): Activity, resistance and how to overcome it. Int J Surg 2015; 21 Suppl 1:S89-94. [PMID: 26123382 DOI: 10.1016/j.ijsu.2015.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 03/27/2015] [Accepted: 04/10/2015] [Indexed: 01/06/2023]
Abstract
Neuroendocrine tumors (NET) are rare malignancies, with the most common site of origin being from the gastrointestinal tract, particularly the pancreas, small bowel and appendix. Pancreatic neuroendocrine tumors (PNETs) can be functional, hormone secreting tumors, and can have distinctive symptoms leading to the diagnosis. In contrast nonfunctional tumors, the majority of PNETs, usually present later either incidentally or due to tumor bulk symptoms. Currently Everolimus, an inhibitor of mammalian target of rapamycin (mTOR), is the most promising drug for patients with unresectable, metastatic disease, in progressive well-differentiated PNETs and many studies are ongoing to demonstrate its effects on the other neuroendocrine histotipes. Food and Drug Administration (FDA) and European Medicines Agency (EMA) registered Everolimus in advanced/metastatic breast cancer, in advanced/metastatic renal cell carcinoma and in well/moderately differentiated pancreatic neuroendocrine tumors. Nevertheless only a subset of patients respond to the therapy due to the development of drug resistance. Thus the powerful Everolimus antitumor activity have prompted extensive efforts to overcome drug resistance and to maximize clinical benefit. In this review we aim to summarize current knowledge on mechanisms of Everolimus and other mTOR inhibitors molecules resistance with the intent to overcome it.
Collapse
Affiliation(s)
- Monica Capozzi
- Pharmacy Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Ieranò Caterina
- Molecular Immunology and Immuneregulation Section, Functional Genomic Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Chiara De Divitiis
- Department of Abdominal Oncology, Division of Medical Oncology, NCI "Fondazione G. Pascale", Naples, Italy
| | - Claudia von Arx
- Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Fabiana Tatangelo
- Department of Diagnostic Pathology and Laboratory, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Ernesta Cavalcanti
- Department of Diagnostic Pathology and Laboratory, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Elena Di Girolamo
- Endoscopy Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Rosario Vincenzo Iaffaioli
- Department of Abdominal Oncology, Division of Medical Oncology, NCI "Fondazione G. Pascale", Naples, Italy
| | - Stefania Scala
- Molecular Immunology and Immuneregulation Section, Functional Genomic Unit, Istituto Nazionale Tumori, IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Salvatore Tafuto
- Department of Abdominal Oncology, Division of Medical Oncology, NCI "Fondazione G. Pascale", Naples, Italy.
| | | |
Collapse
|
12
|
Korkes HA, Sass N, Moron AF, Câmara NOS, Bonetti T, Cerdeira AS, Da Silva IDCG, De Oliveira L. Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. PLoS One 2014; 9:e110747. [PMID: 25329382 PMCID: PMC4201564 DOI: 10.1371/journal.pone.0110747] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/25/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Adipose tissue is responsible for triggering chronic systemic inflammatory response and these changes may be involved in the pathophysiology of preeclampsia. Objective To characterize the lipid profile in the placenta and plasma of patients with preeclampsia. Methodology Samples were collected from placenta and plasma of 10 pregnant women with preeclampsia and 10 controls. Lipids were extracted using the Bligh–Dyer protocol and were analysed by MALDI TOF-TOF mass spectrometry. Results Approximately 200 lipid signals were quantified. The most prevalent lipid present in plasma of patients with preeclampsia was the main class Glycerophosphoserines-GP03 (PS) representing 52.30% of the total lipid composition, followed by the main classes Glycerophosphoethanolamines-GP02 (PEt), Glycerophosphocholines-GP01 (PC) and Flavanoids-PK12 (FLV), with 24.03%, 9.47% and 8.39% respectively. When compared to the control group, plasma samples of patients with preeclampsia showed an increase of PS (p<0.0001), PC (p<0.0001) and FLV (p<0.0001). Placental analysis of patients with preeclampsia, revealed the PS as the most prevalent lipid representing 56.28%, followed by the main class Macrolides/polyketides-PK04 with 32.77%, both with increased levels when compared with patients control group, PS (p<0.0001) and PK04 (p<0.0001). Conclusion Lipids found in placenta and plasma from patients with preeclampsia differ from those of pregnant women in the control group. Further studies are needed to clarify if these changes are specific and a cause or consequence of preeclampsia.
Collapse
Affiliation(s)
- Henri Augusto Korkes
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Clinical and Experimental Investigation – School Maternity Vila Nova Cachoeirinha, Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Nelson Sass
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Clinical and Experimental Investigation – School Maternity Vila Nova Cachoeirinha, Sao Paulo, Sao Paulo, Brazil
| | - Antonio F. Moron
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | | - Tatiana Bonetti
- Department of Gynecology - Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Ana Sofia Cerdeira
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Leandro De Oliveira
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Clinical and Experimental Investigation – School Maternity Vila Nova Cachoeirinha, Sao Paulo, Sao Paulo, Brazil
- Department of Immunology – University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
13
|
In vitro treatment of melanoma brain metastasis by simultaneously targeting the MAPK and PI3K signaling pathways. Int J Mol Sci 2014; 15:8773-94. [PMID: 24840574 PMCID: PMC4057758 DOI: 10.3390/ijms15058773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer, with a high propensity to metastasize to the brain. More than 60% of melanomas have the BRAFV600E mutation, which activates the mitogen-activated protein kinase (MAPK) pathway [1]. In addition, increased PI3K (phosphoinositide 3-kinase) pathway activity has been demonstrated, through the loss of activity of the tumor suppressor gene, PTEN [2]. Here, we treated two melanoma brain metastasis cell lines, H1_DL2, harboring a BRAFV600E mutation and PTEN loss, and H3, harboring WT (wild-type) BRAF and PTEN loss, with the MAPK (BRAF) inhibitor vemurafenib and the PI3K pathway associated mTOR inhibitor temsirolimus. Combined use of the drugs inhibited tumor cell growth and proliferation in vitro in H1_DL2 cells, compared to single drug treatment. Treatment was less effective in the H3 cells. Furthermore, a strong inhibitory effect on the viability of H1_DL2 cells, when grown as 3D multicellular spheroids, was seen. The treatment inhibited the expression of pERK1/2 and reduced the expression of pAKT and p-mTOR in H1_DL2 cells, confirming that the MAPK and PI3K pathways were inhibited after drug treatment. Microarray experiments followed by principal component analysis (PCA) mapping showed distinct gene clustering after treatment, and cell cycle checkpoint regulators were affected. Global gene analysis indicated that functions related to cell survival and invasion were influenced by combined treatment. In conclusion, we demonstrate for the first time that combined therapy with vemurafenib and temsirolimus is effective on melanoma brain metastasis cells in vitro. The presented results highlight the potential of combined treatment to overcome treatment resistance that may develop after vemurafenib treatment of melanomas.
Collapse
|
14
|
P-Glycoprotein, CYP3A, and Plasma Carboxylesterase Determine Brain and Blood Disposition of the mTOR Inhibitor Everolimus (Afinitor) in Mice. Clin Cancer Res 2014; 20:3133-45. [DOI: 10.1158/1078-0432.ccr-13-1759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
A dual mTORC1 and mTORC2 inhibitor shows antitumor activity in esophageal squamous cell carcinoma cells and sensitizes them to cisplatin. Anticancer Drugs 2014; 24:889-98. [PMID: 23838676 DOI: 10.1097/cad.0b013e328363c64e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is critical for the growth and proliferation of various malignant tumors, including esophageal squamous cell carcinoma (ESCC). Therefore, targeting of mTOR protein is a promising strategy for therapy in this disease. In the present study, we examined the antitumor effects of a specific mTOR kinase inhibitor, PP242, which blocks both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) pathways, in two ESCC cell lines: Eca-109 and TE-1. We showed that PP242, but not rapamycin, attenuated the activities of both mTORC1 and mTORC2 signaling in ESCC. PP242 inhibited 4E-binding protein-1 phosphorylation and abrogated mTORC1-dependent PI3K/Akt feedback activation. Significantly, PP242 effectively suppressed ESCC cell proliferation, induced apoptosis, and arrested the cell cycle. Furthermore, PP242 promoted cisplatin-induced apoptosis and enhanced the antitumor efficacy of cisplatin in ESCC cells, which was likely to be associated with inhibition of Akt activity. Our results show that simultaneous targeting of both mTORC1 and mTORC2 pathways leads to effective antitumor actions in ESCC, and strongly suggest that dual mTORC1/2 inhibitors should be developed as potential agents for the treatment of ESCC.
Collapse
|
16
|
Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer. Invest New Drugs 2014; 32:510-7. [PMID: 24395457 DOI: 10.1007/s10637-013-0062-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE To determine the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, and preliminary evidence of antitumor activity of the PI3K/mTOR inhibitor PF-04691502, administered orally once daily. METHODS Escalating doses of PF-04691502 were administered to 23 patients with advanced solid tumors in sequential cohorts across the following dose levels: 2 mg, 4 mg, 8 mg, and 11 mg. 14 additional patients were enrolled in an expansion cohort at the MTD to ensure at least five matched pre- and post-treatment biopsies for biomarkers of PI3K activity. RESULTS The MTD of PF-04691502 was 8 mg orally once daily. There were three dose-limiting toxicities: one grade 3 fatigue at 8 mg, one grade 3 rash at 11 mg, and one intolerable grade 2 fatigue at 11 mg. Among 37 patients enrolled, treatment-related adverse events included fatigue, decreased appetite, nausea, hyperglycemia, rash, and vomiting. Across all dose levels, average steady-state plasma PF-04691502 concentrations approximated or exceeded the target concentration of 16.2 ng/mL required for ≥75 % tumor growth inhibition in preclinical models. PF-04691502 resulted in increased mean fasting serum glucose, insulin, and c-peptide levels, and produced partial blockade of PI3K signalling in five paired tumor biopsies, as demonstrated by reductions in phosphorylated Akt, FKHR/FKHRL1, and STAT3. No objective anti-tumor responses were observed. CONCLUSIONS Daily oral administration of PF-04691502 was tolerable at 8 mg orally once daily, with a safety profile similar to other PI3K/mTOR inhibitors. PF-04691502 demonstrated PI3K pathway inhibition by changing glucose homeostasis, and by decreasing phosphorylation of downstream molecules in tumor tissue.
Collapse
|
17
|
Neurofibromatosis type I. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Harder LM, Bunkenborg J, Andersen JS. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin. Autophagy 2013; 10:339-55. [PMID: 24300666 PMCID: PMC5396081 DOI: 10.4161/auto.26863] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR activity was not affected, but indicated increased MAPK3 activity, regulation of proteins involved in Rho signal transduction, and a novel phosphorylation motif, serine-proline-threonine (SPT), which could be linked to cytoskeleton-associated proteins. MAPK3 could not be identified as the primary driver of ammonia-induced autophagy but instead the data suggested an upregulation of AMPK and the unfolded protein response (UPR), which might link ammonia to autophagy induction. Support of UPR induction was further obtained from the finding of increased protein levels of the ER stress markers DDIT3/CHOP and HSPA5 during ammonia treatment. The large-scale data set presented here comprises extensive high-quality quantitative information on phosphoprotein regulation in response to 2 very different autophagy inducers and should therefore be considered a general resource for the community.
Collapse
Affiliation(s)
- Lea M Harder
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Jakob Bunkenborg
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| |
Collapse
|
19
|
Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One 2013; 8:e80070. [PMID: 24244612 PMCID: PMC3828226 DOI: 10.1371/journal.pone.0080070] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/09/2013] [Indexed: 01/22/2023] Open
Abstract
Purpose Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established. Experimental Design We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative. Results Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2. Conclusions Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.
Collapse
|
20
|
Lionello M, Lovato A, Staffieri A, Blandamura S, Turato C, Giacomelli L, Staffieri C, Marioni G. The EGFR-mTOR pathway and laryngeal cancer angiogenesis. Eur Arch Otorhinolaryngol 2013; 271:757-64. [PMID: 24065188 DOI: 10.1007/s00405-013-2691-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a trans-membrane tyrosine kinase taking part in cell transformation and tumor progression. One of the downstream pathways controlled by EGFR involves the mammalian target of rapamycin (mTOR), a proto-oncogene activated in several cell functions. Recent evidence seems to confirm that both EGFR and mTOR regulate angiogenesis. The aim of this study was to investigate the expression of EGFR and mTOR in laryngeal squamous cell carcinoma (LSCC) cells in a retrospective clinical setting and their correlation with tumor neo-angiogenesis, judged on the grounds of CD105-assessed microvascular density (MVD), and prognosis. We considered 76 consecutive patients with LSCC treated with surgery alone. Immunohistochemical expressions of EGFR, mTOR, and CD105 were measured using image analysis and findings underwent statistical analysis using univariate and multivariate models. We found that nodal status correlated significantly with patient prognosis in terms of disease-free survival (DFS) (p = 0.01). There was a strong direct correlation between mTOR and EGFR expression (p = 0.0003), and between mTOR and CD105-assessed MVD (p = 0.0025). Patients with a CD105-assessed MVD >5.28 % had a significantly higher recurrence rate (RR) (p = 0.026), and a significantly shorter DFS (p = 0.025). On multivariate analysis, only N stage [hazard ratio (HR) 3.54, p = 0.009] and CD105-assessed MVD (HR 2.87, p = 0.027) maintained their independent prognostic significance in terms of DFS. Judging from our promising findings, the EGFR-mTOR pathway should be investigated further to understand its role in LSCC neo-angiogenesis.
Collapse
Affiliation(s)
- Marco Lionello
- Otolaryngology Section, Department of Neurosciences, University of Padova, Padova, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Minai-Tehrani A, Chang SH, Park SB, Cho MH. The O‑glycosylation mutant osteopontin alters lung cancer cell growth and migration in vitro and in vivo. Int J Mol Med 2013; 32:1137-49. [PMID: 24008322 DOI: 10.3892/ijmm.2013.1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/27/2013] [Indexed: 11/05/2022] Open
Abstract
Osteopontin (OPN) is an acidic, glycosylated and phosphorylated protein that plays an essential role in determining the aggressiveness and oncogenic potential of several types of cancer, including lung cancer. The OPN function is highly dependent on post-translational modification (PTM) and regulation of the processes that involve OPN can be mediated through glycosylation. However, the connection between OPN function and its O-glycosylation in lung cancer cells has yet to be investigated. In the present study, this issue was addressed by studying the effects of wild-type (WT) OPN and a triple mutant (TM) of OPN, which was mutated at three O-glycosylation sites in lung cancer cells. It was shown that OPN WT rather than OPN TM induced the OPN‑mediated signaling pathway. The OPN WT expression enhanced cap-dependent protein translation, NF-κB activity and glucose uptake, whereas a reduction was observed in cells treated with OPN TM. The results clearly demonstrated that unlike OPN WT, OPN TM did not increase lung cancer cell growth and migration both in vitro and in a xenograft mouse model. Thus, results of the present study suggested that targeting OPN by introducing OPN TM may be a good strategy for treating lung cancer.
Collapse
Affiliation(s)
- Arash Minai-Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Japan
| | | | | | | |
Collapse
|
22
|
|
23
|
Lyu SY, Choi JH, Lee HJ, Park WB, Kim GJ. Korean mistletoe lectin promotes proliferation and invasion of trophoblast cells through regulation of Akt signaling. Reprod Toxicol 2013; 39:33-9. [PMID: 23571125 DOI: 10.1016/j.reprotox.2013.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/20/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023]
Abstract
Recently, Viscum album var. coloratum agglutinin (VCA) was shown to have various effects on cancer cells. However, most researchers are focused on high concentrations (1-1000 ng/ml) of VCA and its anti-cancer effects. Therefore, we wanted to know whether low concentrations of VCA have an effect on proliferation and invasion of human trophoblast cells (HTR-8/SVneo cell line). Cell proliferations at low concentration of VCA (1-10 pg/ml) were increased over 2-fold relative to the control. Also, gelatinolytic activities of matrix metalloproteinase-2 were increased after VCA treatment, while TIMP-1 expression was reduced. Furthermore, the expression of integrin subunits α5 and β1 were increased 1.5-fold when cells were treated with low dose of VCA (10 pg/ml). Lastly, VCA was able to promote trophoblast invasion through activation of the Akt signaling pathway. In conclusion, low concentrations of VCA can stimulate the ability of trophoblast cells to invade through the extracellular matrix in vitro.
Collapse
Affiliation(s)
- Su-Yun Lyu
- College of Pharmacy, Sunchon National University, Megok-Dong, Suncheon-Si, Jeonnam 540-742, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Abstract
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.
Collapse
|
25
|
Salvadori M. Antineoplastic effects of mammalian target of rapamycine inhibitors. World J Transplant 2012; 2:74-83. [PMID: 24175199 PMCID: PMC3782237 DOI: 10.5500/wjt.v2.i5.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/08/2012] [Accepted: 10/20/2012] [Indexed: 02/05/2023] Open
Abstract
Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin (mTOR) inhibitor. The role of mTOR pathways in cell homeostasis is complex but enough clear. As a consequence the mTOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of mTOR inhibitors. The authors review the complex mechanism of action of mTOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of mTOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate mTOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of mTOR inhibition. More recently mTOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the mTOR pathway at different levels.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Maurizio Salvadori, Renal Unit, Careggi University Hospital, Viale Pieraccini 18, Florence 50139, Italy
| |
Collapse
|
26
|
Gökmen-Polar Y, Liu Y, Toroni RA, Sanders KL, Mehta R, Badve S, Rommel C, Sledge GW. Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models. Breast Cancer Res Treat 2012; 136:673-82. [DOI: 10.1007/s10549-012-2298-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
|
27
|
Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood 2012; 120:2679-89. [PMID: 22826565 DOI: 10.1182/blood-2011-11-393934] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The interactions between the bone marrow (BM) microenvironment and acute myeloid leukemia (AML) is known to promote survival of AML cells. In this study, we used reverse phase-protein array (RPPA) technology to measure changes in multiple proteins induced by stroma in leukemic cells. We then investigated the potential of an mTOR kinase inhibitor, PP242, to disrupt leukemia/stroma interactions, and examined the effects of PP242 in vivo using a mouse model. Using RPPA, we confirmed that multiple survival signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), were up-regulated in primary AML cells cocultured with stroma. PP242 effectively induced apoptosis in primary samples cultured with or without stroma. Mechanistically, PP242 attenuated the activities of mTORC1 and mTORC2, sequentially inhibited phosphorylated AKT, S6K, and 4EBP1, and concurrently suppressed chemokine receptor CXCR4 expression in primary leukemic cells and in stromal cells cultured alone or cocultured with leukemic cells. In the in vivo leukemia mouse model, PP242 inhibited mTOR signaling in leukemic cells and demonstrated a greater antileukemia effect than rapamycin. Our findings indicate that disrupting mTOR/AKT signaling with a selective mTOR kinase inhibitor can effectively target leukemic cells within the BM microenvironment.
Collapse
|
28
|
Abstract
Activation of PI3K (phosphoinositide 3-kinase) is a shared response to engagement of diverse types of transmembrane receptors. Depending on the cell type and stimulus, PI3K activation can promote different fates including proliferation, survival, migration and differentiation. The diverse roles of PI3K signalling are well illustrated by studies of lymphocytes, the cells that mediate adaptive immunity. Genetic and pharmacological experiments have shown that PI3K activation regulates many steps in the development, activation and differentiation of both B- and T-cells. These findings have prompted the development of PI3K inhibitors for the treatment of autoimmunity and inflammatory diseases. PI3K activation, however, has both positive and negative roles in immune system activation. Consequently, although PI3K suppression can attenuate immune responses it can also enhance inflammation, disrupt peripheral tolerance and promote autoimmunity. An exciting discovery is that a selective inhibitor of the p110δ catalytic isoform of PI3K, CAL-101, achieves impressive clinical efficacy in certain B-cell malignancies. A model is emerging in which p110δ inhibition disrupts signals from the lymphoid microenvironment, leading to release of leukaemia and lymphoma cells from their protective niche. These encouraging findings have given further momentum to PI3K drug development efforts in both cancer and immune diseases.
Collapse
|
29
|
Amato RJ, Flaherty AL, Stepankiw M. Phase I Trial of Everolimus Plus Sorafenib for Patients with Advanced Renal Cell Cancer. Clin Genitourin Cancer 2012; 10:26-31. [DOI: 10.1016/j.clgc.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/20/2011] [Accepted: 11/07/2011] [Indexed: 11/28/2022]
|
30
|
Wang X, Zhan Y, Zhao L, Alvarez J, Chaudhary I, Zhou BB, Abraham RT, Feuerstein GZ. Multimodal biomarker investigation on efficacy and mechanism of action for the mammalian target of rapamycin inhibitor, temsirolimus, in a preclinical mammary carcinoma OncoMouse model: a translational medicine study in support for early clinical development. J Pharmacol Exp Ther 2011; 339:421-9. [PMID: 21835932 DOI: 10.1124/jpet.111.185249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The mammalian target of rapamycin (mTOR) has proven to be a valid therapeutic target in a number of human cancers, and it is a candidate for clinical trials in human breast cancer. We report on a biomarker-based translational medicine approach to assess the efficacy and mechanism of action for the mTOR inhibitor temsirolimus (CCI-779) in a mammary carcinoma OncoMouse model [polyomavirus middle T antigen (PyMT)]. The mTOR signaling pathway biomarkers were assessed using a reverse-phase protein array. Pharmacokinetics studies were conducted in both the tumor and plasma compartments. Pharmacodynamic biomarkers for compound-target engagement of tumor phospho-S6 proteins were assayed by Western blot. Temsirolimus (intravenously once a week for 2 weeks) was administered in both early and advanced stages of tumors. Biomarkers for temsirolimus effects on tumor progression were assessed by three-dimensional ultrasound imaging in combination with immunohistochemistry to assess vascular density (Texas red-dextran and CD31 immunostaining) and macrophage burden (F4/80 antigen). Tumor growth was significantly arrested in temsirolimus (25 ± 14% from 8 to 10 weeks, p < 0.05, and 26 ± 17% from 11 to 13 weeks, p < 0.01), compared with 493 ± 160 and 376 ± 50% increases, respectively, in vehicle-treated groups. Temsirolimus reduced tumor vascular density, 36 to 48 and 58 to 60%, p < 0.05, by the Texas red-dextran method or CD31-positive vessel count, respectively. Temsirolimus reduced tumor macrophage burden by 46% at 13 weeks (p < 0.05). Temsirolimus inhibited (p < 0.05) the phosphoproteins S6 pS235/236 and S6 pS240/244 up to 81 and 87%, respectively. We conclude that the multimodal biomarkers of temsirolimus efficacy and mechanism of action (phosphoproteins) strongly suggest that it might translate to therapeutic efficacy in human tumors that bear congruency to features present in the mammary carcinoma of PyMT tumors.
Collapse
Affiliation(s)
- Xinkang Wang
- Imaging Biomarker Laboratory, Translational Medicine, Pfizer, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146:408-20. [PMID: 21816276 DOI: 10.1016/j.cell.2011.06.034] [Citation(s) in RCA: 939] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/17/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
The nutrient- and growth factor-responsive kinase mTOR complex 1 (mTORC1) regulates many processes that control growth, including protein synthesis, autophagy, and lipogenesis. Through unknown mechanisms, mTORC1 promotes the function of SREBP, a master regulator of lipo- and sterolgenic gene transcription. Here, we demonstrate that mTORC1 regulates SREBP by controlling the nuclear entry of lipin 1, a phosphatidic acid phosphatase. Dephosphorylated, nuclear, catalytically active lipin 1 promotes nuclear remodeling and mediates the effects of mTORC1 on SREBP target gene, SREBP promoter activity, and nuclear SREBP protein abundance. Inhibition of mTORC1 in the liver significantly impairs SREBP function and makes mice resistant, in a lipin 1-dependent fashion, to the hepatic steatosis and hypercholesterolemia induced by a high-fat and -cholesterol diet. These findings establish lipin 1 as a key component of the mTORC1-SREBP pathway.
Collapse
Affiliation(s)
- Timothy R Peterson
- Whitehead Institute for Biomedical Research, Koch Center for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C, Kahler J, Workman J, Bittner M, Dudkin L, Epstein DM, Gibson NW, Wild R, Arnold LD, Houghton PJ, Pachter JA. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther 2011; 10:1394-406. [PMID: 21673091 DOI: 10.1158/1535-7163.mct-10-1099] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway is frequently activated in human cancers, and mTOR is a clinically validated target. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, metabolism, proliferation, and survival. Rapamycin and its analogues partially inhibit mTOR through allosteric binding to mTORC1, but not mTORC2, and have shown clinical utility in certain cancers. Here, we report the preclinical characterization of OSI-027, a selective and potent dual inhibitor of mTORC1 and mTORC2 with biochemical IC(50) values of 22 nmol/L and 65 nmol/L, respectively. OSI-027 shows more than 100-fold selectivity for mTOR relative to PI3Kα, PI3Kβ, PI3Kγ, and DNA-PK. OSI-027 inhibits phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1 as well as the mTORC2 substrate AKT in diverse cancer models in vitro and in vivo. OSI-027 and OXA-01 (close analogue of OSI-027) potently inhibit proliferation of several rapamycin-sensitive and -insensitive nonengineered and engineered cancer cell lines and also, induce cell death in tumor cell lines with activated PI3K-AKT signaling. OSI-027 shows concentration-dependent pharmacodynamic effects on phosphorylation of 4E-BP1 and AKT in tumor tissue with resulting tumor growth inhibition. OSI-027 shows robust antitumor activity in several different human xenograft models representing various histologies. Furthermore, in COLO 205 and GEO colon cancer xenograft models, OSI-027 shows superior efficacy compared with rapamycin. Our results further support the important role of mTOR as a driver of tumor growth and establish OSI-027 as a potent anticancer agent. OSI-027 is currently in phase I clinical trials in cancer patients.
Collapse
Affiliation(s)
- Shripad V Bhagwat
- Cancer Biology, OSI Pharmaceuticals Inc., Farmingdale, NY 11735, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is an important, highly conserved, regulator of cell growth. Ancient among the signals that regulate mTORC1 are nutrients. Amino acids direct mTORC1 to the surface of the late endosome/lysosome, where mTORC1 becomes receptive to other inputs. However, the interplay between endosomes and mTORC1 is poorly understood. Here, we report the discovery of a network that links mTORC1 to a critical component of the late endosome/lysosome, the V-ATPase. In an unbiased screen, we found that mTORC1 regulated the expression of, among other lysosomal genes, the V-ATPases. mTORC1 regulates V-ATPase expression both in cells and in mice. V-ATPase regulation by mTORC1 involves a transcription factor translocated in renal cancer, TFEB. TFEB is required for the expression of a large subset of mTORC1 responsive genes. mTORC1 coordinately regulates TFEB phosphorylation and nuclear localization and in a manner dependent on both TFEB and V-ATPases, mTORC1 promotes endocytosis. These data uncover a regulatory network linking an oncogenic transcription factor that is a master regulator of lysosomal biogenesis, TFEB, to mTORC1 and endocytosis.
Collapse
|
34
|
Eng CH, Abraham RT. The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming. Oncogene 2011; 30:4687-96. [PMID: 21666712 DOI: 10.1038/onc.2011.220] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumorigenesis is often accompanied by metabolic changes that favor rapid energy production and increased biosynthetic capabilities. These metabolic adaptations promote the survival and proliferation of tumor cells, and in conjunction with the hypoxic and metabolically challenged tumor microenvironment, influence autophagic activity. Autophagy is a catabolic process that allows cellular macromolecules to be broken down and re-utilized as metabolic precursors. Stimulation of autophagy promotes the survival of tumor cells under stressful metabolic and environmental conditions, and counters the potentially deleterious effects of mitochondrial dysfunction and the ROS that these organelles generate. However, inhibition of autophagy has also been reported to fuel tumorigenesis. In spite of the advances in our understanding of the relationship between autophagy and tumorigenesis, it remains unclear whether the therapeutic approaches targeting autophagy should aim to increase or decrease autophagic flux in tumor tissues in human patients. Here, we review how metabolic reprogramming influences autophagic activity in tumors, and discuss how inhibition of autophagy might be exploited to target tumor cells that show altered metabolism.
Collapse
Affiliation(s)
- C H Eng
- Pfizer Oncology Research Unit, Pearl River, NY 10965, USA.
| | | |
Collapse
|
35
|
Abstract
A challenge in cancer therapy has been to identify targets whose function is essential for survival of malignant cells but not normal cells. This Perspective discusses recent evidence that novel inhibitors of the kinase TOR can provide an unprecedented balance of anti-cancer efficacy and tolerability.
Collapse
Affiliation(s)
- Matthew R Janes
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
36
|
A comprehensive map of the mTOR signaling network. Mol Syst Biol 2011; 6:453. [PMID: 21179025 PMCID: PMC3018167 DOI: 10.1038/msb.2010.108] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/12/2010] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer.
Collapse
|
37
|
Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol 2011; 31:1870-84. [PMID: 21383064 DOI: 10.1128/mcb.01393-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mTORC1 is a critical regulator of cell growth that integrates multiple signals and is deregulated in cancer. We previously reported that mTORC1 regulation by hypoxia involves Redd1 and the Tsc1/Tsc2 complex. Here we show that Redd1 induction by hypoxia is tissue dependent and that hypoxia signals are relayed to mTORC1 through different pathways in a tissue-specific manner. In the liver, Redd1 induction is restricted to the centrilobular area, and in primary hepatocytes, mTORC1 inhibition by hypoxia is independent of Redd1. Furthermore, Tsc1/Tsc2 and Arnt (Hif-1β) are similarly dispensable. Hypoxia signaling in hepatocytes involves Lkb1, AMP-activated protein kinase (AMPK), and raptor. Differences in signal relay extend beyond hypoxia and involve AMPK signaling. AMPK activation (using 5-aminoimidazole-4-carboxamide riboside [AICAR]) induces raptor phosphorylation and inhibits mTORC1 in both mouse embryo fibroblasts (MEFs) and hepatocytes, but whereas mTORC1 inhibition is Tsc1/Tsc2 dependent in MEFs, it is independent in hepatocytes. In liver cells, raptor phosphorylation is essential for both AMPK and hypoxia signaling. Thus, context-specific signals are required for raptor phosphorylation-induced mTORC1 inhibition. Our data illustrate a heretofore unappreciated topological complexity in mTORC1 regulation. Interestingly, topological differences in mTORC1 regulation by the tumor suppressor proteins Lkb1 and Tsc1/Tsc2 may underlie their tissue specificity of tumor suppressor action.
Collapse
|
38
|
Pan MH, Lin J, Prior JL, Piwnica-Worms D. Monitoring molecular-specific pharmacodynamics of rapamycin in vivo with inducible Gal4->Fluc transgenic reporter mice. Mol Cancer Ther 2010; 9:2752-60. [PMID: 20858726 DOI: 10.1158/1535-7163.mct-10-0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapamycin (Rap), a small-molecule inhibitor of mTOR, is an immunosuppressant, and several Rap analogues are cancer chemotherapeutics. Further pharmacologic development will be significantly facilitated if in vivo reporter models are available to enable monitoring of molecular-specific pharmacodynamic actions of Rap and its analogues. Herein we present the use of a Gal4→Fluc reporter mouse for the study of Rap-induced mTOR/FKBP12 protein-protein interactions in vivo with the use of a mouse two-hybrid transactivation strategy, a derivative of the yeast two-hybrid system applied to live mice. Upon treatment with Rap, a bipartite transactivator was reconstituted, and transcription of a genomic firefly luciferase reporter was activated in a concentration-dependent (K(d) = 2.3 nmol/L) and FK506-competitive (K(i) = 17.1 nmol/L) manner in cellulo, as well as in a temporal and specific manner in vivo. In particular, after a single dose of Rap (4.5 mg/kg, i.p.), peak Rap-induced protein-protein interactions were observed in the liver at 24 hours post treatment, with photon flux signals 600-fold over baseline, which correlated temporally with suppression of p70S6 kinase activity, a downstream effector of mTOR. The Gal4→Fluc reporter mouse provides an intact physiologic system to interrogate protein-protein interactions and molecular-specific pharmacodynamics during drug discovery and lead characterization. Imaging protein interactions and functional proteomics in whole animals in vivo may serve as a basic tool for screening and mechanism-based analysis of small molecules targeting specific protein-protein interactions in human diseases.
Collapse
Affiliation(s)
- Mei-Hsiu Pan
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, and Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Growth factors and many oncogenes activate the lipid kinase phosphoinositide 3-kinase (PI3K), initiating a signaling cascade that includes the protein kinases AKT and target of rapamycin (TOR). The PI3K/AKT/TOR signaling pathway is a significant contributor to disease in various human cancers, including hematologic malignancies. Here we discuss different strategies to inhibit TOR for the treatment of leukemia, lymphoma, and myeloma. The TOR enzyme exists in two complexes in cells, TORC1 and TORC2. The majority of preclinical and clinical efforts to target TOR have involved using rapamycin and its analogs (rapalogs), which suppress TORC1 only partially and do not acutely inhibit TORC2. A new class of small molecules targeting the ATP-binding site of the TOR kinase, termed active-site TOR inhibitors (asTORi), achieves greater inhibition of both TOR complexes, resulting in broader suppression of the PI3K/AKT/TOR signaling network. Preclinical evidence suggests that asTORi have greater efficacy than rapalogs in Philadelphia chromosome-positive acute lymphoblastic leukemia and in T-cell lymphoma. These agents also show greater tolerability in animal models relative to rapalogs or inhibitors of PI3K. These findings encourage broader evaluation of asTORi efficacy in acute myeloid leukemia, B-cell lymphoma, myeloma, and other blood cancers.
Collapse
Affiliation(s)
- Collin Vu
- Division of Hematology/Oncology, Department of Medicine, University of California-Irvine, CA 92697, USA
| | | |
Collapse
|
40
|
Chiu CW, Nozawa H, Hanahan D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J Clin Oncol 2010; 28:4425-33. [PMID: 20823411 DOI: 10.1200/jco.2010.28.0198] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Pancreatic neuroendocrine tumors (PNETs), although rare, often metastasize, such that surgery, the only potentially curative therapy, is not possible. There is no effective systemic therapy for patients with advanced PNETs. Therefore, new strategies are needed. Toward that end, we investigated the potential benefit of dual therapeutic targeting of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) kinases, using a preclinical mouse model of PNET. MATERIALS AND METHODS Rapamycin and erlotinib, inhibitors of mTOR and EGFR, respectively, were used to treat RIP-Tag2 transgenic mice bearing advanced multifocal PNET. Tumor growth and survival were monitored, and tumors were surveyed for potential biomarkers of response to the therapeutics. RESULTS Rapamycin monotherapy was notably efficacious, prolonging survival concomitant with tumor stasis (stable disease). However, the tumors developed resistance, as evidenced by eventual relapse to progressive tumor growth. Erlotinib monotherapy slowed tumor growth and elicited a marginal survival benefit. In combination, there was an unprecedented survival benefit in the face of this aggressive multifocal cancer and, in contrast to either monotherapy, the development of adaptive resistance was not apparent. Additionally, the antiapoptotic protein survivin was implicated as a biomarker of sensitivity and beneficial responses to the dual targeted therapy. CONCLUSION Preclinical trials in a mouse model of endogenous PNET suggest that combined targeting of the mTOR and EGFR signaling pathways could have potential clinical benefit in treating PNET. These results have encouraged development of an ongoing phase II clinical trial aimed to evaluate the efficacy of this treatment regimen in human neuroendocrine tumors.
Collapse
|
41
|
Abstract
Natural products have evolved to encompass a broad spectrum of chemical and functional diversity. It is this diversity, along with their structural complexity, that enables nature's small molecules to target a nearly limitless number of biological macromolecules and to often do so in a highly selective fashion. Because of these characteristics, natural products have seen great success as therapeutic agents. However, this vast pool of compounds holds much promise beyond the development of future drugs. These features also make them ideal tools for the study of biological systems. Recent examples of the use of natural products and their derivatives as chemical probes to explore biological phenomena and assemble biochemical pathways are presented here.
Collapse
Affiliation(s)
- Erin E. Carlson
- Departments of Chemistry and Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, Indiana 47405
| |
Collapse
|
42
|
Biosynthesis of rapamycin and its regulation: past achievements and recent progress. J Antibiot (Tokyo) 2010; 63:434-41. [PMID: 20588302 DOI: 10.1038/ja.2010.71] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Rapamycin and its analogs are clinically important macrolide compounds produced by Streptomyces hygroscopicus. They exhibit antifungal, immunosuppressive, antitumor, neuroprotective and antiaging activities. The core macrolactone ring of rapamycin is biosynthesized by hybrid type I modular polyketide synthase (PKS)/nonribosomal peptide synthetase systems primed with 4,5-dihydrocyclohex-1-ene-carboxylic acid. The linear polyketide chain is condensed with pipecolate by peptide synthetase, followed by cyclization to form the macrolide ring and modified by a series of post-PKS tailoring steps. The aim of this review was to outline past and recent advances in the biosynthesis and regulation of rapamycin, with an emphasis on the distinguished contributions of Professor Demain to the study of rapamycin. In addition, this article describes the biological activities as well as mechanism of action of rapamycin and its derivatives. Recent attempts to improve the productivity of rapamycin and generate diverse rapamycin analogs through mutasynthesis and mutagenesis are also introduced, along with some future perspectives.
Collapse
|
43
|
Livingstone M, Atas E, Meller A, Sonenberg N. Mechanisms governing the control of mRNA translation. Phys Biol 2010; 7:021001. [PMID: 20463379 DOI: 10.1088/1478-3975/7/2/021001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The translation of cellular mRNA to protein is a tightly controlled process often deregulated in diseases such as cancer. Furthering our understanding of mRNA structural elements and the intracellular proteins and signaling pathways that affect protein expression is crucial in the development of new therapies. In this review, we discuss the current state-of-the-art of detecting and determining the role of mRNA sequence elements in regulating the initiation of mRNA translation and the therapeutic strategies that exploit this knowledge to treat disease.
Collapse
Affiliation(s)
- Mark Livingstone
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | | | | |
Collapse
|
44
|
Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 2010; 3:ra31. [PMID: 20424262 DOI: 10.1126/scisignal.2000911] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a tightly regulated catabolic process that plays key roles in normal cellular homeostasis and survival during periods of extracellular nutrient limitation and stress. The environmental signals that regulate autophagic activity are only partially understood. Here, we report a direct link between glutamine (Gln) metabolism and autophagic activity in both transformed and nontransformed human cells. Cells cultured for more than 2 days in Gln-containing medium showed increases in autophagy that were not attributable to nutrient depletion or to inhibition of mammalian target of rapamycin. Conditioned medium from these cells contained a volatile factor that triggered autophagy in secondary cell cultures. We identified this factor as ammonia derived from the deamination of Gln by glutaminolysis. Gln-dependent ammonia production supported basal autophagy and protected cells from tumor necrosis factor-alpha (TNF-alpha)-induced cell death. Thus, Gln metabolism not only fuels cell growth but also generates an autocrine- and paracrine-acting regulator of autophagic flux in proliferating cells.
Collapse
Affiliation(s)
- Christina H Eng
- Center for Integrative Biology and Biotherapeutics, Pfizer, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|
45
|
Current research and development of chemotherapeutic agents for melanoma. Cancers (Basel) 2010; 2:397-419. [PMID: 24281076 PMCID: PMC3835084 DOI: 10.3390/cancers2020397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 03/25/2010] [Accepted: 04/06/2010] [Indexed: 12/27/2022] Open
Abstract
Cutaneous malignant melanoma is the most lethal form of skin cancer and an increasingly common disease worldwide. It remains one of the most treatment-refractory malignancies. The current treatment options for patients with metastatic melanoma are limited and in most cases non-curative. This review focuses on conventional chemotherapeutic drugs for melanoma treatment, by a single or combinational agent approach, but also summarizes some potential novel phytoagents discovered from dietary vegetables or traditional herbal medicines as alternative options or future medicine for melanoma prevention. We explore the mode of actions of these natural phytoagents against metastatic melanoma.
Collapse
|
46
|
O'Reilly T, McSheehy PM. Biomarker Development for the Clinical Activity of the mTOR Inhibitor Everolimus (RAD001): Processes, Limitations, and Further Proposals. Transl Oncol 2010; 3:65-79. [PMID: 20360931 PMCID: PMC2847314 DOI: 10.1593/tlo.09277] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/18/2022] Open
Abstract
The mTOR inhibitor everolimus (RAD001, Afinitor) is an orally active anticancer agent. Everolimus demonstrates growth-inhibitory activity against a broad range of tumor cell histotypes in vitro and has the capacity to retard tumor growth in preclinical tumor models in vivo through mechanisms directed against both the tumor cell and the solid tumor stroma components. These properties have rendered it to be a clinically active drug, with subsequent registration in renal cell carcinoma (Motzer et al. [2008]. Lancet372, 449-456) as well as showing strong potential as a combination partner (André F et al. [2008]. J Clin Oncol26. Abstract 1003). Although everolimus has a high specificity for its molecular target, the ubiquitous nature of mTOR and the multifactorial influence that mTOR signaling has on cell physiology have made studies difficult on the identification and validation of a biomarker set to predict and monitor drug sensitivity for clinical use. In this review, a summary of the preclinical and clinical data relevant to biomarker development for everolimus is presented, and the advantages and problems of current biomarkers are reviewed. In addition, alternative approaches to biomarker development are proposed on the basis of examples of a combination of markers and functional noninvasive imaging. In particular, we show how basal levels of pAKT and pS6 together could, in principle, be used to stratify patients for likely response to an mTOR inhibitor.
Collapse
Affiliation(s)
- Terence O'Reilly
- Oncology Research, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
47
|
Abstract
Mammalian target of rapamycin (mTOR) is a protein kinase of the PI3K/Akt signaling pathway. Activation of mTOR in response to growth, nutrient and energy signals leads to an increase in protein synthesis, which is required for tumor development. This feature makes mTOR an attractive target for cancer therapy. First-generation mTOR inhibitors are sirolimus derivatives (rapalogs), which have been evaluated extensively in cancer patients. Everolimus and temsirolimus are already approved for the treatment of renal-cell carcinoma. Temsirolimus is also approved for the treatment of mantle-cell lymphoma. These drugs, in addition to ridaforolimus (formerly deforolimus) and sirolimus, are currently being evaluated in clinical trials of various cancers. Second-generation mTOR inhibitors are small molecules that target the kinase domain, and have also entered clinical development. Clinical trials are underway to identify additional malignancies that respond to mTOR inhibitors, either alone or in combination with other therapies. Future research should evaluate the optimal drug regimens, schedules, patient populations, and combination strategies for this novel class of agents.
Collapse
|
48
|
Livingstone M, Larsson O, Sukarieh R, Pelletier J, Sonenberg N. A chemical genetic screen for mTOR pathway inhibitors based on 4E-BP-dependent nuclear accumulation of eIF4E. ACTA ACUST UNITED AC 2010; 16:1240-9. [PMID: 20064434 DOI: 10.1016/j.chembiol.2009.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/20/2009] [Accepted: 11/13/2009] [Indexed: 12/31/2022]
Abstract
The signal transduction pathway wherein mTOR regulates cellular growth and proliferation is an active target for drug discovery. The search for new mTOR inhibitors has recently yielded a handful of promising compounds that hold therapeutic potential. This search has been limited by the lack of a high-throughput assay to monitor the phosphorylation of a direct rapamycin-sensitive mTOR substrate in cells. Here we describe a novel cell-based chemical genetic screen useful for efficiently monitoring mTOR signaling to 4E-BPs in response to stimuli. The screen is based on the nuclear accumulation of eIF4E, which occurs in a 4E-BP-dependent manner specifically upon inhibition of mTOR signaling. Using this assay in a small-scale screen, we have identified several compounds not previously known to inhibit mTOR signaling, demonstrating that this method can be adapted to larger screens.
Collapse
Affiliation(s)
- Mark Livingstone
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
49
|
Ihle NT, Powis G. Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Mol Aspects Med 2010; 31:135-44. [PMID: 20176047 DOI: 10.1016/j.mam.2010.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/16/2010] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K) signaling pathway is implicated in multiple aspects of tumorigenesis and tumor maintenance, and recent years have seen significant efforts towards developing agents to inhibit the pathway. However, the development of such agents raises issues such as what specific member or members in the PI3K family should be inhibited to achieve maximal therapeutic benefit, and can specific inhibitors be developed with the necessary pharmacologic properties to allow them to proceed to clinical trials? The number of PI3K inhibitors has gone from a handful of archetypal inhibitors which largely determined how the pathway was initially defined through their inhibition of PI3K, but also due to their off target properties, to a much larger number of inhibitors of not only PI3K but also other members of the PI3K family. The question remains to be answered whether greater therapeutic efficacy will be obtained through the use of inhibitors with increased specificity, or through inhibitors that target a spectrum of targets within the pathway. This review will cover the development of agents targeting the pathway, and will discuss current issues surrounding the development of such agents.
Collapse
Affiliation(s)
- Nathan T Ihle
- Anderson Cancer Center, FC-6.3044, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
50
|
Wolff N, Kabbani W, Bradley T, Raj G, Watumull L, Brugarolas J. Sirolimus and Temsirolimus for Epithelioid Angiomyolipoma. J Clin Oncol 2010; 28:e65-8. [DOI: 10.1200/jco.2009.26.3061] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nicholas Wolff
- Departments of Internal Medicine (Oncology Division) and Developmental Biology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Wareef Kabbani
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas Bradley
- Department of Internal Medicine, Division of Oncology, North Shore University Hospital, Manhasset, NY
| | - Ganesh Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lori Watumull
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - James Brugarolas
- Departments of Internal Medicine (Oncology Division) and Developmental Biology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|