1
|
Alshareeda AT, Albarakati N, Alshawakir Y, Alghuwainem A, Al-Sowayan BS, Khan AL, Almubarak A, Al-Maiman S, Al Sayed A, Mohd Zin NK, Alhamid AS. Improving the robustness and efficiency of cell sheet protocol for breast cancer induction in animal model: A Geltrex plus Gelatin approach. PLoS One 2025; 20:e0326456. [PMID: 40549762 PMCID: PMC12184892 DOI: 10.1371/journal.pone.0326456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/29/2025] [Indexed: 06/28/2025] Open
Abstract
BACKGROUND Breast cancer remains a global health challenge, necessitating improved preclinical models that better mimic the complexity of the disease. The cell sheet technique holds promise in creating three-dimensional tissue constructs resembling breast cancer tissue. However, maintaining cell sheet integrity during transplantation poses challenges, particularly with low junction cells. This study aims to establish a modified protocol utilizing Geltrex™ and Gelatin to fabricate cell sheets from MDA-MB-231 cells and evaluate their tumorigenic potential in vivo. METHOD We developed a novel protocol for fabricating cell sheets from MDA-MB-231 cells using Geltrex™ and Gelatin. This construct was then used to induce breast cancer in vivo. The novel protocol was compared to the conventional cell injection method by monitoring tumor progression in vivo. RESULTS The novel protocol enhanced cell sheet transplant efficiency by providing scaffold support and temporary adhesion. It successfully induced breast cancer in vivo and facilitated metastasis, closely mimicking the progression of human breast cancer. CONCLUSION This study highlights the potential of Geltrex™ and Gelatin as carriers for poor junction cell sheets. This original research study introduces a methodological advance in cell sheet fabrication, combining preclinical validation with technical innovation to address challenges in modeling triple-negative breast cancer (TNBC). By offering a more accurate in vivo representation of tumor development, this protocol enhances our understanding of breast cancer biology. The practical implications are promising, as this research can lead to more effective methods for generating in vivo models and tissue-engineered constructs for cancer research and regenerative medicine.
Collapse
Affiliation(s)
- Alaa T. Alshareeda
- Saudi Biobank Department, King Abdullah International Medical Research Centre/King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Blood and Cancer Research, King Abdullah International Medical Research Centre/ King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center/ King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Yasser Alshawakir
- College of Medicine, Experimental Surgery and Animal Laboratory, King Saud University, Riyadh, Saudi Arabia
| | - Ayidah Alghuwainem
- Department of Blood and Cancer Research, King Abdullah International Medical Research Centre/ King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Batla S. Al-Sowayan
- National Livestock and Fishery Development Program, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Abdul Latif Khan
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah Almubarak
- College of Medicine, Experimental Surgery and Animal Laboratory, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Al-Maiman
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahood Al Sayed
- Saudi Biobank Department, King Abdullah International Medical Research Centre/King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nur Khatijah Mohd Zin
- Faculty of Forestry and Environmental Studies, University Putra Malaysia, Selangor, Malaysia
| | - Amal S. Alhamid
- Saudi Biobank Department, King Abdullah International Medical Research Centre/King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Chang Y, Lee JWN, Holle AW. The mechanobiology of fibroblast activation in disease. APL Bioeng 2025; 9:021505. [PMID: 40538750 PMCID: PMC12178607 DOI: 10.1063/5.0272393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 06/05/2025] [Indexed: 06/22/2025] Open
Abstract
Fibroblasts play crucial roles in wound healing, cancer, and fibrosis. Many aspects of these roles are driven by the process known as fibroblast activation. The generally accepted definition of fibroblast activation is the transition from a quiescent state to a state in which fibroblasts participate in a number of active processes, including extracellular matrix (ECM) production and remodeling, elevated contractility, and enhanced migratory capacity, although there is no universal consensus on what exactly constitutes "activation." Interestingly, the time scale of activation is not consistent across tissues and disease states; some fibroblasts quickly return to quiescence after activation (e.g., in wound healing), others undergo apoptosis, while a subset become persistently activated. This activation, both acute and persistent, is inherently a mechanical process, given the increase in ECM production and remodeling and the enhanced traction force generation. Thus, there exists a dynamic reciprocity, or cell-ECM feedback, in which activated fibroblasts produce a mechanical microenvironment that in turn supports persistent activation. This has a wide variety of implications for disease, most notably fibrosis and cancer, as the fibroblasts that become persistently activated in connection with these conditions can contribute to disease state progression. Like other mechanosensitive processes, this mechanically induced persistent fibroblast activation is driven by a number of mechanotransduction signaling pathways. Thus, an opportunity exists in which the mechanosensitive underpinning of fibroblast activation can be leveraged to improve clinical outcomes. Here, we highlight these opportunities and make a call to the field to consider the mechanosensitive pathways governing fibroblast activation as an important frontier in mechanomedicine.
Collapse
Affiliation(s)
- Yeji Chang
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | - Jia Wen Nicole Lee
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | | |
Collapse
|
3
|
Alhakim AK, Moussa SA, Halboub E. Young Female With Gingival Lesion of Intraoral Osseous Choristoma: A Rare Case Report. Case Rep Dent 2025; 2025:7706892. [PMID: 40438702 PMCID: PMC12119154 DOI: 10.1155/crid/7706892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
Choristoma is a mass of tissue with normal histology similar to a part of the body that is different from the one in which it is located. It differs from the hamartomatous group of pathology which is normal tissue, but disorganized, found in an abnormal location. Documentation of the occurrence of osseous choristoma lesions in the oral cavity has been scarce, and most of the cases have been reported in the tongue. It is very seldom to arise from the interdental gingiva. Indeed, choristoma is considered a developmental anomaly, involving younger individuals, although many cases among older adults have been reported. The differential diagnoses include cartilaginous metaplasia, pleomorphic adenoma, salivary gland tissue, and the lesions of inflammatory or traumatic origin that may give rise to hamartomas in the oral cavity. In this case report, we present a case of osseous choristoma arising from the mandibular, posterior buccal gingiva in a young female patient.
Collapse
Affiliation(s)
| | - Shady Ahmed Moussa
- Oral and Dental Surgery Department, PHCC, Doha, Qatar
- Pediatric Dentistry Department, Zagazig University, Zagazig, Egypt
| | - Esam Halboub
- Maxillofacial Surgery and Diagnostic Sciences Department, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Wang QR, Yang Y. Mineralocorticoid receptor antagonists promote renal immunosenescence. Int Urol Nephrol 2025:10.1007/s11255-025-04530-1. [PMID: 40304997 DOI: 10.1007/s11255-025-04530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Chronic kidney disease (CKD) is often associated with chronic inflammation, influenced by the activation of mineralocorticoid receptors (MR). This review focuses on changes in immune cells and explores the important role that MR antagonists (MRAs), especially the new nonsteroidal MRA, finerenone, play in alleviating renal and cardiac injury by affecting the transformation of stimulated immune cells. We found that MR can promote the transformation of macrophages to M1 pro-inflammatory phenotype through IL-14 receptor and mitogen-activated protein kinase (MAPK)-JNK. MR also activates helper T cells and reduces the generation of regulatory T cells by promoting the interaction between nuclear factor and activator protein-1, increasing the secretion of IL-2 and IL-18, increasing the expression of CD38 and CD69, especially the IL-17/IL-23 axis. The above immune system changes jointly mediate inflammation leading to kidney damage and fibrosis. In addition, we propose that the NLRP3 inflammasome is associated with macrophage imbalance. Preclinical studies indicate that finerenone effectively reduces inflammation and prevents structural kidney damage without significant systemic blood pressure changes. These data will provide some ideas for further research in the field of immune mechanisms in future, and drug research targeting specific targets and channels may also become a new type of diagnostic and treatment measure.
Collapse
Affiliation(s)
- Qiao-Rui Wang
- Department of Nephrology, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
- Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, Zhejiang, China.
| |
Collapse
|
5
|
Jimenez SA, Mendoza FA, Piera-Velazquez S. A review of recent studies on the pathogenesis of Systemic Sclerosis: focus on fibrosis pathways. Front Immunol 2025; 16:1551911. [PMID: 40308583 PMCID: PMC12040652 DOI: 10.3389/fimmu.2025.1551911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology characterized by the development of frequently progressive cutaneous and internal organ fibrosis accompanied by severe vascular alterations. The pathogenesis of SSc is highly complex and, despite extensive investigation, has not been fully elucidated. Numerous studies have suggested that unknown etiologic factors cause multiple alterations in genetically receptive hosts, leading to SSc development and progression. These events may be functionally and pathologically interconnected and include: 1) Structural and functional microvascular and endothelial cell abnormalities; 2) Severe oxidative stress and high reactive oxygen species (3); Frequently progressive cutaneous and visceral fibrosis; 4) Transdifferentiation of various cell types into activated myofibroblasts, the cells ultimately responsible for the fibrotic process; 5) Establishment of a chronic inflammatory process in various affected tissues; 6) Release of cytokines, chemokines, and growth factors from the inflammatory cells; 7) Abnormalities in humoral and cellular immunity with the production of specific autoantibodies; and 8) Epigenetic alterations including changes in multiple non-coding RNAs. These events manifest with different levels of intensity in the affected organs and display remarkable individual variability, resulting in a wide heterogeneity in the extent and severity of clinical manifestations. Here, we will review some of the recent studies related to SSc pathogenesis.
Collapse
Affiliation(s)
- Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fabian A. Mendoza
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Kendirci-Katirci R, Sendemir A, Hameş EE, Vatansever HS. The role of Collagen Tissue Scaffolds in 3D Endometrial-like Culture Systems: Important Contributions to Cell Invasion and Cell Topography. Reprod Sci 2025; 32:895-906. [PMID: 39909974 PMCID: PMC11870929 DOI: 10.1007/s43032-025-01800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Considering the similarity between the invasion processes of cancer cells and embryo implantation, three-dimensional culture models used to study cancer cell invasion can also be applied to embryo implantation studies. In our study, endometrial epithelial cell line (RL95-2) and spheroid-forming trophoblast-like choriocarcinoma cell line (JAR) were cultured on three different biocompatible tissue scaffolds: bacterial cellulose, collagen foam and collagen fibre. These scaffolds are frequently used in cancer cell metastasis and invasion studies, A three-dimensional endometrium-like culture system was established to quantitatively investigate the role of E-cadherin, N-cadherin, Vimentin, α-smooth muscle actin and Syndecan-1 proteins in the type 1 epithelial mesenchymal transition mechanism observed during the invasion step of the implantation process. Based on the findings from the three-dimensional cell culture, the bacterial cellulose scaffold promoted the proliferation of RL95-2 cells and delayed JAR spheroid formation. The collagen foam scaffold favored the proliferation of RL95-2 cells and accelerated JAR spheroid formation. The collagen fibre scaffold is important for supporting cell topography and, when combined with collagen foam, may offer a potential solution for investigating 3D endometrium-like culture systems. Immunocytochemical and immunofluorescence analyses showed that scaffolds modulate the invasion process by affecting the expression of epithelial mesenchymal transition proteins in cells. The findings suggest that different tissue scaffolds can produce varying effects in endometrium-like culture systems, and combinations of these materials may yield more effective results in future studies. This research represents a critical step in studying cell behavior in 3D culture systems and elucidates the mechanism of endometrial invasion.
Collapse
Affiliation(s)
- Remziye Kendirci-Katirci
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya, Türkiye
| | - Aylin Sendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Elif Esin Hameş
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - H Seda Vatansever
- Department of Histology and Embryology, School of Medicine, Manisa Celal Bayar University, Manisa, Türkiye.
- DESAM Research Institute, Near East University, Mersin 10, Türkiye.
| |
Collapse
|
7
|
Wang T, Liu B, Huang J, Zhao Q, Shen H, Bi T, Liu Z, Dai Y, Sun Q. IFN-γ-mediated inhibition of JAK/STAT signaling via nano-scutellarin treatment is an efficient strategy for ameliorating liver fibrosis. J Transl Med 2025; 23:195. [PMID: 39962553 PMCID: PMC11834254 DOI: 10.1186/s12967-025-06155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a large group of metabolic diseases that are hazardous to human health. Endothelial-to-mesenchymal transition (EndMT) mediated myofibroblast activation is an important factor that aggravates the development of liver fibrosis during MASH. However, the limited understanding of the underlying molecular mechanisms that drive EndMT in MASH has hindered the development of molecularly targeted therapies specifically targeting this pathological process. METHODS We employed wild-type and ifn-γ-deficient mice, MASH models were induced repeated CCl4 injections and a high-fat diet to verify the significance of IFN-γ role in vivo and its impact in EndMT. Male mice models of MASH were used to further analyze the effect of Scutellarin@BSA on the improvement of liver fibrosis during MASH in vivo and HUVECs were used to assess IFN-γ effect on EndMT and its interaction with JAK signaling pathway in vitro. RESULTS The results showed that IFN-γ is revealed as a key regulator of EndMT during MASH, as evidenced by the significantly lower levels of EndMT and reduced pathological damage in the livers of ifn-γ knockout mice. Furthermore, our research has led to the development of Scutellarin@BSA therapy, which targets and mitigates IFN-γ-driven EndMT, which showed excellent therapeutic effects on EndMT and liver fibrosis in vivo and in vitro during MASH. Mechanistically, IFN-γ can directly bind to the JAK protein and activate downstream STAT1 transcription factors, exerting transcriptional activity and further driving the expression of EndMT-associated proteins. Notably, Scutellarin@BSA treatment effectively diminishes the hallmarks of liver fibrosis by modulating the canonical JAK/STAT1 signaling pathway. CONCLUSIONS IFN-γ was identified as a key regulator of EndMT, and Scutellarin@BSA, as an emerging treatment, has been found to effectively inhibit EndMT by directly targeting the regulatory influence of the IFN-γ signaling. This result demonstrates significant therapeutic efficacy in alleviating hepatic fibrosis during MASH, highlighting its great potential as an innovative liver fibrosis treatment.
Collapse
Affiliation(s)
- Ting Wang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Bangguo Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Juan Huang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qixin Zhao
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongping Shen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Bi
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 853, China
| | - Zengjin Liu
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yong Dai
- Sichuan Police College, Luzhou, 646000, Sichuan, China.
| | - Qin Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
9
|
Liu D, Wang H, Li J, Sheng S, Wang S, Tian Y. Non-lethal sonodynamic therapy mitigates hypertensive renal fibrosis through the PI3K/AKT/mTORC1-autophagy pathway. Sci Rep 2025; 15:4534. [PMID: 39915557 PMCID: PMC11802789 DOI: 10.1038/s41598-025-86973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Hypertension constitutes a significant public health concern, characterized by a high incidence and mortality rate. Hypertensive kidney disease is a prevalent complication associated with hypertension and is the second leading cause of end-stage renal disease (ESRD). Renal fibrosis linked to hypertension has emerged as the third leading cause of disease in dialysis patients. Autophagy activity is crucial for maintaining homeostasis, vitality, and physiological function of kidney cells, while also protecting the kidneys from fibrosis. The deficiency of autophagy will increase the sensitivity of the kidney to the damage, leading to impaired renal function, accumulation of damaged mitochondria and more severe of renal fibrosis. However, enhancing autophagy by activating the PI3K/AKT, AMPK, and mTOR pathways, improves podocyte injury and renal pathological changes, and ameliorates renal function. Current clinical interventions aimed at halting or reversing renal fibrosis in hypertensive patients are notably limited in their efficacy. Here, we present Non-lethal Sonodynamic Therapy (NL-SDT), in which ultrasound is used to activate locally sonosensitizers, thereby stimulating the production of reactive oxygen species for the purpose of modulating cell function or fate, as a novel methodology to inhibit progression of hypertensive renal fibrosis.To confirm whether NL-SDT can reduce hypertensive renal fibrosis and its mechanism. The mice model of hypertensive renal fibrosis was established by using osmotic minipumps (Alzet model 2004, Cupertino, CA) equipped with angiotensin-II (Ang II). The pumps were implanted in mice, ensuring constant infusion of Ang II at a dose of 1.0 µg/kg per minute for 4 weeks. The mice were exposed to 0.4 W/cm2 intensity ultrasonic radiation for 15 min at 4 h post injection of sinoporphyrin sodium (DVDMS) (4 mg/kg) into the caudal vein was repeated weekly for 4 treatments. The kidney from mice was stained with masson's trichrome staining for collagen fiber expression, while alpha-smooth muscle actin (α-SMA) expression was determined via immunohistochemical staining. The protein levels of fibrosis parameters (α-SMA, collagen I, vimentin), pathway-related proteins (PI3K, AKT, mTORC1) and autophagy-related protein LC3B were determined using western blotting. Intracellular reactive oxygen species (ROS) levels were detected using DCFH-DA probe. Immunofluorescence was also used to observe the expression of α-SMA and E-cadherin in cells. Pathway-related protein inhibitors (the autophagy-related inhibitor 3-methyladenine (3-MA), chloroquine (CQ), ROS inhibitor N-acetyl-L-cysteine (NAC) were applied, and autophagosome changes were observed under transmission electron microscopy. Immunofluorescence was used to observe LC3 spot formation within cells.We obtained the following results via animal and cellular research. In vivo, (1) The collagen area of renal tissue was increased significantly in Ang II group (50.6%). The positive expression of α-SMA was increased significantly (37.8%). (2) The collagen area decreased after NL-SDT treatment (34.8%). The expression of α-SMA was decreased too (48.9%). The expression of LC3B increased in NL-SDT group. (3) The effect of NL-SDT on reducing renal fibrosis can be changed by rapamycin and CQ. In vitro. (1) The expression of α-SMA, collagen I and vimentin were increased significantly in TGF-β1-induced NRK-52E cells. (2) The increase of autophagosomes was observed in TGF-β1-induced NRK-52E cells after NL-SDT. The levels of ROS were increased after NL-SDT (24.8%). The effect of NL-SDT on autophagy was reversed after administration of NAC. The expression of PI3K, P-AKT and P-mTORC1 was decreased in TGF-β1-induced NRK-52E cells after NL-SDT. NL-SDT inhibited the transition of epithelial cells into myofibroblasts by activating PI3K-AKT-mTORC1-autophagy pathway in TGF-β1-induced NRK-52E cells. (3) The administration of the pathway inhibitors showed a reciprocal effect on NL-SDT-inhibited epithelial-mesenchymal transition (EMT).(1) NL-SDT reduced blood pressure temporarily in mice model of hypertensive renal fibrosis induced by Ang II. (2) NL-SDT alleviated renal fibrosis in mice model of hypertensive renal fibrosis induced by Ang II. (3) NL-SDT promoted autophagy by inhibiting PI3K-AKT-mTORC1 signaling pathway and alleviated renal fibrosis in mice model of hypertensive renal fibrosis induced by Ang II. NL-SDT is a non-invasive and efficacious regimen to inhibit renal fibrosis. It may be a new approach for clinical treatment of renal fibrosis, delaying or reducing the occurrence of ESRD.
Collapse
Affiliation(s)
- DanDan Liu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Hui Wang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Jialong Li
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Harbin, 150086, PR China
| | - Siqi Sheng
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Shu Wang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China.
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China.
| |
Collapse
|
10
|
Muñoz M, Rosso M. Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2025; 17:520. [PMID: 39941886 PMCID: PMC11816061 DOI: 10.3390/cancers17030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16-24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 receptor (NK-1R), is involved in glioma progression. It induces glioma cell proliferation by activating MAPKs (p38 MAPK, ERK1/2, and JNK), c-Myc, AP-1, and NF-κB and induces antiapoptotic effects via PI3K/Akt/mTOR in glioma cells. SP favors glycogen breakdown that is essential for glycolysis. The SP/NK-1R system also regulates the migration and invasion of glioma cells, stimulates angiogenesis, and triggers inflammation which contributes to glioma progression. Moreover, all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells. In contrast, in glioma, NK-1R antagonists, such as the drug aprepitant, penetrate the brain and reach therapeutic concentrations, thereby inhibiting mitogenesis, inducing apoptosis, and inhibiting the breakdown of glycogen in glioma cells. In addition, they inhibit angiogenesis and exert antimetastatic and anti-inflammatory effects. The combination of radiotherapy with NK-1R antagonists produces radiosensitization and radioneuroprotection, reduces both peritumoral- and radiation-induced inflammation, and also provides antinausea and antivomiting effects. Objective: This review updates the involvement of the SP/NK-1R system in glioma promotion and progression and the potential clinical application of NK-1R antagonist drugs in DIPG therapy. Conclusions: NK-1R plays a crucial role in glioma progression and NK-1R antagonists such as aprepitant could be used in combination with radiotherapy as a potent therapeutic strategy for the treatment of patients with DIPG.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain;
| | | |
Collapse
|
11
|
Ohri N, Häußler J, Javakhishvili N, Vieweg D, Zourelidis A, Trojanowicz B, Haemmerle M, Esposito I, Glaß M, Sunami Y, Kleeff J. Gene expression dynamics in fibroblasts during early-stage murine pancreatic carcinogenesis. iScience 2025; 28:111572. [PMID: 39811640 PMCID: PMC11731286 DOI: 10.1016/j.isci.2024.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling. Notably, cancer cell-driven paracrine signals appear to regulate ANGPTL4 expression in fibroblasts, suggesting that ANGPTL4 may act as a reciprocal factor in a feedback loop that enhances tumor progression. LAMA2, an extracellular matrix gene with reduced expression, suppressed pancreatic cancer cell migration, proliferation, and invasion. This study provides the temporal transcriptional analysis of fibroblast subtypes during early PDAC, highlighting the roles of metabolic reprogramming and ECM remodeling in shaping the tumor microenvironment and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Johanna Häußler
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Nino Javakhishvili
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi 0162, Georgia
| | - David Vieweg
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Anais Zourelidis
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Monika Haemmerle
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06112 Halle (Saale), Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Ida H, Taira N, Nashimoto Y, Kumatani A, Takahashi Y, Shiku H. EMT-Induced Morphological Variations on Living Cell Membrane Surface. Anal Chem 2025; 97:312-318. [PMID: 39745269 DOI: 10.1021/acs.analchem.4c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a drastic and important cellular process by which epithelial cells acquire a mesenchymal phenotype. Herein, we evaluated EMT-induced membrane variations using scanning ion conductance microscopy (SICM), which allows noninvasive nanoscale visualization. The results showed that the number and size of ruffles on the living cell surface decreased as the EMT progressed. It was also shown that the overall cell shape change occurred first rather than the nanoscale morphological variations. Time-lapse imaging using SICM showed that the small ruffles still moved actively after EMT induction. This study indicates that surface shape measurements using SICM may be useful indicators for assessing EMT progression.
Collapse
Affiliation(s)
- Hiroki Ida
- Department of Electrical Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Noriko Taira
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuji Nashimoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Laboratory of Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo 101-0062, Japan
| | - Akichika Kumatani
- Precursory Research for Embryonic Science and Technology, Science and Technology Agency (JST), Saitama 332-0012, Japan
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Center for Science and Innovation in Spintronics, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Department of Electrical and Electronic Engineering, Chiba Institute of Technology, Chiba 275-0016, Japan
| | - Yasufumi Takahashi
- Department of Electrical Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8601, Japan
- WPI Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Ishikawa 920-1192, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
13
|
Yang LX, Qi C, Lu S, Ye XS, Merikhian P, Zhang DY, Yao T, Zhao JS, Wu Y, Jia Y, Shan B, Chen J, Mou X, You J, Li W, Feng YX. Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells. Nat Commun 2025; 16:524. [PMID: 39789010 PMCID: PMC11718104 DOI: 10.1038/s41467-024-55738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions. HSC-specific depletion of ATF4 suppresses liver fibrosis in vivo. Mechanistically, TGFβ resets ATF4 to orchestrate a unique enhancer program for the transcriptional activation of pro-fibrotic EMT genes. Analysis of human data confirms a strong correlation between HSC ATF4 expression and liver fibrosis progression. Importantly, a small molecule inhibitor targeting ATF4 translation effectively mitigates liver fibrosis. Together, our findings identify a mechanism promoting liver fibrosis and reveal new opportunities for treating this otherwise non-targetable disease.
Collapse
Affiliation(s)
- Li-Xian Yang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chuangye Qi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Si Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Head and Neck Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang-Shi Ye
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Parnaz Merikhian
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA
| | - Du-Yu Zhang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Tao Yao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang-Sha Zhao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Wu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Shan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China.
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX, USA.
| | - Yu-Xiong Feng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Dash K, Mishra M. The tradeoff between the efficacy of calcineurin inhibitors: prevention of allograft rejection vs. post-transplant renal and cardiovascular complications. Crit Rev Toxicol 2025; 55:63-79. [PMID: 39807635 DOI: 10.1080/10408444.2024.2433631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Solid organ transplantation has emerged as a crucial intervention in the field of medicine. During transplantation, our human body perceives the organ as an exogenous entity or graft, initiating an immune reaction to eliminate it. This immune response ultimately culminates in the rejection of the graft. So, to mitigate the possibility of graft rejection, implementing immune suppression is imperative. In this context, the utilization of calcineurin inhibitors (CNIs) assumes a pivotal role. Calcineurin inhibitors significantly preserve immunosuppression following solid organ transplantation. Calcineurin inhibitors have considerably improved short-term results in renal transplantation by reducing acute rejection rates. Concerning the limited therapeutic window of these medications, careful monitoring of pharmacological treatment and individual doses is required. However, a significant number of patients do experience CNI toxicity. Side effects of CNIs include renal failure, hypertension, respiratory disorders, gastrointestinal damage, gingivitis, and so on. Higher trough level of the drug causes acute nephrotoxicity, which is of three types: functional toxicity, tubular toxicity, and vascular toxicity. Acute nephrotoxicity, if untreated, leads to irreversible, progressive deterioration of allograft function, leading to chronic nephrotoxicity. Cardiovascular toxicity of CNIs includes atrial hypertension caused by vasoconstriction of the afferent arteriole, vascular remodeling, hypertrophy, dyslipidemia, and also the onset of diabetes. Such clinical complications further affect the patient's survivability and subjective well-being, possibly leading to graft loss. This review focuses on the most severe side effects of CNIs: renal and cardiovascular toxicity.
Collapse
Affiliation(s)
- Kalpanarani Dash
- Department of Life Sciences, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Department of Life Sciences, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| |
Collapse
|
15
|
Sisto M, Lisi S. Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity. Cells 2024; 13:2092. [PMID: 39768182 PMCID: PMC11674862 DOI: 10.3390/cells13242092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes. In the last decade, ADAM17 was considered the driver of several autoimmune pathologies, and numerous substrate-mediated signal transduction pathways were identified. However, the discoveries made to date have led researchers to try to clarify the multiple mechanisms in which ADAM17 is involved and to identify any molecular gaps between the different transductional cascades. In this review, we summarize the most recent updates on the multiple regulatory activities of ADAM17, focusing on reported data in the field of autoimmunity.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
16
|
Shan S, Su M, Wang H, Guo F, Li Y, Zhou Y, Liu H, Du L, Zhang J, Qiu J, DiSanto ME, Guo Y, Zhang X. Y-27632 targeting ROCK1&2 modulates cell growth, fibrosis and epithelial-mesenchymal transition in hyperplastic prostate by inhibiting β-catenin pathway. MOLECULAR BIOMEDICINE 2024; 5:52. [PMID: 39455522 PMCID: PMC11511810 DOI: 10.1186/s43556-024-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent condition affecting the male urinary system, with its molecular mechanisms of pathogenesis remaining unclear. Y-27632, a non-isoform-selective Rho kinase inhibitor, has shown therapeutic potential in various diseases but its effects on static factors and fibrosis in BPH remain unexplored. This study investigated human prostate tissues, human prostate cell lines, and BPH rat model using immunofluorescence, flow cytometry, quantitative reverse transcription polymerase chain reaction, western blotting, and cell counting kit-8. ROCK1 and ROCK2 were significantly up-regulated in BPH tissues, correlating with clinical parameters. Y-27632 targeted the inhibition of ROCK1 & ROCK2 expression and inhibited cell proliferation, fibrosis, epithelial-mesenchymal transition (EMT), while induced cell apoptosis in a dose-dependent manner. Moreover, knockdown of either ROCK isoform inhibited fibrosis and EMT, induced apoptosis, while ROCK overexpression had the opposite effects. ROCK downregulation inhibited the β-catenin signaling pathway (such as C-MYC, Snail and Survivin) and decreased β-catenin protein stability, while inhibiting TGF-β/Smad2/3 signaling. At the in vivo level, Y-27632 reversed prostatic hyperplasia and fibrosis in BPH model rats to some extent. Our study sheds light on the therapeutic potential of Y-27632 in regulating prostate cell growth, fibrosis and EMT, and demonstrates for the first time the regulatory effect of ROCK isoforms on prostate cells, providing the basis for future research of ROCK isoform-selective inhibitors.
Collapse
Affiliation(s)
- Shidong Shan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Renal Transplatation, Guangdong Provincial People' Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Min Su
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hejin Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Du
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Zeng X, Wang H, Wu T, Zhou Z, Zhou J, Fu H. Associations of intestinal diseases with anal diseases: a Mendelian randomization study. Sci Rep 2024; 14:24304. [PMID: 39414900 PMCID: PMC11484769 DOI: 10.1038/s41598-024-75082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Although observational clinical studies have established an association between Intestinal Diseases (IDS) and Anal Diseases (ADS), the causal relationship is still not fully understood due to the limitations of observational studies. Genome-wide association study (GWAS) statistical data for IDS and ADS were obtained from publicly available databases. To assess the causal effects of IDS on ADS, we conducted Mendelian randomization analysis. The inverse variance weighted method indicated that Inflammatory bowel disease (IBD) had a significant causal relationship with three kinds of ADS: Anorectal abscess (ARB), Haemorrhoidal disease (HEM), and Fissure and fistula of anal and rectal regions (FISSANAL). Crohn's disease (CD) and Ulcerative colitis (UC) also showed significant causal effects with three ADS: ARB, HEM, and FISSANAL. Furthermore, a potential link between CD and BNA(Benign neoplasm of anus and anal canal), Irritable bowel syndrome (IBS) and HEM, Colorectal cancer (CRC) and BNA, and Celiac disease and MNA (Malignant neoplasm of anus and anal canal) was observed. This comprehensive MR analysis highlight the significant and increased risk of common Anal Diseases (ARB, FISSANAL, and HEM) in patients with IBD, CD, and UC. Additionally, potential positive causal associations emerged between IBS and HEM, CRC and BNA, as well as between celiac disease and MNA.
Collapse
Affiliation(s)
- XiaoYu Zeng
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - HanYu Wang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Wu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - ZiNing Zhou
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - JianPing Zhou
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hao Fu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
18
|
Setayesh T, Hu Y, Vaziri F, Wei D, Wan YJY. The spatial impact of a Western diet in enriching Galectin-1-regulated Rho, ECM, and SASP signaling in a novel MASH-HCC mouse model. Biomark Res 2024; 12:122. [PMID: 39402682 PMCID: PMC11476289 DOI: 10.1186/s40364-024-00660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) arising from metabolic dysfunction-associated steatohepatitis (MASH) presents a significant clinical challenge, particularly given the prevalence of the Western diet (WD). The influence of diet on the tumor microenvironment remains poorly understood. Galectin-1 (Gal-1) is a biomarker for HCC and has a crucial role in liver carcinogenesis. Our previous studies demonstrated that silencing Gal-1 effectively treats mouse HCC. However, the impacts of a WD on Gal-1 signaling on MASH to HCC progression are unknown, and this study addresses these knowledge gaps. METHODS We developed a novel MASH-HCC mouse model. Using spatial transcriptomics and multiplex immunohistochemistry (IHC), we studied the effects of a WD on the liver and tumor microenvironment. By modulating Gal-1 expression through silencing and overexpression, we explored the location-specific impacts of WD on Gal-1 signaling. RESULTS Pathways such as Rho signaling, extracellular matrix (ECM) remodeling, and senescence-associated secretory phenotypes (SASP) were prominently activated in WD-induced metabolic dysfunction-associated fatty liver disease (MAFLD) and MASH-HCC, compared to healthy livers controls. Furthermore, Rho GTPase effectors, ECM remodeling, neutrophil degranulation, cellular stress, and cell cycle pathways were consistently enriched in human and mouse MASH-HCC. Spatially, these pathways were enriched in the tumor and tumor margins of mouse MASH-HCC. Additionally, there was a notable increase in CD11c and PD-L1-positive cells from non-tumor tissues to the tumor margin and inside the tumor of MASH-HCC, suggesting compromised immune surveillance due to WD intake. Moreover, MASH-HCC exhibited significant Gal-1 induction in N-Cadherin-positive cells, indicating enhanced epithelial-to-mesenchymal transition (EMT). Modulating Gal-1 expression in MASH-HCC further established its specific roles in regulating Rho signaling and SASP in the tumor margin and non-tumor tissues in MASH-HCC. CONCLUSION WD intake significantly influences vital cellular processes involved in Gal-1-mediated signaling, including Rho signaling and ECM remodeling, in the tumor microenvironment, thereby contributing to the development of MASH-HCC.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Dongguang Wei
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
19
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
20
|
Chen X, Chen L, Chen G, Lv J, Wang J, Yu W, Wang H. Interleukin-17A Promotes Airway Remodeling in Chronic Obstructive Pulmonary Disease by Activating C-X-C Motif Chemokine Ligand 12 Secreted by Lung Fibroblasts. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:482-495. [PMID: 39012715 PMCID: PMC11548971 DOI: 10.15326/jcopdf.2024.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Background The interactions between fibroblasts and bronchial epithelial cells play important roles in the development of chronic obstructive pulmonary disease (COPD). Interleukin (IL)-17A triggers the activation of fibroblasts and the secretion of inflammatory mediators, which promotes epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. Fibroblasts secrete C-X-C motif chemokine ligand 12 (CXCL12), which specifically binds to its receptor, C-X-C motif chemokine receptor 4 (CXCR4) to mediate inflammatory responses. This study aims to investigate IL-17A- and CXCL12-induced airway remodeling. Methods Primary lung fibroblasts were isolated from human and murine lung tissue for the in vitro experiments, and a mouse model of cigarette smoke (CS)-induced COPD was established for the in vivo experiments. The results were analyzed using a one-way analysis of variance and Tukey's test or Bonferroni's test for the post-hoc test. A p-value < 0.05 was considered statistically significant. Results Through in vitro experiments, we found that IL-17A-activated primary lung fibroblasts secreted CXCL12 and stimulated EMT in bronchial epithelial cells. However, these effects could be blocked by neutralizing IL-17A or CXCL12. In vivo, an anti-IL-17A antibody or a CXCR4 antagonist could reverse the degree of EMT in the lungs of the COPD mouse model. The IL-17A-induced EMT and increased CXCL12 expression occurred via extracellular signal-regulated kinase (ERK)/phosphorylated-ERK pathways. Conclusion This study showed that exposure of mice to CS and IL-17A stimulation upregulated CXCL12 expression and induced EMT by activating the ERK signaling pathway. These data offer a novel perspective regarding the molecular mechanism of CXCL12/CXCR4 signaling in IL-17A-induced EMT related to airway remodeling.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| | - Liping Chen
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| | - Guanying Chen
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| | - Jiapei Lv
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| | - Jincong Wang
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| | - Wanjun Yu
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| | - Huaying Wang
- Department of Respiratory and Critical Care, The Affiliated People's Hospital of Ningbo University, Yinzhou People’s Hospital, Ningbo, China
| |
Collapse
|
21
|
Zhao X, Han Z, Liu R, Li Z, Mei L, Jin Y. FBXO11 Mediates Ubiquitination of ZEB1 and Modulates Epithelial-to-Mesenchymal Transition in Lung Cancer Cells. Cancers (Basel) 2024; 16:3269. [PMID: 39409891 PMCID: PMC11476264 DOI: 10.3390/cancers16193269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) affects the invasion and migration of cancer cells. Here, we show that FBXO11 recognizes and promotes ubiquitin-mediated degradation of ZEB1. There is a strong association between FBXO11 and ZEB1 in non-small cell lung cancer (NSLC) in a clinical database. FBXO11 interacts with ZEB1, a core inducer of EMT. FBXO11 leads to increased ubiquitination and proteasomal degradation of ZEB1. Depletion of endogenous FBXO11 causes ZEB1 protein accumulation and EMT in A549 and H1299 cells, while overexpression of FBXO11 reduces ZEB1 protein abundance and cellular invasiveness. Importantly, the depletion of ZEB1 suppresses the increased migration and invasion of A549 and H1299 cells promoted by the depletion of FBXO11. The same results are shown in xenograft tumors. High FBXO11 expression is associated with a favorable prognosis in NSLC. Collectively, our study demonstrates that FBXO11 modulates EMT by mediating the stability of ZEB1 in lung cancer cells.
Collapse
Affiliation(s)
- Xinyue Zhao
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (Z.H.); (R.L.); (Z.L.); (L.M.)
| | - Zhihui Han
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (Z.H.); (R.L.); (Z.L.); (L.M.)
| | - Ruiying Liu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (Z.H.); (R.L.); (Z.L.); (L.M.)
| | - Zehao Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (Z.H.); (R.L.); (Z.L.); (L.M.)
| | - Ling Mei
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (Z.H.); (R.L.); (Z.L.); (L.M.)
| | - Yue Jin
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun 130012, China; (X.Z.); (Z.H.); (R.L.); (Z.L.); (L.M.)
- National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Jilin University, Changchun 130061, China
| |
Collapse
|
22
|
Gao L, Bai Y, Liang C, Han T, Liu Y, Zhou J, Guo J, Wu J, Hu D. Celastrol-Ligustrazine compound proven to be a novel drug candidate for idiopathic pulmonary fibrosis by intervening in the TGF-β1 mediated pathways-an experimental in vitro and vivo study. Mol Divers 2024:10.1007/s11030-024-10970-1. [PMID: 39207663 DOI: 10.1007/s11030-024-10970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a disease characterized by pulmonary interstitial fibrosis and collagen proliferation, currently lacking effective therapeutic options. The combined use of Celastrol and Ligustrazine has been proved to synergistically improve the pathological processes of inflammation and fibrosis. In earlier studies, we designed and synthesized a Celastrol-Ligustrazine compound CL-001, though its role in IPF remains unclear. Here, the effects and mechanisms of CL-001 in bleomycin (BLM)-induced IPF were investigated. In vivo, CL-001 significantly improved lung function, reduced pulmonary inflammation, and decreased collagen deposition, thereby preventing the progression of IPF. In vitro, CL-001 concurrently inhibited both Smad-dependent and Smad-independent pathways, thereby suppressing TGF-β1-induced epithelial-mesenchymal transition (EMT) and epithelial cell migration. This inhibitory effect was superior to that of Celastrol or Ligustrazine administered alone. Additionally, CL-001 significantly increased the level of apoptosis and promoted the expression of apoptosis-related proteins (Caspase-8 and PARP), ultimately leading to widespread apoptosis in activated lung epithelial cells. In summary, CL-001 exhibits excellent anti-IPF effects both in vitro and in vivo, suggesting its potential as a novel candidate drug for IPF, warranting further development.
Collapse
Affiliation(s)
- Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
- Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
23
|
Zheng L, He JJ, Zhao KX, Pan YF, Liu WX. Expression of overall survival-EMT-immune cell infiltration genes predict the prognosis of glioma. Noncoding RNA Res 2024; 9:407-420. [PMID: 38511063 PMCID: PMC10950607 DOI: 10.1016/j.ncrna.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
This study investigates the crucial role of immune- and epithelial-mesenchymal transition (EMT)-associated genes and non-coding RNAs in glioma development and diagnosis, given the challenging 5-year survival rates associated with this prevalent CNS malignant tumor. Clinical and RNA data from glioma patients were meticulously gathered from CGGA databases, and EMT-related genes were sourced from dbEMT2.0, while immune-related genes were obtained from MSigDB. Employing consensus clustering, novel molecular subgroups were identified. Subsequent analyses, including ESTIMATE, TIMER, and MCP counter, provided insights into the tumor microenvironment (TIME) and immune status. Functional studies, embracing GO, KEGG, GSVA, and GSEA analyses, unraveled the underlying mechanisms governing these molecular subgroups. Utilizing the LASSO algorithm and multivariate Cox regression, a prognostic risk model was crafted. The study unveiled two distinct molecular subgroups with significantly disparate survival outcomes. A more favorable prognosis was linked to low immune scores, high tumor purity, and an abundance of immune infiltrating cells with differential expression of non-coding RNAs, including miRNAs. Functional analyses illuminated enrichment of immune- and EMT-associated pathways in differentially expressed genes and non-coding RNAs between these subgroups. GSVA and GSEA analyses hinted at abnormal EMT status potentially contributing to glioma-associated immune disorders. The risk model, centered on OS-EMT-ICI genes, exhibited promise in accurately predicting survival in glioma. Additionally, a nomogram integrating the risk model with clinical characteristics demonstrated notable accuracy in prognostic predictions for glioma patients. In conclusion, OS-EMT-ICI gene and non-coding RNA expression emerges as a valuable indicator intricately linked to immune microenvironment dysregulation, offering a robust tool for precise prognosis prediction in glioma patients within the OBMRC framework.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Breast Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Jin-jing He
- Department of Operating Room, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Kai-xiang Zhao
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Ya-fei Pan
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Wei-xian Liu
- Department of Neurosurgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| |
Collapse
|
24
|
Liu QQ, Chen J, Ma T, Huang W, Lu CH. DCDC2 inhibits hepatic stellate cell activation and ameliorates CCl 4-induced liver fibrosis by suppressing Wnt/β-catenin signaling. Sci Rep 2024; 14:9425. [PMID: 38658618 PMCID: PMC11043443 DOI: 10.1038/s41598-024-59698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liver fibrosis, as a consequence of chronic liver disease, involves the activation of hepatic stellate cell (HSC) caused by various chronic liver injuries. Emerging evidence suggests that activation of HSC during an inflammatory state can lead to abnormal accumulation of extracellular matrix (ECM). Investigating novel strategies to inhibit HSC activation and proliferation holds significant importance for the treatment of liver fibrosis. As a member of the doublecortin domain-containing family, doublecortin domain containing 2 (DCDC2) mutations can lead to neonatal sclerosing cholangitis, but its involvement in liver fibrosis remains unclear. Therefore, this study aims to elucidate the role of DCDC2 in liver fibrosis. Our findings revealed a reduction in DCDC2 expression in both human fibrotic liver tissues and carbon tetrachloride (CCl4)-induced mouse liver fibrotic tissues. Furthermore, exposure to transforming growth factor beta-1(TGF-β1) stimulation resulted in a dose- and time-dependent decrease in DCDC2 expression. The overexpression of DCDC2 inhibited the expression of α-smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1), and reduced the activation of HSC stimulated with TGF-β1. Additionally, we provided evidence that the Wnt/β-catenin signaling pathway was involved in this process, wherein DCDC2 was observed to inhibit β-catenin activation, thereby preventing its nuclear translocation. Furthermore, our findings demonstrated that DCDC2 could attenuate the proliferation and epithelial-mesenchymal transition (EMT)-like processes of HSC. In vivo, exogenous DCDC2 could ameliorate CCl4-induced liver fibrosis. In summary, DCDC2 was remarkably downregulated in liver fibrotic tissues of both humans and mice, as well as in TGF-β1-activated HSC. DCDC2 inhibited the activation of HSC induced by TGF-β1 in vitro and fibrogenic changes in vivo, suggesting that it is a promising therapeutic target for liver fibrosis and warrants further investigation in clinical practice.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Suzhou Medical College of Soochow University, Suzhou, 215000, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jing Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Wei Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Cui-Hua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
25
|
Wei Y, Wang L, Jin Z, Jia Q, Brcic L, Akaba T, Chu Q. Biological characteristics and clinical treatment of pulmonary sarcomatoid carcinoma: a narrative review. Transl Lung Cancer Res 2024; 13:635-653. [PMID: 38601447 PMCID: PMC11002509 DOI: 10.21037/tlcr-24-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Background and Objective Pulmonary sarcomatoid carcinoma (PSC) is a subset of non-small cell lung cancer (NSCLC) with highly malignant, aggressive, and heterogeneous features. Patients with this disease account for approximately 0.1-0.4% of lung cancer cases. The absence of comprehensive summaries on the basic biology and clinical treatments for PSC means there is limited systematic awareness and understanding of this rare disease. This paper provides an overview of the biological characteristics of PSC and systematically summarizes various treatment strategies available for patients with this disease. Methods For this narrative review, we have searched literature related to the basic biology and clinical treatment approaches of PSC by searching the PubMed database for articles published from July 16, 1990 to August 29, 2023. The following keywords were used: "pulmonary sarcomatoid carcinoma", "genetic mutations", "immune microenvironment", "hypoxia", "angiogenesis", "overall survival", "surgery", "radiotherapy", "chemotherapy", and "immune checkpoint inhibitors". Key Content and Findings Classical PSC comprises epithelial and sarcomatoid components, with most studies suggesting a common origin. PSC exhibits a higher tumor mutational burden (TMB) and mutation frequency than other types of NSCLC. The tumor microenvironment (TME) of PSC is characterized by hypoxia, hypermetabolism, elevated programmed cell death protein 1/programmed cell death-ligand 1 expression, and high immune cell infiltration. Treatment strategies for advanced PSC are mainly based on traditional NSCLC treatments, but PSC exhibits resistance to chemotherapy and radiotherapy. The advancement of genome sequencing has introduced targeted therapies as an option for mutation-positive PSC cases. Moreover, due to the characteristics of the immune microenvironment of PSC, many patients positively respond to immunotherapy, demonstrating its potential for the management of PSC. Conclusions Although several studies have examined and assessed the TME of PSC, these are limited in quantity and quality, presenting challenges for research into the clinical treatment strategies for PSC. With the emergence of new technologies and the advancement of clinical research, for example, savolitinib's clinical study for MET exon 14 skipping mutations positive PSC patients have shown promising outcomes, more in-depth studies on PSC are eagerly anticipated.
Collapse
Affiliation(s)
- Yuxuan Wei
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Jin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Tomohiro Akaba
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Li B, Zhang Y, Zheng Y, Cai H. The mechanisms and therapeutic potential of clopidogrel in mitigating diabetic cardiomyopathy in db/db mice. iScience 2024; 27:109134. [PMID: 38375215 PMCID: PMC10875154 DOI: 10.1016/j.isci.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Clopidogrel has been shown to play a protective role against diabetic nephropathy. However, whether clopidogrel exerts a protective effect against diabetic cardiomyopathy (DCM) is unknown. Three-month-old male db/db mice were administered clopidogrel daily at doses of 5, 10, and 20 mg/kg by gavage for 5 months. Here, we showed that clopidogrel effectively attenuated diabetes-induced cardiac hypertrophy and cardiac dysfunction by inhibiting cardiac fibrosis, inflammatory responses, and oxidative stress damage in db/db mice. Diabetes-induced cardiac fibrosis was inhibited by clopidogrel treatment via blockade of the TGF-β1/Smad3/P2RY12 pathway and inhibition of macrophage infiltration in db/db mice. The protective effects of clopidogrel against oxidative damage were mediated by the induction of the Nrf2 signaling pathway. Taken together, our findings provide strong evidence that clopidogrel is a promising effective agent for the treatment of DCM by alleviating diabetes-induced cardiac hypertrophy and dysfunction. P2RY12 might be an effective target for the treatment of DCM.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
27
|
Chen L, Ye X, Yang L, Zhao J, You J, Feng Y. Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:25-35. [PMID: 39036388 PMCID: PMC11256631 DOI: 10.1016/j.jncc.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
Collapse
Affiliation(s)
- Liang'en Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangshi Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Hangzhou Medical College), Hangzhou, China
| | - Jiangsha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
29
|
Zisis V, Anastasiadou PA, Poulopoulos A, Vahtsevanos K, Paraskevopoulos K, Andreadis D. A Preliminary Study of the Role of Endothelial-Mesenchymal Transitory Factor SOX 2 and CD147 in the Microvascularization of Oral Squamous Cell Carcinoma. Cureus 2024; 16:e52265. [PMID: 38352102 PMCID: PMC10863931 DOI: 10.7759/cureus.52265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION The aim of this study was to detect the possible endothelial expression of embryonic-type cancer stem cells (CSC) marker SOX2 and the stemness-type CSC marker CD147 in oral potential malignant disorders (OPMDs), oral leukoplakia (OL) in particular, and oral squamous cell carcinoma (OSCC). METHODS This study focuses on the immunohistochemical pattern of expression of CSC protein-biomarkers SOX2 and CD147 in paraffin-embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to normal oral mucosa. RESULTS The protein biomarker SOX2 was expressed in the endothelial cells, but without establishing any statistically significant correlation among OSCC, OL, and normal tissue specimens. However, SOX endothelial staining was noticed in 7/30 (23.3%) cases of OL (one non-dysplastic, one mildly dysplastic, one moderately dysplastic, and four severely dysplastic cases) and 5/21 (23.8%) cases of OSCC (two well-differentiated, one moderately differentiated, and two poorly differentiated cases). Although CD147 is expressed in normal oral epithelium, OL, and OSCC neoplastic cells, its vascular-endothelial expression was noticed in only 2/5 (40%) cases of normal oral epithelium, 1/30 (3.3%) cases of OL (one severely dysplastic case), and 4/21 (19%) cases of OSCC (two well-differentiated, one moderately differentiated, and one poorly differentiated case). Therefore, no statistically significant correlation among OSCC, OL, and normal tissue specimens was established. CONCLUSION The endothelial presence of SOX2 both in oral potentially malignant and malignant lesions suggests that SOX2 may be implicated in the microvascularization process and associated with the degree of dysplasia in OL. The expression of CD147 may be attributed both to local inflammation and tumorigenesis. The implementation of CD147 in larger groups of tissue samples will shed some light on its role in cancer and inflammation. The evidence so far supports the need for more studies, which may support the clinical significance of these novel cancer stem cell biomarkers.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | | - Konstantinos Vahtsevanos
- Oral and Maxillofacial Surgery, Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Dimitrios Andreadis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
30
|
You D, Nie K, Wu X, Weng M, Yang L, Chen Y, Cui J, Wan J. C3a/C3aR synergies with TGF-β to promote epithelial-mesenchymal transition of renal tubular epithelial cells via the activation of the NLRP3 inflammasome. J Transl Med 2023; 21:904. [PMID: 38082306 PMCID: PMC10714586 DOI: 10.1186/s12967-023-04764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Complement component 3a and its receptor (C3a/C3aR) and the nucleotide-binding oligomerization domain-like receptor protein-3 (NLRP3) inflammasome contribute to epithelial-mesenchymal transition (EMT). However, the relationship between C3a/C3aR and the NLRP3 inflammasome in EMT remains unclear. This study aimed to elucidate the roles of C3a/C3aR and the NLRP3 inflammasome involved in TGF-β-induced EMT. METHOD Mouse renal tubular epithelial cells (TCMK-1) were exposed to C3a and TGF-β for 48 h. C3aR antagonist, MCC950, an inhibitor of the NLRP3 inflammasome and PD98059, an inhibitor of ERK signaling, were respectively applied to pretreat the cells at 30 min before C3a and TGF-β administration.The cells were collected for western blot, immunofluorescence staining and ELISA. Unilateral ureteral obstruction (UUO) models were established using male C57BL/6 wild-type (WT) mice and age-matched C3aR-deficient mice. MCC950 was intraperitoneally injected in UUO mice. Kidney samples were collected for immunohistochemistry staining. RESULTS In vitro, C3a synergized with TGF-β to promote EMT and the activation of the NLRP3 inflammasome. Inhibition of C3aR attenuated EMT and the activation of the NLRP3 inflammasome. Inhibition of the NLRP3 inflammasome alleviated EMT but didn't affect the expression of C3aR. Inhibition of ERK signaling inhibited the activation of the NLRP3 inflammasome. In vivo, the expression of IL-1β was significantly higher in UUO mice compared to the sham-operated mice. C3aR deficiency and inhibition of the NLRP3 Inflammasome contributed to decreased IL-1β in UUO mice. CONCLUSION Our data revealed that C3a/C3aR synergies with TGF-β to activate the NLRP3 inflammasome to promote epithelial-mesenchymal transition of renal tubular epithelial cells through ERK signaling, and the way in which C3aR activates the inflammasome is to promote the assembly of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Danyu You
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yi Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jiong Cui
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital of Fujian Medical University, Chazhong Road 20, Fuzhou, 350005, China.
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
31
|
Zhang Z, Zhanghuang C, Mi T, Jin L, Liu J, Li M, Wu X, Wang J, Li M, Wang Z, Guo P, He D. The PI3K-AKT-mTOR signaling pathway mediates the cytoskeletal remodeling and epithelial-mesenchymal transition in bladder outlet obstruction. Heliyon 2023; 9:e21281. [PMID: 38027933 PMCID: PMC10663759 DOI: 10.1016/j.heliyon.2023.e21281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Partial bladder outlet obstruction(pBOO) is the most common cause of lower urinary tract symptoms (LUTS) and significantly affects the quality of life. Long-term pBOO can cause changes in bladder structure and function, referred to as bladder remodeling. The pathogenesis of pBOO-induced bladder remodeling has yet to be fully understood, so effective treatment options are lacking. Our study aimed to explore how pBOO-induced bladder remodeling brings new strategies for treating pBOO. Methods A rat model of pBOO was established by partial ligation of the bladder neck, and the morphological changes and fibrosis changes in the bladder tissues were detected by H&E and Masson trichrome staining. Furthermore, EMT(epithelial-mesenchymal transition) related indicators and related pathway changes were further examined after TGF- β treatment of urothelial cells SV-HUC-1. Finally, the above indicators were tested again after using the PI3K inhibitor. Subsequently, RNA sequencing of bladder tissues to identify differential genes and related pathways enrichment and validated by immunofluorescence and western blotting analysis. Results The pBOO animal model was successfully established by partially ligating the bladder neck. H&E staining showed significant changes in the bladder structure, and Masson trichrome staining showed significantly increased collagen fibers. RNA sequencing results significantly enriched in the cytoskeleton, epithelial-mesenchymal transformation, and the PI3K-AKT-mTOR signaling pathway. Immunofluorescence and western blotting revealed EMT and cytoskeletal remodeling in SV-HUC-1 cells after induction of TGF- β and in the pBOO bladder tissues. The western blotting showed significant activation of the PI3K-AKT-mTOR signaling pathway in SV-HUC-1 cells after induction of TGF-β and in pBOO bladder tissues. Furthermore, EMT and cytoskeletal damage were partially reversed after PI3K pathway inhibition using PI3K inhibitors. Conclusions In the pBOO rat model, the activation of the PI3K-AKT-mTOR signaling pathway can mediate the cytoskeletal remodeling and the EMT to induce fibrosis in the bladder tissues. PI3K inhibitors partially reversed EMT and cytoskeletal damage.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Chenghao Zhanghuang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
- Department of Urology, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650103, PR China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Maoxian Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Mujie Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhang Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, PR China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| |
Collapse
|
32
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
33
|
Wang D, Wen X, Xu LL, Chen QX, Yan TX, Xiao HT, Xu XW. Nf1 in heart development: a potential causative gene for congenital heart disease: a narrative review. Physiol Genomics 2023; 55:415-426. [PMID: 37519249 DOI: 10.1152/physiolgenomics.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023] Open
Abstract
Congenital heart disease is the most frequent congenital disorder, affecting a significant number of live births. Gaining insights into its genetic etiology could lead to a deeper understanding of this condition. Although the Nf1 gene has been identified as a potential causative gene, its role in congenital heart disease has not been thoroughly clarified. We searched and summarized evidence from cohort-based and experimental studies on the issue of Nf1 and heart development in congenital heart diseases from various databases. Available evidence demonstrates a correlation between Nf1 and congenital heart diseases, mainly pulmonary valvar stenosis. The mechanism underlying this correlation may involve dysregulation of epithelial-mesenchymal transition (EMT). The Nf1 gene affects the EMT process via multiple pathways, including directly regulating the expression of EMT-related transcription factors and indirectly regulating the EMT process by regulating the MAPK pathway. This narrative review provides a comprehensive account of the Nf1 involvement in heart development and congenital cardiovascular diseases in terms of epidemiology and potential mechanisms. RAS signaling may contribute to congenital heart disease independently or in cooperation with other signaling pathways. Efficient management of both NF1 and cardiovascular disease patients would benefit from further research into these issues.
Collapse
Affiliation(s)
- Dun Wang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Wen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Li-Li Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Qing-Xing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, People's Republic of China
| | - Tian-Xing Yan
- Central Laboratory, National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Hai-Tao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue-Wen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
34
|
Poyyakkara A, Raji GR, Padmaja KP, Ramachandran V, Changmai U, Edatt L, Punathil R, Kumar VBS. Integrin β4 induced epithelial-to-mesenchymal transition involves miR-383 mediated regulation of GATA6 levels. Mol Biol Rep 2023; 50:8623-8637. [PMID: 37656269 DOI: 10.1007/s11033-023-08682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin β4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. β-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and β catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/β-catenin.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - K P Padmaja
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- CRP-10, Cancer Research, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, India
| | - Vishnu Ramachandran
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Udeshna Changmai
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Rabina Punathil
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Department of Zoology, School of Basic Sciences, SRM University, Sikkim, 737102, India
| | - V B Sameer Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
35
|
Li J, Liu Y, Liu J. A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Front Physiol 2023; 14:1220450. [PMID: 37817984 PMCID: PMC10560738 DOI: 10.3389/fphys.2023.1220450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective alternative treatment for patients with end-stage renal disease (ESRD) and is increasingly being adopted and promoted worldwide. However, as the duration of peritoneal dialysis extends, it can expose problems with dialysis inadequacy and ultrafiltration failure. The exact mechanism and aetiology of ultrafiltration failure have been of great concern, with triggers such as biological incompatibility of peritoneal dialysis solutions, uraemia toxins, and recurrent intraperitoneal inflammation initiating multiple pathways that regulate the release of various cytokines, promote the transcription of fibrosis-related genes, and deposit extracellular matrix. As a result, peritoneal fibrosis occurs. Exploring the pathogenic factors and molecular mechanisms can help us prevent peritoneal fibrosis and prolong the duration of Peritoneal dialysis.
Collapse
Affiliation(s)
- Jin’e Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinghong Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Wu X, Jia B, Luo X, Wang J, Li M. Glucocorticoid Alleviates Mechanical Stress-Induced Airway Inflammation and Remodeling in COPD via Transient Receptor Potential Canonical 1 Channel. Int J Chron Obstruct Pulmon Dis 2023; 18:1837-1851. [PMID: 37654522 PMCID: PMC10466112 DOI: 10.2147/copd.s419828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Background Increased airway resistance and hyperinflation in chronic obstructive pulmonary disease (COPD) are associated with increased mechanical stress that modulate many essential pathophysiological functions including airway remodeling and inflammation. Our present study aimed to investigate the role of transient receptor potential canonical 1 (TRPC1), a mechanosensitive cation channel in airway remodeling and inflammation in COPD and the effect of glucocorticoid on this process. Methods In patients, we investigated the effect of pathological high mechanical stress on the expression of airway remodeling-related cytokines transforming growth factor β1 (TGF-β1), matrix metalloproteinase-9 (MMP9) and the count of inflammatory cells in endotracheal aspirates (ETAs) by means of different levels of peak inspiratory pressure (PIP) under mechanical ventilation, and analyzed their correlation with TRPC1. Based on whether patients regularly used inhaled corticosteroid (ICS), COPD patients were further divided into ICS group (n = 12) and non-ICS group (n=15). The ICS effect on the expression of TRPC1 was detected by Western blot. In vitro, we imitated the mechanical stress using cyclic stretch and examined the levels of TGF-β1 and MMP-9. The role of TRPC1 was further explored by siRNA transfection and dexamethasone administration. Results Our results revealed that the TRPC1 level and the inflammatory cells counts were significantly higher in COPD group. After mechanical ventilation, the expression of TGF-β1 and MMP-9 in all COPD subgroups was significantly increased, while in the control group, only high PIP subgroup increased. Meanwhile, TRPC1 expression was positively correlated with the counts of inflammatory cells and the levels of TGF-β1 and MMP-9. In vitro, mechanical stretch significantly increased TGF-β1 and MMP-9 levels and such increase was greatly attenuated by TRPC1 siRNA transfection and dexamethasone administration. Conclusion Our results suggest that the increased TRPC1 may play a role in the airway inflammation and airway remodeling in COPD under high airway pressure. Glucocorticoid could in some degree alleviate airway remodeling via inhibition of TRPC1.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Baolin Jia
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Xiaobin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’ s Republic of China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Minchao Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
37
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
38
|
Ibrahim MT, Lee J, Tao P. Homology modeling of Forkhead box protein C2: identification of potential inhibitors using ligand and structure-based virtual screening. Mol Divers 2023; 27:1661-1674. [PMID: 36048303 PMCID: PMC9975119 DOI: 10.1007/s11030-022-10519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Overexpression of Forkhead box protein C2 (FOXC2) has been associated with different types of carcinomas. FOXC2 plays an important role in the initiation and maintenance of the epithelial-mesenchymal transition (EMT) process, which is essential for the development of higher-grade tumors with an enhanced ability for metastasis. Thus, FOXC2 has become a therapeutic target for the development of anticancer drugs. MC-1-F2, the only identified experimental inhibitor of FOXC2, interacts with the full length of FOXC2. However, only the DNA-binding domain (DBD) of FOXC2 has resolved crystal structure. In this work, a three-dimensional (3D) structure of the full-length FOXC2 using homology modeling was developed and used for structure-based drug design (SBDD). The quality of this 3D model of the full-length FOXC2 was evaluated using MolProbity, ERRAT, and ProSA modules. Molecular dynamics (MD) simulation was also carried out to verify its stability. Ligand-based drug design (LBDD) was carried out to identify similar analogues for MC-1-F2 against 15 million compounds from ChEMBL and ZINC databases. 792 molecules were retrieved from this similarity search. De novo SBDD was performed against the full-length 3D structure of FOXC2 through homology modeling to identify novel inhibitors. The combination of LBDD and SBDD helped in gaining a better insight into the binding of MC-1-F2 and its analogues against the full length of the FOXC2. The binding free energy of the top hits was further investigated using MD simulations and MM/GBSA calculations to result in eight promising hits as lead compounds targeting FOXC2.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
39
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
40
|
Lin C, Chen W, Shia B, Wu S. Statin use and its association with decreased risk of esophageal squamous cell carcinoma in betel nut chewers. Thorac Cancer 2023; 14:2241-2250. [PMID: 37395565 PMCID: PMC10423659 DOI: 10.1111/1759-7714.15009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Betel nut chewing involves the chewing of areca nuts or betel quid (areca nuts wrapped in betel leaves), which is associated with an increased risk of esophageal squamous cell carcinoma (ESCC). Statins have anticancer properties. We investigated the association between statin use and ESCC risk in betel nut chewers. METHODS The study included 105 387 betel nut chewers matched statin users and nonusers. Statin use was defined as the use of ≥28 cumulative defined daily doses (cDDDs) of statin. The primary outcome was incidence of ESCC. RESULTS The incidence rate of ESCC was significantly lower in statin users than in nonusers (2.03 vs. 3.02 per 100 000 person-years). Statin users had a lower incidence rate ratio of 0.66 for ESCC (95% confidence interval [CI]: 0.43-0.85) relative to nonusers. After potential confounders were adjusted for, statin use was determined to be associated with a reduced risk of ESCC (adjusted hazard ratio [aHR], 0.68; 95% CI: 0.51-0.91). A dose-response relationship was observed between statin use and ESCC risk; the aHRs for statin use at 28-182 cDDDs, 183-488 cDDDs, 489-1043 cDDDs, and > 1043 cDDDs were 0.92, 0.89, 0.66, and 0.64, respectively. CONCLUSION Statin use was revealed to be associated with a reduced risk of ESCC in betel nut chewers.
Collapse
Affiliation(s)
- Chih‐Lang Lin
- Liver Research Center, Department of Gastroenterology and HepatologyKeelung Chang Gung Memorial HospitalKeelungTaiwan
- Community Medicine Research CenterKeelung Chang Gung Memorial HospitalKeelungTaiwan
- College of MedicineChang Gung UniversityTaiwan
| | - Wan‐Ming Chen
- Graduate Institute of Business Administration, College of ManagementFu Jen Catholic UniversityTaipeiTaiwan
- Artificial Intelligence Development CenterFu Jen Catholic UniversityTaipeiTaiwan
| | - Ben‐Chang Shia
- Graduate Institute of Business Administration, College of ManagementFu Jen Catholic UniversityTaipeiTaiwan
- Artificial Intelligence Development CenterFu Jen Catholic UniversityTaipeiTaiwan
| | - Szu‐Yuan Wu
- Graduate Institute of Business Administration, College of ManagementFu Jen Catholic UniversityTaipeiTaiwan
- Artificial Intelligence Development CenterFu Jen Catholic UniversityTaipeiTaiwan
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health ScienceAsia UniversityTaichungTaiwan
- Division of Radiation Oncology, Lo‐Hsu Medical FoundationLotung Poh‐Ai HospitalYilanTaiwan
- Big Data Center, Lo‐Hsu Medical FoundationLotung Poh‐Ai HospitalYilanTaiwan
- Department of Healthcare Administration, College of Medical and Health ScienceAsia UniversityTaichungTaiwan
- Cancer Center, Lo‐Hsu Medical FoundationLotung Poh‐Ai HospitalYilanTaiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Management, College of ManagementFo Guang UniversityYilanTaiwan
| |
Collapse
|
41
|
Luo R, Wei Y, Chen P, Zhang J, Wang L, Wang W, Wang P, Tian W. Mesenchymal Stem Cells Inhibit Epithelial-to-Mesenchymal Transition by Modulating the IRE1 α Branch of the Endoplasmic Reticulum Stress Response. Stem Cells Int 2023; 2023:4483776. [PMID: 37545482 PMCID: PMC10397497 DOI: 10.1155/2023/4483776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease, and it carries a poor prognosis due to a lack of efficient diagnosis methods and treatments. Epithelial-mesenchymal transition (EMT) plays a key role in IPF pathogenesis. Endoplasmic reticulum (ER) stress contributes to fibrosis via EMT-mediated pathways. Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for pulmonary fibrosis and ameliorates lung fibrosis in animal models via paracrine effects. However, the specific mechanisms underlying the effect of transplanted MSCs are not known. We previously reported that MSCs attenuate endothelial injury by modulating ER stress and endothelial-to-mesenchymal transition. The present study investigated whether modulation of ER stress- and EMT-related pathways plays essential roles in MSC-mediated alleviation of IPF. Methods and Results We constructed a A549 cell model of transforming growth factor-β1 (TGF-β1)-induced fibrosis. TGF-β1 was used to induce EMT in A549 cells, and MSC coculture decreased EMT, as indicated by increased E-cadherin levels and decreased vimentin levels. ER stress participated in TGF-β1-induced EMT in A549 cells, and MSCs inhibited the expression of XBP-1s, XBP-1u, and BiP, which was upregulated by TGF-β1. Inhibition of ER stress contributed to MSC-mediated amelioration of EMT in A549 cells, and modulation of the IRE1α-XBP1 branch of the ER stress pathway may have played an important role in this effect. MSC transplantation alleviated bleomycin (BLM)-induced pulmonary fibrosis in mice. MSC treatment decreased the expression of ER stress- and EMT-related genes and proteins, and the most obvious effect of MSC treatment was inhibition of the IRE1α/XBP1 pathway. Conclusions The present study demonstrated that MSCs decrease EMT by modulating ER stress and that blockade of the IRE1α-XBP1 pathway may play a critical role in this effect. The current study provides novel insight for the application of MSCs for IPF treatment and elucidates the mechanism underlying the preventive effects of MSCs against pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruixi Luo
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Stem Cell Therapy Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yaqiong Wei
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Peng Chen
- Clinical Basis of Traditional Chinese Medicine Teaching and Research Section, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Zhang
- Institute of Experimental Animals, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - La Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenjia Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ping Wang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weiyi Tian
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
42
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.v15i14 10.18632/aging.204883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
43
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
44
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
45
|
Wu X, Lin X, Tan J, Liu Z, He J, Hu F, Wang Y, Chen M, Liu F, Mao R. Cellular and Molecular Mechanisms of Intestinal Fibrosis. Gut Liver 2023; 17:360-374. [PMID: 36896620 PMCID: PMC10191785 DOI: 10.5009/gnl220045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/08/2022] [Accepted: 06/03/2022] [Indexed: 03/11/2023] Open
Abstract
Intestinal fibrosis associated stricture is a common complication of inflammatory bowel disease usually requiring endoscopic or surgical intervention. Effective anti-fibrotic agents aiming to control or reverse intestinal fibrosis are still unavailable. Thus, clarifying the mechanism underpinning intestinal fibrosis is imperative. Fibrosis is characterized by an excessive accumulation of extracellular matrix (ECM) proteins at the injured sites. Multiple cellular types are implicated in fibrosis development. Among these cells, mesenchymal cells are major compartments that are activated and then enhance the production of ECM. Additionally, immune cells contribute to the persistent activation of mesenchymal cells and perpetuation of inflammation. Molecules are messengers of crosstalk between these cellular compartments. Although inflammation is necessary for fibrosis development, purely controlling intestinal inflammation cannot halt the development of fibrosis, suggesting that chronic inflammation is not the unique contributor to fibrogenesis. Several inflammation-independent mechanisms including gut microbiota, creeping fat, ECM interaction, and metabolic reprogramming are involved in the pathogenesis of fibrosis. In the past decades, substantial progress has been made in elucidating the cellular and molecular mechanisms of intestinal fibrosis. Here, we summarized new discoveries and advances of cellular components and major molecular mediators that are associated with intestinal fibrosis, aiming to provide a basis for exploring effective anti-fibrotic therapies in this field.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxuan Lin
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinyu Tan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zishan Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinshen He
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fan Hu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yu Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fen Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
46
|
Ko SW, Yoon SB. Clinical implications and perspectives of portal venous circulating tumor cells in pancreatic cancer. World J Gastrointest Oncol 2023; 15:632-643. [PMID: 37123055 PMCID: PMC10134213 DOI: 10.4251/wjgo.v15.i4.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Despite recent improvements in the diagnosis and treatment of pancreatic cancer (PC), clinical outcomes remain dismal. Moreover, there are no effective prognostic or predictive biomarkers or options beyond carbohydrate antigen 19-9 for personalized and precise treatment. Circulating tumor cells (CTCs), as a member of the liquid biopsy family, could be a promising biomarker; however, the rarity of CTCs in peripheral venous blood limits their clinical use. Because the first venous drainage of PC is portal circulation, the portal vein can be a more suitable location for the detection of CTCs. Endoscopic ultrasound-guided portal venous sampling of CTCs is both feasible and safe. Several studies have suggested that the detection rate and number of CTCs may be higher in the portal blood than in the peripheral blood. CTC counts in the portal blood are highly associated with hepatic metastasis, recurrence after surgery, and survival. The phenotypic and genotypic properties measured in the captured portal CTCs can help us to understand tumor heterogeneity and predict the prognosis of PC. Small sample sizes and heterogeneous CTC detection methods limit the studies to date. Therefore, a large number of prospective studies are needed to corroborate portal CTCs as a valid biomarker in PC.
Collapse
Affiliation(s)
- Sung Woo Ko
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Seung Bae Yoon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
- Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, Seoul 03312, South Korea
| |
Collapse
|
47
|
Yang J, Jiang G, Ni K, Fan L, Tong W, Yang J. Emodin inhibiting epithelial-mesenchymal transition in pulmonary fibrosis through the c-MYC/miR-182-5p/ZEB2 axis. Phytother Res 2023; 37:926-934. [PMID: 36411986 DOI: 10.1002/ptr.7680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
Emodin is a natural anthraquinone compound, which is the main component found in the traditional Chinese herb Polygonum cuspidatum. The anti-fibrosis effects of Emodin have been reported. This study aimed to explore the specific mechanism of Emodin in the epithelial-mesenchymal transition (EMT) of pulmonary fibrosis. The pulmonary fibrosis mice models were constructed with bleomycin, the EMT models of alveolar epithelial cells were stimulated by TGF-β1, and Emodin was used for intervention. c-MYC and miR-182-5p were overexpressed or silenced by cell transfection. Our results demonstrated that Emodin attenuated pulmonary fibrosis induced by bleomycin in mice, and inhibited EMT, meanwhile downregulated c-MYC, upregulated miR-182-5p, and downregulated ZEB2 in vitro and vivo. Next, overexpression of c-MYC promoted EMT, while silencing c-MYC and overexpressing miR-182-5p inhibited EMT. Then, c-MYC negatively regulated the expression of miR-182-5p with a direct binding relationship. And miR-182-5p inhibited ZEB2 expression in a targeted manner. Finally, Emodin inhibited EMT that had been promoted by overexpression of c-MYC. In conclusion, Emodin could attenuate pulmonary fibrosis and EMT by regulating the c-MYC/miR-182-5p/ZEB2 axis, which might provide evidence for the application of Emodin in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gangdan Jiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiwen Ni
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming Fan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wang Tong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junchao Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
48
|
Xu F, Jiang M, Tang Q, Lin J, Liu X, Zhang C, Zhao J, He Y, Dong L, Zhu L, Lin T. MiR-29a-3p inhibits high-grade transformation and epithelial-mesenchymal transition of lacrimal gland adenoid cystic carcinoma by targeting Quaking. Mol Biol Rep 2023; 50:2305-2316. [PMID: 36575320 DOI: 10.1007/s11033-022-08150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Lacrimal adenoid cystic carcinoma (LACC) is the most common orbital malignant epithelial neoplasm. LACC with high-grade transformation (LACC-HGT) has higher rates of recurrence, metastasis, and mortality than LACC without HGT. This study investigated the effects of microRNA-29a-3p (miR-29a-3p) in the pathogenesis of LACC-HGT. METHODS An Agilent human miRNA microarray was used to screen the differentially expressed miRNAs (DEMs) in LACC and LACC-HGT tumor tissues. Then, the primary cells obtained in previous studies were used to determine the effect of miR-29a-3p. RESULTS The expression of miR-29a-3p was abnormally lower in LACC-HGT than in LACC. miR-29a-3p can specifically target the 3' UTR of Quaking mRNA and down-regulate Quaking expression, thereby inhibiting the proliferation, migration, and epithelial-mesenchymal transition of LACC cells. CONCLUSIONS This study illustrated that miR-29a-3p functions as a tumor suppressor by down-regulating the expression of Quaking to inhibit the tumorigenesis of LACC cells. This study may also reveal the pathogenesis of HGT in LACC cells and provide a reference for LACC-HGT targeted diagnosis.
Collapse
Affiliation(s)
- Fei Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Meixia Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology &Visual Sciences, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing, China
| | - Qin Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Jiaqi Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Chuanli Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Jinzhi Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Yanjin He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| | - Limin Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| | - Tingting Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
49
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
50
|
Li D, Guo X, Zhao W, Jingyu J, Xia C, Yu G. Genome-wide DNA methylation dynamics in carbon tetrachloride-induced mice liver fibrosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:85-92. [PMID: 36594057 PMCID: PMC9790058 DOI: 10.22038/ijbms.2022.66256.14555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023]
Abstract
Objectives Many persistent harmful stimuli can result in chronic liver diseases, which lead to about 2 million deaths per year in the whole world. Liver fibrosis was found to exist in all kinds of chronic liver diseases. Many studies suggested that DNA methylation was associated with the pathogenesis of liver fibrosis. This study aimed to quantitatively detect DNA methylation changes in the whole genome in fibrotic liver tissues of mice. Materials and Methods Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) for 4 weeks. A genome-wide methylome analysis was performed using 850K BeadChips assays. The methylation status of 27 CpG dinucleotides located in 3 genes was detected by pyrosequencing to confirm chip data accuracy, and mRNA expressions of these 3 genes were examined by RT-qPCR methods. Results A total of 130,068 differentially methylated sites (DMS, 58,474 hypermethylated, and 71,594 hypomethylated) between fibrotic liver tissues and control mice liver tissues were identified by the 850k BeadChips array. Consistency between pyrosequencing data and 850k BeadChips array data was observed (R=0.928; P<0.01). Apoptosis, positive regulation of transcription of Notch receptor target, and negative regulation of p38MAPK signal cascade activities were significantly enriched in the Gene Ontology (GO) analyses. Cholesterol metabolism, bile secretion, and more biosynthesis and metabolism pathways were enriched in KEGG pathway analyses. Ten key genes were identified by the Cytoscape plugin cytoHubba. Conclusion 7850 genes were found to have methylation change in fibrotic liver tissues of mice, which facilitates future research for clinical application.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China,These authors contributed eqully to this work
| | - Xiaoshu Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China,Department of Physiology, Changzhi Medical College, Shanxi, China,These authors contributed eqully to this work
| | - Wenyu Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jingyu Jingyu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Cong Xia
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China,Corresponding author: Guoying Yu. State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China. Tel: +86-03733326340; Fax: +86-0373 3326524;
| |
Collapse
|