1
|
Chi KY, Kim G, Son JS, Han J, Kim JH. Recent Advances in Three-Dimensional In Vitro Models for Studies of Liver Fibrosis. Tissue Eng Regen Med 2025:10.1007/s13770-025-00719-8. [PMID: 40358834 DOI: 10.1007/s13770-025-00719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Liver fibrosis is a reversible but complex pathological condition associated with chronic liver diseases, affecting over 1.5 billion people worldwide. It is characterized by excessive extracellular matrix deposition resulting from sustained liver injury, often advancing to cirrhosis and cancer. As its progression involves various cell types and pathogenic factors, understanding the intricate mechanisms is essential for the development of effective therapies. In this context, extensive efforts have been made to establish three-dimensional (3D) in vitro platforms that mimic the progression of liver fibrosis. METHODS This review outlines the pathophysiology of liver fibrosis and highlights recent advancements in 3D in vitro liver models, including spheroids, organoids, assembloids, bioprinted constructs, and microfluidic systems. It further assesses their biological relevance, with particular focus on their capacity to reproduce fibrosis-related characteristics. RESULTS 3D in vitro liver models offer significant advantages over conventional two-dimensional cultures. Although each model exhibits unique strengths, they collectively recapitulate key fibrotic features, such as extracellular matrix remodeling, hepatic stellate cell activation, and collagen deposition, in a physiologically relevant 3D setting. In particular, multilineage liver organoids and assembloids integrate architectural complexity with scalability, enabling deeper mechanistic insights and supporting therapeutic evaluation with improved translational relevance. CONCLUSION 3D in vitro liver models represent a promising strategy to bridge the gap between in vitro studies and in vivo realities by faithfully replicating liver-specific architecture and microenvironments. With enhanced reproducibility through standardized protocols, these models hold great potential for advancing drug discovery and facilitating the development of personalized therapies for liver fibrosis.
Collapse
Affiliation(s)
- Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jeong Sang Son
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan, 15588, South Korea
| | - Jiyou Han
- Department of Biomedical and Chemical Sciences, Hyupsung University, Hwasung-Si, 18330, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Shi W, Zhang Z, Wang X. The Prospect of Hepatic Decellularized Extracellular Matrix as a Bioink for Liver 3D Bioprinting. Biomolecules 2024; 14:1019. [PMID: 39199406 PMCID: PMC11352484 DOI: 10.3390/biom14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
The incidence of liver diseases is high worldwide. Many factors can cause liver fibrosis, which in turn can lead to liver cirrhosis and even liver cancer. Due to the shortage of donor organs, immunosuppression, and other factors, only a few patients are able to undergo liver transplantation. Therefore, how to construct a bioartificial liver that can be transplanted has become a global research hotspot. With the rapid development of three-dimensional (3D) bioprinting in the field of tissue engineering and regenerative medicine, researchers have tried to use various 3D bioprinting technologies to construct bioartificial livers in vitro. In terms of the choice of bioinks, liver decellularized extracellular matrix (dECM) has many advantages over other materials for cell-laden hydrogel in 3D bioprinting. This review mainly summarizes the acquisition of liver dECM and its application in liver 3D bioprinting as a bioink with respect to availability, printability, and biocompatibility in many aspects and puts forward the current challenges and prospects.
Collapse
Affiliation(s)
- Wen Shi
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University, Shenyang 110122, China;
| |
Collapse
|
4
|
Wu TY, Hsieh YC, Yin WR, Cheng KY, Hou YT. Fabrication of a decellularized liver matrix-based hepatic patch for the repair of CCl4-induced liver injury. Biotechnol J 2024; 19:e2300570. [PMID: 38864387 DOI: 10.1002/biot.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
This article primarily introduces a new treatment for liver fibrosis/cirrhosis. We developed a hepatic patch by combining decellularized liver matrix (DLM) with the hepatocyte growth factor (HGF)/heparin-complex and evaluated its restorative efficacy. In vitro prophylactic results, the HGF/heparin-DLM patches effectively mitigated CCl4-induced hepatocyte toxicity and restored the cytotoxicity levels to the baseline levels by day 5. Furthermore, these patches restored albumin synthesis of injured hepatocytes to more than 70% of the normal levels within 5 days. In vitro therapeutic results, the urea synthesis of the injured hepatocytes reached 91% of the normal levels after 10 days of culture, indicating successful restoration of hepatic function by the HGF/heparin-DLM patches in both prophylactic and therapeutic models. In vivo results, HGF/heparin-DLM patches attached to the liver and gut exhibited a significant decrease in collagen content (4.44 times and 2.77 times, respectively) and an increase in glycogen content (1.19 times and 1.12 times, respectively) compared to the fibrosis group after 1 week, separately. In summary, liver function was restored and inflammation was inhibited through the combined effects of DLM and the HGF/heparin-complex in fibrotic liver. The newly designed hepatic patch holds promise for both in vitro and in vivo regeneration therapy and preventive health care for liver tissue engineering.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Hsieh
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Rong Yin
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Yi Cheng
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Te Hou
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Mir TA, Alzhrani A, Nakamura M, Iwanaga S, Wani SI, Altuhami A, Kazmi S, Arai K, Shamma T, Obeid DA, Assiri AM, Broering DC. Whole Liver Derived Acellular Extracellular Matrix for Bioengineering of Liver Constructs: An Updated Review. Bioengineering (Basel) 2023; 10:1126. [PMID: 37892856 PMCID: PMC10604736 DOI: 10.3390/bioengineering10101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Biomaterial templates play a critical role in establishing and bioinstructing three-dimensional cellular growth, proliferation and spatial morphogenetic processes that culminate in the development of physiologically relevant in vitro liver models. Various natural and synthetic polymeric biomaterials are currently available to construct biomimetic cell culture environments to investigate hepatic cell-matrix interactions, drug response assessment, toxicity, and disease mechanisms. One specific class of natural biomaterials consists of the decellularized liver extracellular matrix (dECM) derived from xenogeneic or allogeneic sources, which is rich in bioconstituents essential for the ultrastructural stability, function, repair, and regeneration of tissues/organs. Considering the significance of the key design blueprints of organ-specific acellular substrates for physiologically active graft reconstruction, herein we showcased the latest updates in the field of liver decellularization-recellularization technologies. Overall, this review highlights the potential of acellular matrix as a promising biomaterial in light of recent advances in the preparation of liver-specific whole organ scaffolds. The review concludes with a discussion of the challenges and future prospects of liver-specific decellularized materials in the direction of translational research.
Collapse
Affiliation(s)
- Tanveer Ahmed Mir
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Alaa Alzhrani
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shintaroh Iwanaga
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Shadil Ibrahim Wani
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan; (M.N.); (S.I.)
| | - Abdullah Altuhami
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Shadab Kazmi
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Kenchi Arai
- Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Talal Shamma
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Dalia A. Obeid
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
| | - Abdullah M. Assiri
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- Laboratory of Tissue/Organ Bioengineering & BioMEMS, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia (T.S.)
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia
| |
Collapse
|
7
|
Wang X, Elbahrawi RT, Abdukadir AM, Ali ZM, Chan V, Corridon PR. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol 2023; 14:1193606. [PMID: 37799970 PMCID: PMC10548234 DOI: 10.3389/fphar.2023.1193606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Corneal opacity is a leading cause of vision impairment and suffering worldwide. Transplantation can effectively restore vision and reduce chronic discomfort. However, there is a considerable shortage of viable corneal graft tissues. Tissue engineering may address this issue by advancing xeno-keratoplasty as a viable alternative to conventional keratoplasty. In particular, livestock decellularization strategies offer the potential to generate bioartificial ocular prosthetics in sufficient supply to match existing and projected needs. To this end, we have examined the best practices and characterizations that have supported the current state-of-the-art driving preclinical and clinical applications. Identifying the challenges that delimit activities to supplement the donor corneal pool derived from acellular scaffolds allowed us to hypothesize a model for keratoprosthesis applications derived from livestock combining 3D printing and decellularization.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Zehara Mohammed Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Hleathcare, Engineering and Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Singh G, Satpathi S, Gopala Reddy BV, Singh MK, Sarangi S, Behera PK, Nayak B. Impact of various detergent-based immersion and perfusion decellularization strategies on the novel caprine pancreas derived extracellular matrix scaffold. Front Bioeng Biotechnol 2023; 11:1253804. [PMID: 37790257 PMCID: PMC10544968 DOI: 10.3389/fbioe.2023.1253804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Limited availability of the organs donors has facilitated the establishment of xenogeneic organ sources for transplantation. Numerous studies have decellularized several organs and assessed their implantability in order to provide such organs. Among all the decellularized organs studies for xenotransplantation, the pancreas has garnered very limited amount of research. The presently offered alternatives for pancreas transplantation are unable to liberate patients from donor dependence. The rat and mice pancreas are not of an accurate size for transplantation but can only be used for in-vitro studies mimicking in-vivo immune response in humans, while the porcine pancreas can cause zoonotic diseases as it carries porcine endogenous retrovirus (PERV- A/B/C). Therefore, we propose caprine pancreas as a substitute for these organs, which not only reduces donor dependence but also poses no risk of zoonosis. Upon decellularization the extracellular matrix (ECM) of different tissues responds differently to the detergents used for decellularization at physical and physiological level; this necessitates a comprehensive analysis of each tissue independently. This study investigates the impact of decellularization by ionic (SDS and SDC), non-ionic (Triton X-100 and Tween-20), and zwitterionic detergents (CHAPS). All these five detergents have been used to decellularize caprine pancreas via immersion (ID) and perfusion (PD) set-up. In this study, an extensive comparison of these two configurations (ID and PD) with regard to each detergent has been conducted. The final obtained scaffold with each set-up has been evaluated for the left-over cytosolic content, ECM components like sGAG, collagen, and fibronectin were estimated via Prussian blue and Immunohistochemical staining respectively, and finally for the tensile strength and antimicrobial activity. All the detergents performed consistently superior in PD than in ID. Conclusively, PD with SDS, SDC, and TX-100 successfully decellularizes caprine pancreatic tissue while retaining ECM architecture and mechanical properties. This research demonstrates the viability of caprine pancreatic tissue as a substitute scaffold for porcine organs and provides optimal decellularization protocol for this xenogeneic tissue. This research aims to establish a foundation for further investigations into potential regenerative strategies using this ECM in combination with other factors.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bora Venu Gopala Reddy
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Manish Kumar Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Samchita Sarangi
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
9
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
10
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
11
|
Lascaris B, de Meijer VE, Porte RJ. Normothermic liver machine perfusion as a dynamic platform for regenerative purposes: What does the future have in store for us? J Hepatol 2022; 77:825-836. [PMID: 35533801 DOI: 10.1016/j.jhep.2022.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023]
Abstract
Liver transplantation has become an immense success; nevertheless, far more recipients are registered on waiting lists than there are available donor livers for transplantation. High-risk, extended criteria donor livers are increasingly used to reduce the discrepancy between organ demand and supply. Especially for high-risk livers, dynamic preservation using machine perfusion can decrease post-transplantation complications and may increase donor liver utilisation by improving graft quality and enabling viability testing before transplantation. To further increase the availability of donor livers suitable for transplantation, new strategies are required that make it possible to use organs that are initially too damaged to be transplanted. With the current progress in experimental liver transplantation research, (long-term) normothermic machine perfusion may be used in the future as a dynamic platform for regenerative medicine approaches, enabling repair and regeneration of injured donor livers. Currently explored therapeutics such as defatting cocktails, RNA interference, senolytics, and stem cell therapy may assist in the repair and/or regeneration of injured livers before transplantation. This review will provide a forecast of the future utility of normothermic machine perfusion in decreasing the imbalance between donor liver demand and supply by enabling the repair and regeneration of damaged donor livers.
Collapse
Affiliation(s)
- Bianca Lascaris
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Liu K, He Y, Lu F. Research Progress on the Immunogenicity and Regeneration of Acellular Adipose Matrix: A Mini Review. Front Bioeng Biotechnol 2022; 10:881523. [PMID: 35733521 PMCID: PMC9207478 DOI: 10.3389/fbioe.2022.881523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acellular adipose matrix (AAM) has received increasing attention for soft tissue reconstruction, due to its abundant source, high long-term retention rate and in vivo adipogenic induction ability. However, the current decellularization methods inevitably affect native extracellular matrix (ECM) properties, and the residual antigens can trigger adverse immune reactions after transplantation. The behavior of host inflammatory cells mainly decides the regeneration of AAM after transplantation. In this review, recent knowledge of inflammatory cells for acellular matrix regeneration will be discussed. These advancements will inform further development of AAM products with better properties.
Collapse
|
13
|
Talaei-Khozani T, Yaghoubi A. An overview of post transplantation events of decellularized scaffolds. Transpl Immunol 2022; 74:101640. [PMID: 35667545 DOI: 10.1016/j.trim.2022.101640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Regenerative medicine and tissue engineering are reasonable techniques for repairing failed tissues and could be a suitable alternative to organ transplantation. One of the most widely used methods for preparing bioscaffolds is the decellularization procedure. Although cell debris and DNA are removed from the decellularized tissues, important compositions of the extracellular matrix including proteins, proteoglycans, and glycoproteins are nearly preserved. Moreover, the obtained scaffolds have a 3-dimensional (3D) structure, appropriate naïve mechanical properties, and good biocompatibility. After transplantation, different types of host cells migrate to the decellularized tissues. Histological and immunohistochemical assessment of the different bioscaffolds after implantation reveals the migration of parenchymal cells, angiogenesis, as well as the invasion of inflammatory and giant foreign cells. In this review, the events after transplantation including angiogenesis, scaffold degradation, and the presence of immune and tissue-specific progenitor cells in the decellularized scaffolds in various hosts, are discussed.
Collapse
Affiliation(s)
- Tahereh Talaei-Khozani
- Histotomorphometry and stereology research center, Shiraz University of Medical Sciences, Shiraz, Iran; Tissue engineering lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Yaghoubi
- Tissue engineering lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Tremmel DM, Sackett SD, Feeney AK, Mitchell SA, Schaid MD, Polyak E, Chlebeck PJ, Gupta S, Kimple ME, Fernandez LA, Odorico JS. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci Rep 2022; 12:7188. [PMID: 35504932 PMCID: PMC9065104 DOI: 10.1038/s41598-022-11085-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) plays a multitude of roles, including supporting cells through structural and biochemical interactions. ECM is damaged in the process of isolating human islets for clinical transplantation and basic research. A platform in which islets can be cultured in contact with natural pancreatic ECM is desirable to better understand and support islet health, and to recapitulate the native islet environment. Our study demonstrates the derivation of a practical and durable hydrogel from decellularized human pancreas that supports human islet survival and function. Islets embedded in this hydrogel show increased glucose- and KCl-stimulated insulin secretion, and improved mitochondrial function compared to islets cultured without pancreatic matrix. In extended culture, hydrogel co-culture significantly reduced levels of apoptosis compared to suspension culture and preserved controlled glucose-responsive function. Isolated islets displayed altered endocrine and non-endocrine cell arrangement compared to in situ islets; hydrogel preserved an islet architecture more similar to that observed in situ. RNA sequencing confirmed that gene expression differences between islets cultured in suspension and hydrogel largely fell within gene ontology terms related to extracellular signaling and adhesion. Natural pancreatic ECM improves the survival and physiology of isolated human islets.
Collapse
Affiliation(s)
- Daniel M Tremmel
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sara Dutton Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Austin K Feeney
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha A Mitchell
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erzsebet Polyak
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter J Chlebeck
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakar Gupta
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle E Kimple
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | | | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Dai Q, Jiang W, Huang F, Song F, Zhang J, Zhao H. Recent Advances in Liver Engineering With Decellularized Scaffold. Front Bioeng Biotechnol 2022; 10:831477. [PMID: 35223793 PMCID: PMC8866951 DOI: 10.3389/fbioe.2022.831477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Liver transplantation is currently the only effective treatment for patients with end-stage liver disease; however, donor liver scarcity is a notable concern. As a result, extensive endeavors have been made to diversify the source of donor livers. For example, the use of a decellularized scaffold in liver engineering has gained considerable attention in recent years. The decellularized scaffold preserves the original orchestral structure and bioactive chemicals of the liver, and has the potential to create a de novo liver that is fit for transplantation after recellularization. The structure of the liver and hepatic extracellular matrix, decellularization, recellularization, and recent developments are discussed in this review. Additionally, the criteria for assessment and major obstacles in using a decellularized scaffold are covered in detail.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Jiqian Zhang, ; Hongchuan Zhao,
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Jiqian Zhang, ; Hongchuan Zhao,
| |
Collapse
|
16
|
Assis A, Camargo S, Margalit R, Mitrani E. Creation of a vascular inducing device using mesenchymal stem cells to induce angiogenesis. J Biosci Bioeng 2021; 132:408-416. [PMID: 34326013 DOI: 10.1016/j.jbiosc.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Conventional treatments of peripheral vascular disease and coronary artery disease have partial success but are still limited. Methods to deliver angiogenic factors into ischemic areas using gene, protein and cell therapies are faced with difficult issues such a delivery, effective concentration and duration of action. Tissue engineering offers the possibility of creating a functional self-contained three-dimensional (3D) unit that works as a coordinated biological pump that can secrete a whole range of angiogenic factors. We report a tissue engineering approach using decellularized micro-fragments and mesenchymal stem cells (MSCs) to create a vascular inducing device (VID). Proteomic analysis of the decellularized micro-fragments and of the VIDs reveals a large number of extracellular-matrix (ECM) proteins. Moreover, the VIDs were found to transcribe and secrete a whole repertoire of angiogenic factors in a sustained manner. Furthermore, preliminary results of implantation VIDs into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice indicate formation of vascular network at the site within a week. We propose that those VIDs could serve as a safe, localized, simple and powerful method for the treatment of certain types of vascular diseases.
Collapse
Affiliation(s)
- Assaf Assis
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | - Sandra Camargo
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | | | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel.
| |
Collapse
|
17
|
Zhou L, Wang Z, Wang Z, Zhu J, Feng Y, Zhang D, Shen C, Ye X, Zhu J, Wei P, Mei J, Zhang J. Effect of heparinization on promoting angiogenesis of decellularized kidney scaffolds. J Biomed Mater Res A 2021; 109:1979-1989. [PMID: 33822474 DOI: 10.1002/jbm.a.37190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/26/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
Native decellularized extracellular matrix provides an adequate platform for tissues and organs and promotes the development of organogenesis and tissue remodeling. However, thrombosis poses a great challenge that hinders the transplantation for a substantial organ in vivo. Therefore, anticoagulation and re-reendothelialization of organ biological scaffolds are the primary concerns to be addressed before orthotopic transplantation. Herein, a heparinized decellularized kidney scaffold (HEP-DKSs) was prepared using end-point attachment technology, followed by binding the vascular endothelial growth factor (VEGF) to greatly improve the hemocompatibility and angiogenesis of DKSs. Based on the anticoagulant, co-culture of human umbilical vein endothelial cells, and subcapsular transplantation of kidney experiments, HEP-VEGF-DKSs are shown to reduce platelet adhesion, which is crucial for subsequent vascularization and slow release of heparin and VEGF, suggesting its ability of improve neovascularization. Taken together, these data indicated an optimal anticoagulation function of HEP-VEGF-DKSs and the potential of vascularization for regeneration of whole decellularized kidney.
Collapse
Affiliation(s)
- Lebin Zhou
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Department of Emergency, People's Hospital of Yueqing, Wenzhou, China
| | - Zhiyi Wang
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulu Feng
- Department of Emergency, People's Hospital of Yueqing, Wenzhou, China
| | - Deming Zhang
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Chenfang Shen
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Ye
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieyang Zhu
- Department of General Practice, The Second Affliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wei
- Department of Hand and Repair Reconstruction Surgical, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jin Mei
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jianse Zhang
- Anatomy Department, Wenzhou Medical University, Wenzhou, China
- Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Lin SE, Jheng DY, Hsu KY, Liu YR, Huang WH, Lee HC, Tsai CC. Rapid pseudo-H&E imaging using a fluorescence-inbuilt optical coherence microscopic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:5139-5158. [PMID: 34513247 PMCID: PMC8407814 DOI: 10.1364/boe.431586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A technique using Linnik-based optical coherence microscopy (OCM), with built-in fluorescence microscopy (FM), is demonstrated here to describe cellular-level morphology for fresh porcine and biobank tissue specimens. The proposed method utilizes color-coding to generate digital pseudo-H&E (p-H&E) images. Using the same camera, colocalized FM images are merged with corresponding morphological OCM images using a 24-bit RGB composition process to generate position-matched p-H&E images. From receipt of dissected fresh tissue piece to generation of stitched images, the total processing time is <15 min for a 1-cm2 specimen, which is on average two times faster than frozen-section H&E process for fatty or water-rich fresh tissue specimens. This technique was successfully used to scan human and animal fresh tissue pieces, demonstrating its applicability for both biobank and veterinary purposes. We provide an in-depth comparison between p-H&E and human frozen-section H&E images acquired from the same metastatic sentinel lymph node slice (∼10 µm thick), and show the differences, like elastic fibers of a tiny blood vessel and cytoplasm of tumor cells. This optical sectioning technique provides histopathologists with a convenient assessment method that outputs large-field H&E-like images of fresh tissue pieces without requiring any physical embedment.
Collapse
Affiliation(s)
- Sey-En Lin
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
- Department of Anatomic Pathology, New Taipei Municipal Tucheng Hospital (Built and operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Dong-Yo Jheng
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Kuang-Yu Hsu
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Chieh Lee
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Chung Tsai
- AcuSolutions Inc., 3F., No. 2, Ln. 263, Chongyang Rd., Nangang Dist., Taipei, Taiwan
| |
Collapse
|
19
|
Tan J, Zhang QY, Huang LP, Huang K, Xie HQ. Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci 2021; 9:4803-4820. [PMID: 34018503 DOI: 10.1039/d1bm00470k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response of the host towards a decellularized scaffold is complex. Not only can a number of immune cells influence this process, but also the characteristics, preparation and modification of the decellularized scaffold can significantly impact this reaction. Such factors can, together or alone, trigger immune cells to polarize towards either a pro-healing or pro-inflammatory direction. In this article, we have comprehensively reviewed factors which may influence the immune response of the host towards a decellularized scaffold, including the source of the biomaterial, biophysical properties or modifications of the scaffolds with bioactive peptides, drugs and cytokines. Furthermore, the underlying mechanism has also been recapitulated.
Collapse
Affiliation(s)
- Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Li-Ping Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China.
| |
Collapse
|
20
|
Khajavi M, Hashemi M, Kalalinia F. Recent advances in optimization of liver decellularization procedures used for liver regeneration. Life Sci 2021; 281:119801. [PMID: 34229008 DOI: 10.1016/j.lfs.2021.119801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Severe liver diseases have been considered the most common causes of adult deaths worldwide. Until now, liver transplantation is known as the only effective treatment for end stage liver disease. However, it is associated with several problems, most importantly, the side effects of immunosuppressive drugs that should be used after transplantation, and the shortage of tissue donors compared to the increasing number of patients requiring liver transplantation. Currently, tissue/organ decellularization as a new approach in tissue engineering is becoming a valid substitute for managing these kinds of problems. Decellularization of a whole liver is an attractive procedure to create three-dimensional (3D) scaffolds that micro-architecturally and structurally are similar to the native one and could support the repair or replacement of damaged or injured tissue. In this review, the different methods used for decellularization of liver tissue have been reviewed. In addition, the current approaches to overcome the challenges in these techniques are discussed.
Collapse
Affiliation(s)
- Mohaddeseh Khajavi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Bobrova MM, Safonova LA, Efimov AE, Iljinsky IM, Agapova OI, Agapov II. Relation between micro- and nanostructure features and biological properties of the decellularized rat liver. Biomed Mater 2021; 16. [PMID: 34100773 DOI: 10.1088/1748-605x/ac058b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Organ decellularization is one of the promising technologies of regenerative medicine, which allows obtaining cell-free extracellular matrix (ECM), which provide preservation of the composition, architecture, vascular network and biological activity of the ECM. The method of decellularization opens up wide prospects for its practical application not only in the field of creating full-scale bioengineered structures, but also in the manufacture of vessels, microcarriers, hydrogels, and coatings. The main goal of our work was the investigation of structure and biological properties of lyophilized decellularized Wistar rat liver fragments (LDLFs), as well as we assessed the regenerative potential of the obtained ECM. We obtained decellularized liver of a Wistar rat, the vascular network and the main components of the ECM of tissue were preserved. H&E staining of histological sections confirmed the removal of cells. DNA content of ECM is equal to 0.7% of native tissue DNA content. Utilizing scanning probe nanotomogrphy method, we showed sinuous, rough topography and highly nanoporous structure of ECM, which provide high level of mouse 3T3 fibroblast and Hep-G2cells biocompatibility. Obtained LDLF had a high regenerative potential, which we studied in an experimental model of a full-thickness rat skin wound healing: we observed the acceleration of wound healing by 2.2 times in comparison with the control.
Collapse
Affiliation(s)
- Maria M Bobrova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Liubov A Safonova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Anton E Efimov
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia.,SNOTRA LLC., 121205 Moscow, Russia
| | - Igor M Iljinsky
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Olga I Agapova
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor I Agapov
- Laboratory of Bionanotechnologies, Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| |
Collapse
|
22
|
Massaro MS, Pálek R, Rosendorf J, Červenková L, Liška V, Moulisová V. Decellularized xenogeneic scaffolds in transplantation and tissue engineering: Immunogenicity versus positive cell stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112203. [PMID: 34225855 DOI: 10.1016/j.msec.2021.112203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
Seriously compromised function of some organs can only be restored by transplantation. Due to the shortage of human donors, the need to find another source of organs is of primary importance. Decellularized scaffolds of non-human origin are being studied as highly potential biomaterials for tissue engineering. Their biological nature and thus the ability to provide a naturally-derived environment for human cells to adhere and grow highlights their great advantage in comparison to synthetic scaffolds. Nevertheless, since every biomaterial implanted in the body generates immune reaction, studying the interaction of the scaffold with the surrounding tissues is necessary. This review aims to summarize current knowledge on the immunogenicity of semi-xenografts involved in transplantation. Moreover, positive aspects of the interaction between xenogeneic scaffold and human cells are discussed, focusing on specific roles of proteins associated with extracellular matrix in cell adhesion and signalling.
Collapse
Affiliation(s)
- Maria Stefania Massaro
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic
| | - Richard Pálek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Jáchym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Lenka Červenková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Pathology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic
| | - Václav Liška
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Vladimíra Moulisová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic.
| |
Collapse
|
23
|
Asadi M, Khalili M, Lotfi H, Vaghefi Moghaddam S, Zarghami N, André H, Alizadeh E. Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sci 2021; 276:119373. [PMID: 33744324 DOI: 10.1016/j.lfs.2021.119373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Development of novel technologies provides the best tissue constructs engineering and maximizes their therapeutic effects in regenerative therapy, especially for liver dysfunctions. Among the currently investigated approaches of tissue engineering, scaffold-based and scaffold-free tissues are widely suggested for liver regeneration. Analogs of liver acellular extracellular matrix (ECM) are utilized in native scaffolds to increase the self-repair and healing ability of organs. Native ECM analog could improve liver repairing through providing the supportive framework for cells and signaling molecules, exerting normal biomechanical, biochemical, and physiological signal complexes. Recently, innovative cell sheet technology is introduced as an alternative for conventional tissue engineering with the advantage of fewer scaffold restrictions and cell culture on a Thermo-Responsive Polymer Surface. These sheets release the layered cells through a temperature-controlled procedure without enzymatic digestion, while preserving the cell-ECM contacts and adhesive molecules on cell-cell junctions. In addition, several novelties have been introduced into the cell sheet and decellularization technologies to aid cell growth, instruct differentiation/angiogenesis, and promote cell migration. In this review, recent trends, advancements, and issues linked to translation into clinical practice are dissected and compared regarding the decellularization and cell sheet technologies for liver tissue engineering.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282 Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM.
Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021; 12:2041731420986711. [PMID: 35003615 PMCID: PMC8733710 DOI: 10.1177/2041731420986711] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Liver failure is a lethal condition with hepatocellular dysfunction, and liver transplantation is presently the only effective treatment. However, due to the limited availability of donors and the potential immune rejection, novel therapeutic strategies are actively sought to restore the normal hepatic architectures and functions, especially for livers with inherited metabolic dysfunctions or chronic diseases. Although the conventional cell therapy has shown promising results, the direct infusion of hepatocytes is hampered by limited hepatocyte sources, poor cell viability, and engraftment. Hence, this review mainly highlights the role of stem cells and progenitors as the alternative cell source and summarizes the potential approaches based on tissue engineering to improve the delivery efficiency of cells. Particularly, the underlying mechanisms for cell therapy using stem cells and progenitors are discussed in two main aspects: paracrine effect and cell differentiation. Moreover, tissue-engineering approaches using cell aggregates and decellularized liver scaffolds for bioengineering of functional hepatic constructs are discussed and compared in terms of the potential to replicate liver physiological structures. In the end, a potentially effective strategy combining the premium advantages of stem cell aggregates and decellularized liver scaffolds is proposed as the future direction of liver tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| |
Collapse
|
26
|
Jirik M, Gruber I, Moulisova V, Schindler C, Cervenkova L, Palek R, Rosendorf J, Arlt J, Bolek L, Dejmek J, Dahmen U, Zelezny M, Liska V. Semantic Segmentation of Intralobular and Extralobular Tissue from Liver Scaffold H&E Images. SENSORS 2020; 20:s20247063. [PMID: 33321713 PMCID: PMC7764590 DOI: 10.3390/s20247063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Decellularized tissue is an important source for biological tissue engineering. Evaluation of the quality of decellularized tissue is performed using scanned images of hematoxylin-eosin stained (H&E) tissue sections and is usually dependent on the observer. The first step in creating a tool for the assessment of the quality of the liver scaffold without observer bias is the automatic segmentation of the whole slide image into three classes: the background, intralobular area, and extralobular area. Such segmentation enables to perform the texture analysis in the intralobular area of the liver scaffold, which is crucial part in the recellularization procedure. Existing semi-automatic methods for general segmentation (i.e., thresholding, watershed, etc.) do not meet the quality requirements. Moreover, there are no methods available to solve this task automatically. Given the low amount of training data, we proposed a two-stage method. The first stage is based on classification of simple hand-crafted descriptors of the pixels and their neighborhoods. This method is trained on partially annotated data. Its outputs are used for training of the second-stage approach, which is based on a convolutional neural network (CNN). Our architecture inspired by U-Net reaches very promising results, despite a very low amount of the training data. We provide qualitative and quantitative data for both stages. With the best training setup, we reach 90.70% recognition accuracy.
Collapse
Affiliation(s)
- Miroslav Jirik
- NTIS—New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (I.G.); (M.Z.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
- Correspondence:
| | - Ivan Gruber
- NTIS—New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (I.G.); (M.Z.)
| | - Vladimira Moulisova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
| | - Claudia Schindler
- Experimental Transplantation Surgery Department, Universitätsklinikum Jena, 07743 Jena, Germany; (C.S.); (J.A.); (U.D.)
| | - Lenka Cervenkova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
- Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
- Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Janine Arlt
- Experimental Transplantation Surgery Department, Universitätsklinikum Jena, 07743 Jena, Germany; (C.S.); (J.A.); (U.D.)
| | - Lukas Bolek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
| | - Jiri Dejmek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
| | - Uta Dahmen
- Experimental Transplantation Surgery Department, Universitätsklinikum Jena, 07743 Jena, Germany; (C.S.); (J.A.); (U.D.)
| | - Milos Zelezny
- NTIS—New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, 301 00 Pilsen, Czech Republic; (I.G.); (M.Z.)
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic; (V.M.); (L.C.); (R.P.); (J.R.); (L.B.); (J.D.); (V.L.)
- Department of Surgery, University Hospital and Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| |
Collapse
|
27
|
Hu X, Chen J, Huang H, Yin S, Zheng S, Zhou L. Syndecan-4 promotes vascular beds formation in tissue engineered liver via thrombospondin 1. Bioengineered 2020; 11:1313-1324. [PMID: 33251971 PMCID: PMC8291860 DOI: 10.1080/21655979.2020.1846897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Instantaneous blood coagulation after bioengineered liver transplantation is a major issue, and the key process in its prevention is the construction of the endothelial vascular bed on biomimetic scaffolds. However, the specific molecules involved in the regulation of the vascular bed formation remain unclear. Syndecan-4 is a type I transmembrane glycoprotein commonly expressed in the human body; its receptor has been reported as critical for optimal cell adhesion and initiation of intracellular signaling, indicating its promising application in vascular bed formation. In the current study, bioinformatics analysis and in vitro experiments were performed to evaluate whether syndecan-4 promoted endothelial cell migration and functional activation. Exogenous syndecan-4-overexpressing endothelial cells were perfused into the decellularized liver scaffold, which was assessed by Masson’s trichrome staining. Western blotting and qRT-PCR were used to evaluate the effects of syndecan-4 on the thrombospondin 1 (THBS1) stability. We found that syndecan-4 promoted the adhesion of vascular endothelial cells and facilitated cell migration and angiogenesis. Furthermore, syndecan-4 overexpression resulted in a well-aligned endothelium on the decellularized liver scaffolds. Mechanistically, syndecan-4 destabilized THBS1 at the protein level. Therefore, our data revealed that syndecan-4 promoted the biological activity of endothelial cells on the bionic liver vascular bed through THBS1. These findings provide scientific evidences for solving transient blood coagulation after bionic liver transplantation.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation , Hangzhou, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019) , Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases , Hangzhou, Zhejiang, China
| | - Junjie Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation , Hangzhou, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019) , Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases , Hangzhou, Zhejiang, China
| | - Hechen Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation , Hangzhou, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019) , Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases , Hangzhou, Zhejiang, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation , Hangzhou, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019) , Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases , Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation , Hangzhou, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019) , Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases , Hangzhou, Zhejiang, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China.,NHC Key Laboratory of Combined Multi-Organ Transplantation , Hangzhou, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019) , Hangzhou, Zhejiang, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases , Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Alaby Pinheiro Faccioli L, Suhett Dias G, Hoff V, Lemos Dias M, Ferreira Pimentel C, Hochman-Mendez C, Braz Parente D, Labrunie E, Souza Mourão PA, Rogério de Oliveira Salvalaggio P, Goldberg AC, Campos de Carvalho AC, Dos Santos Goldenberg RC. Optimizing the Decellularized Porcine Liver Scaffold Protocol. Cells Tissues Organs 2020; 211:385-394. [PMID: 33040059 DOI: 10.1159/000510297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
There are few existing methods for shortening the decellularization period for a human-sized whole-liver scaffold. Here, we describe a protocol that enables effective decellularization of the liver obtained from pigs weigh 120 ± 4.2 kg within 72 h. Porcine livers (approx. 1.5 kg) were decellularized for 3 days using a combination of chemical and enzymatic decellularization agents. After trypsin, sodium deoxycholate, and Triton X-100 perfusion, the porcine livers were completely translucent. Our protocol was efficient to promote cell removal, the preservation of extracellular matrix (ECM) components, and vascular tree integrity. In conclusion, our protocol is efficient to promote human-sized whole-liver scaffold decellularization and thus useful to generate bioengineered livers to overcome the shortage of organs.
Collapse
Affiliation(s)
- Lanuza Alaby Pinheiro Faccioli
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Radiology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grazielle Suhett Dias
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Victor Hoff
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Lemos Dias
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cibele Ferreira Pimentel
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Daniella Braz Parente
- Radiology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil
| | - Ester Labrunie
- Radiology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Antonio Souza Mourão
- Connective Tissue Laboratory, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anna Carla Goldberg
- Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Antonio Carlos Campos de Carvalho
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Science and Technology for Regenerative Medicine - REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
- Institute of Science and Technology for Regenerative Medicine - REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
| |
Collapse
|
29
|
Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig 2020; 25:2101-2112. [PMID: 32815038 DOI: 10.1007/s00784-020-03521-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To produce a novel injectable treated dentin matrix hydrogel (TDMH) to be used as a novel pulp-capping agent for dentin regeneration compared with Biodentine and MTA. MATERIALS AND METHODS Thirty intact fully erupted premolars scheduled to be extracted for orthodontic reasons were included. Pulps were mechanically exposed in the middle of the cavity floor. TDMH was composed of TDM powder (500-μm particle size) and sodium alginate as an injectable scaffold. The capped teeth were divided into three equal groups (n = 10): TDMH, Biodentine, and MTA respectively. Clinical examination and assessment of periapical response were performed. The teeth were extracted after 2-weeks and 2-month intervals, stained with hematoxylin-eosin, and categorized by using a histologic scoring system. Statistical analysis was performed using chi-square and Kruskal-Wallis test (p = 0.05). RESULTS All teeth were vital during observation periods. Histological analysis after 2 months showed complete dentin bridge formation and absence of inflammatory pulp response with no significant differences between groups. However, the formed dentin was significantly thicker with the TDMH group with layers of well-arranged odontoblasts that were found to form a homogenous tubular structure with numerous dentinal tubule lines showing a positive trend to dentin regeneration. CONCLUSIONS TDMH could achieve dentin regeneration and conservation of pulp vitality and might serve as a feasible natural substitute for silicate-based cements in restoring in vivo dentin defect in direct pulp-capping procedure. TRIAL REGISTRATION PACTR201901866476410.
Collapse
|
30
|
Sun JH, Li G, Wu TT, Lin ZJ, Zou JL, Huang LJ, Xu HY, Wang JH, Ma YH, Zeng YS. Decellularization optimizes the inhibitory microenvironment of the optic nerve to support neurite growth. Biomaterials 2020; 258:120289. [PMID: 32814215 DOI: 10.1016/j.biomaterials.2020.120289] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/19/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022]
Abstract
Allogeneic or homologous tissue transplantation is an effective strategy to repair tissue injury. However, the central nervous tissues like the brain, spinal cord, and optic nerve are not ideal materials for nervous tissue regeneration due to the excessive axonal inhibitor cues in their microenvironments. In the present study, we found that decellularization optimizes the function of the adult optic nerve in supporting the oriented outgrowth of dorsal root ganglion (DRG) neurites. The neurites growing on the decellularized optic nerve (DON) showed longer extension distances than those growing on the normal optic nerve (ON). Neurite branching was also significantly increased on the DON compared to on the ON. Decellularization selectively removed some axon-inhibitory molecules such as myelin-associated glycoprotein (basically not detected in DON) and chondroitin sulfate proteoglycans (detected in DON at a level less than 0.3 fold that in ON) and preserved some axon-promoted extracellular matrix (ECM) proteins, including collagen IV and laminin (detected at levels 6.0-fold higher in DON than in ON). Furthermore, collagen IV and laminin were shown to be preserved in DON, and their binding activities with integrin α1 were retained to promote the extension of DRG neurites. Together, the findings provide a feasible way to optimize the axon-inhibited microenvironment of central nervous tissues and establish a theoretical basis for the application of DON scaffolds in repairing central nervous injury.
Collapse
Affiliation(s)
- Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ting-Ting Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Jing Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian-Long Zou
- Key Laboratory of Neurological Function and Health, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Jun Huang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun-Hua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Rovegno M, Vera M, Ruiz A, Benítez C. Current concepts in acute liver failure. Ann Hepatol 2020; 18:543-552. [PMID: 31126880 DOI: 10.1016/j.aohep.2019.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
Abstract
Acute liver failure (ALF) is a severe condition secondary to a myriad of causes associated with poor outcomes. The prompt diagnosis and identification of the aetiology allow the administration of specific treatments plus supportive strategies and to define the overall prognosis, the probability of developing complications and the need for liver transplantation. Pivotal issues are adequate monitoring and the institution of prophylactic strategies to reduce the risk of complications, such as progressive liver failure, cerebral oedema, renal failure, coagulopathies or infections. In this article, we review the main aspects of ALF, including the definition, diagnosis and complications. Also, we describe the standard-of-care strategies and recent advances in the treatment of ALF. Finally, we include our experience of care patients with ALF.
Collapse
Affiliation(s)
- Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alex Ruiz
- Unidad de Gastroenterología, Instituto de Medicina, Escuela de Medicina, Universidad Austral de Chile, Chile
| | - Carlos Benítez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
32
|
Zwirner J, Ondruschka B, Scholze M, Schulze-Tanzil G, Hammer N. Mechanical properties of native and acellular temporal muscle fascia for surgical reconstruction and computational modelling purposes. J Mech Behav Biomed Mater 2020; 108:103833. [DOI: 10.1016/j.jmbbm.2020.103833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
|
33
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
34
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives. AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research. METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation. RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells. CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
35
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules 2019; 9:biom9120813. [PMID: 31810291 PMCID: PMC6995515 DOI: 10.3390/biom9120813] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Allogeneic liver transplantation is still deemed the gold standard solution for end-stage organ failure; however, donor organ shortages have led to extended waiting lists for organ transplants. In order to overcome the lack of donors, the development of new therapeutic options is mandatory. In the last several years, organ bioengineering has been extensively explored to provide transplantable tissues or whole organs with the final goal of creating a three-dimensional growth microenvironment mimicking the native structure. It has been frequently reported that an extracellular matrix-based scaffold offers a structural support and important biological molecules that could help cellular proliferation during the recellularization process. The aim of the present review is to underline the recent developments in cell-on-scaffold technology for liver bioengineering, taking into account: (1) biological and synthetic scaffolds; (2) animal and human tissue decellularization; (3) scaffold recellularization; (4) 3D bioprinting; and (5) organoid technology. Future possible clinical applications in regenerative medicine for liver tissue engineering and for drug testing were underlined and dissected.
Collapse
|
37
|
Shaheen MF, Joo DJ, Ross JJ, Anderson BD, Chen HS, Huebert RC, Li Y, Amiot B, Young A, Zlochiver V, Nelson E, Mounajjed T, Dietz AB, Michalak G, Steiner BG, Davidow DS, Paradise CR, van Wijnen AJ, Shah VH, Liu M, Nyberg SL. Sustained perfusion of revascularized bioengineered livers heterotopically transplanted into immunosuppressed pigs. Nat Biomed Eng 2019; 4:437-445. [PMID: 31611679 PMCID: PMC7153989 DOI: 10.1038/s41551-019-0460-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
Implanted bioengineered livers have not exceeded three days of continuous perfusion. Here, we show that decellularized whole porcine livers revascularized with human umbilical endothelial cells and implanted heterotopically into immunosuppressed pigs whose spleen has been removed can sustain perfusion for up to 15 days. We identified peak glucose consumption rate as a main predictor of the patency of the revascularized bioengineered livers (rBELs). On heterotopic implantation of the rBELs into pigs in the absence of anticoagulation therapy led to sustained perfusion for 3 days, followed by significant immune responses directed against the human endothelial cells. A 10-day steroid-based immunosuppression protocol and a splenectomy at time of rBEL implantation reduced the immune responses and resulted in continuous perfusion of the rBELs for over two weeks. We also show that the human endothelial cells in the perfused rBELs colonize the liver sinusoids and express sinusoidal endothelial markers similar to those in normal liver tissue. Revascularized liver scaffolds that can maintain blood perfusion at physiological pressures might eventually help overcome the chronic shortage of transplantable human livers.
Collapse
Affiliation(s)
- Mohammed F Shaheen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dong Jin Joo
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | - Harvey S Chen
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yi Li
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Bruce Amiot
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| | - Anne Young
- Miromatrix Medical Inc., Eden Prairie, MN, USA
| | | | - Erek Nelson
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Orthopedics, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mengfei Liu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Scott L Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Naeem EM, Sajad D, Talaei-Khozani T, Khajeh S, Azarpira N, Alaei S, Tanideh N, Reza TM, Razban V. Decellularized liver transplant could be recellularized in rat partial hepatectomy model. J Biomed Mater Res A 2019; 107:2576-2588. [PMID: 31361939 DOI: 10.1002/jbm.a.36763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
In situ recellularization of the liver decellularized scaffold is a potential therapeutic alternative for liver transplantation. We aimed to develop an in situ procedure for recellularization of the rat liver using sodium lauryl ether sulfate (SLES) compared with Triton X-100/SDS. Rat liver specimens were rinsed with PBS, decellularized with either Triton X-100/SDS or SLES, and finally rinsed by distilled water. The efficiency of decellularized liver scaffolds was evaluated by histological, confocal Raman microscopy, histochemical staining, and DNA quantification assessments. Finally, in vivo studies were done to assess the biocompatibility of the liver scaffold by serum biochemical parameters and the recellularization capacity by histological and immunohistochemistry staining. Findings confirmed the preservation of extracellular matrix (ECM) components such as reticular, collagen, glycosaminoglycans, and neutral carbohydrates in both Triton X-100/SDS- and SLES-treated livers. Hoechst, feulgen, Hematoxylin and eosin, and DNA quantification assessments confirmed complete genetic content removal. The serological parameters showed no adverse impact on the liver functions. Transplantation of SLES-treated cell-free decellularized liver showed extensive neovascularization along with migration of the fibrocytes and adipocytes and some immune cells. Also, immunohistochemical staining showed that the oval cells, stellate cells, cholangiocytes and hepatocytes invaded extensively into the graft. It is concluded that SLES can be considered as a promising alternative in the liver decellularization process, and the transplanted decellularized liver can appropriately be revascularized and regenerated.
Collapse
Affiliation(s)
- Erfani M Naeem
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Daneshi Sajad
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Laboratory for Stem Cell Research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaei
- Department of Reproductive Biology, School of Advanced Medical Sciences and Applied Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tabandeh M Reza
- Department of Biochemistry and Molecular Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Vahid Razban
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Immune responses towards bioengineered tissues and strategies to control them. Curr Opin Organ Transplant 2019; 24:582-589. [PMID: 31385889 DOI: 10.1097/mot.0000000000000688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Research into development of artificial tissues and bioengineered organs to replace physiological functions of injured counterparts has highlighted a previously underestimated challenge for its clinical translatability: the immune response against biomaterials. Herein, we will provide an update and review current knowledge regarding this important barrier to regenerative medicine. RECENT FINDINGS Although a clear understanding of the immune reactivity against biomaterials remains elusive, accumulating evidence indicates that innate immune cells, primarily neutrophils and macrophages, play a key role in the initial phases of the immune response. More recently, data have shown that in later phases, T and B cells are also involved. The use of physicochemical modifications of biomaterials and cell-based strategies to modulate the host inflammatory response is being actively investigated for effective biomaterial integration. SUMMARY The immune response towards biomaterials and bioengineered organs plays a crucial role in determining their utility as transplantable grafts. Expanding our understanding of these responses is necessary for developing protolerogenic strategies and delivering on the ultimate promise of regenerative medicine.
Collapse
|
40
|
Mechanical and morphological description of human acellular dura mater as a scaffold for surgical reconstruction. J Mech Behav Biomed Mater 2019; 96:38-44. [DOI: 10.1016/j.jmbbm.2019.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022]
|
41
|
Advances in Hepatic Tissue Bioengineering with Decellularized Liver Bioscaffold. Stem Cells Int 2019; 2019:2693189. [PMID: 31198426 PMCID: PMC6526559 DOI: 10.1155/2019/2693189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/08/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022] Open
Abstract
The burden of liver diseases continues to grow worldwide, and liver transplantation is the only option for patients with end-stage liver disease. This procedure is limited by critical issues, including the low availability of donor organs; thus, novel therapeutic strategies are greatly needed. Recently, bioengineering approaches using decellularized liver scaffolds have been proposed as a novel strategy to overcome these challenges. The aim of this systematic literature review was to identify the major advances in the field of bioengineering using decellularized liver scaffolds and to identify obstacles and challenges for clinical application. The main findings of the articles and each contribution for technique optimization were highlighted, including the protocols of perfusion and decellularization, duration, demonstration of quality control—scaffold acellularity, matrix composition, and preservation of growth factors—and tissue functionality after recellularization. In previous years, many advances have been made as this technique has evolved from studies in animal models to human livers. As the field develops and this promising technique has become much more feasible, many challenges remain, including the selection of appropriate cell types for recellularization, route of cell administration, cell-seeding protocol, and scalability that must be standardized prior to clinical application.
Collapse
|
42
|
Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:939-948. [DOI: 10.1016/j.msec.2019.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
|
43
|
Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:588-595. [PMID: 31029352 DOI: 10.1016/j.msec.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Articular cartilage lacks self-healing capacity, and there is no effective therapy facilitating cartilage repair. Osteoarthritis (OA) due to cartilage defects represents large and increasing healthcare burdens worldwide. Nowadays, the generation of scaffolds to preserve bioactive factors and the biophysical environment has received increasing attention. Furthermore, improved decellularization technology has provided novel insights into OA treatment. This review provides a comparative account of different cartilage defect therapies. Furthermore, some recent effective decellularization protocols have been discussed. In particular, this review focuses on the decellularization ratio of each protocol. Moreover, these protocols were compared particularly on the basis of immunogenicity and mechanical functionality. Further, various recellularization methods have been enlisted and the reparative capacity of decellularized cartilage scaffolds is evaluated herein. The advantages and limitations of different recellularization processes have been described herein. This provides a basis for the generation of decellularized cartilage scaffolds, thereby potentially promoting the possibility of decellularization as a clinical therapeutic target.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tongtong Lu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yongming Jin
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
44
|
Minami T, Ishii T, Yasuchika K, Fukumitsu K, Ogiso S, Miyauchi Y, Kojima H, Kawai T, Yamaoka R, Oshima Y, Kawamoto H, Kotaka M, Yasuda K, Osafune K, Uemoto S. Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regen Ther 2019; 10:127-133. [PMID: 31032388 PMCID: PMC6477477 DOI: 10.1016/j.reth.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Liver transplantation is currently the only curative therapy for end-stage liver failure; however, establishment of alternative treatments is required owing to the serious donor organ shortage. Here, we propose a novel model of hybrid three-dimensional artificial livers using both human induced pluripotent stem cells (hiPSCs) and a rat decellularized liver serving as a scaffold. Methods Rat liver harvesting and decellularization were performed as reported in our previous studies. The decellularized liver scaffold was recellularized with hiPSC-derived hepatocyte-like cells (hiPSC-HLCs) through the biliary duct. The recellularized liver graft was continuously perfused with the culture medium using a pump at a flow rate of 0.5 mL/min in a standard CO2 (5%) cell incubator at 37 °C. Results After 48 h of continuous perfusion culture, the hiPSC-HLCs of the recellularized liver distributed into the parenchymal space. Furthermore, the recellularized liver expressed the albumin (ALB) and CYP3A4 genes, and secreted human ALB into the culture medium. Conclusion Novel hybrid artificial livers using hiPSCs and rat decellularized liver scaffolds were successfully generated, which possessed human hepatic functions.
Human iPSC-derived hepatocytes were engrafted in a rat decellularized liver scaffold. The recellularized liver expressed human liver-related markers ALB and CYP3A4. The recellularized liver scaffold secreted human albumin. This novel model shows potential for artificial whole liver transplantation.
Collapse
Affiliation(s)
- Takahito Minami
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Yasuchika
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Japanese Red Cross Wakayama Medical Center, 4-20 Komatsubara-dori, Wakayama City 640-8558, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuya Miyauchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hidenobu Kojima
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Kawai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoya Yamaoka
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Oshima
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Kawamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Maki Kotaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsutaro Yasuda
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
45
|
Ahmed E, Saleh T, Yu L, Kwak HH, Kim BM, Park KM, Lee YS, Kang BJ, Choi KY, Kang KS, Woo HM. Micro and ultrastructural changes monitoring during decellularization for the generation of a biocompatible liver. J Biosci Bioeng 2019; 128:218-225. [PMID: 30904455 DOI: 10.1016/j.jbiosc.2019.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
Abstract
Decellularization of a whole organ is an attractive process that has been used to create 3D scaffolds structurally and micro-architecturally similar to the native one. Currently used decellularization protocols exhibit disrupted extracellular matrix (ECM) structure and denatured ECM proteins. Therefore, maintaining a balance between ECM preservation and cellular removal is a major challenge. The aim of this study was to optimize a multistep Triton X-100 based protocol (either using Triton X-100/ammonium hydroxide mixture alone or after its modification with DNase, sodium dodecyl sulfate or trypsin) that could achieve maximum decellularization with minimal liver ECM destruction suitable for subsequent organ implantation without immune rejection. Based on our findings, Triton X-100 multistep protocol was insufficient for whole liver decellularization and needed to be modified with other detergents. Among all Triton X-100 modified protocols, a Triton X-100/DNase-based one was considered the most suitable. It maintains a gradual but sufficient removal of cells to generate decellularized biocompatible liver scaffolds without any significant alteration to ECM micro- and ultra-structure.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Tarek Saleh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Lina Yu
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ho-Hyun Kwak
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Byeong-Moo Kim
- Department of Medicine, GI Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yun-Suk Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Byung-Jae Kang
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Ki-Young Choi
- Department of Controlled Agriculture, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Kyung-Sun Kang
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Heung Myong Woo
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
46
|
Coronado RE, Somaraki-Cormier M, Natesan S, Christy RJ, Ong JL, Halff GA. Decellularization and Solubilization of Porcine Liver for Use as a Substrate for Porcine Hepatocyte Culture: Method Optimization and Comparison. Cell Transplant 2018; 26:1840-1854. [PMID: 29390876 PMCID: PMC5802637 DOI: 10.1177/0963689717742157] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biologic substrates, prepared by decellularizing and solubilizing tissues, have been of great interest in the tissue engineering field because of the preservation of complex biochemical constituents found in the native extracellular matrix (ECM). The integrity of the ECM is critical for cell behavior, adhesion, migration, differentiation, and proliferation that in turn affect homeostasis and tissue regeneration. Previous studies have shown that various processing methods have a distinctive way of affecting the composition of the decellularized ECM. In this study, we developed a bioactive substrate for hepatocytes in vitro, made of decellularized and solubilized liver tissue. The present work is a comparative approach of 2 different methods. First, we decellularized porcine liver tissue with ammonium hydroxide versus a sodium deoxycholate method, then characterized the decellularized tissue using various methods including double stranded DNA (dsDNA) content, DNA size, immunogenicity, and mass spectrometry. Second, we solubilized the decellularized porcine liver with hydrochloric acid versus acetic acid (AA) and characterized the resultant solubilized tissues using relevant methodologies including protein yield, immunogenicity, and bioactivity. Finally, we isolated primary porcine hepatocytes, cultured, and evaluated their bioactivity on the optimized decellularized–solubilized liver substrate. The decellularized porcine liver ECM processed by the ammonium hydroxide method and solubilized with AA displayed higher ECM integrity, low dsDNA, no evidence of intact nuclei, low human monocyte chemoattraction, and the presence of key molecules typically found in the native liver, a very important element for normal cell function. In addition, primary porcine hepatocytes showed enhanced functionality including albumin and urea production and bile canaliculi formation when cultured on the developed liver substrate compared to type I collagen.
Collapse
Affiliation(s)
| | | | - Shanmugasundaram Natesan
- 2 Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, TX, USA
| | - Robert J Christy
- 2 Combat Trauma and Burn Injury Research, US Army Institute of Surgical Research, JBSA-Fort Sam Houston, Sam Houston, TX, USA
| | - Joo L Ong
- 3 Biomedical Engineering San Antonio, University of Texas at San Antonio, San Antonio, TX, USA
| | - Glenn A Halff
- 4 Transplant Center San Antonio, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
47
|
Yeo WS, Zhang YC. Bioengineering in renal transplantation: technological advances and novel options. Pediatr Nephrol 2018; 33:1105-1111. [PMID: 28589209 DOI: 10.1007/s00467-017-3706-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 01/03/2023]
Abstract
End-stage kidney disease (ESKD) is one of the most prevalent diseases in the world with significant morbidity and mortality. Current modes of renal replacement therapy include dialysis and renal transplantation. Although dialysis is an acceptable mode of renal replacement therapy, it does have its shortcomings, which include poorer life expectancy compared with renal transplantation, risk of infections and vascular thrombosis, lack of vascular access and absence of biosynthetic functions of the kidney. Renal transplantation, in contrast, is the preferred option of renal replacement therapy, with improved morbidity and mortality rates and quality of life, compared with dialysis. Renal transplantation, however, may not be available to all patients with ESKD. Some of the key factors limiting the availability and efficiency of renal transplantation include shortage of donor organs and the constant risk of rejection with complications associated with over-immunosuppression respectively. This review focuses chiefly on the potential roles of bioengineering in overcoming limitations in renal transplantation via the development of cell-based bioartificial dialysis devices as bridging options before renal transplantation, and the development of new sources of organs utilizing cell and organ engineering.
Collapse
Affiliation(s)
- Wee-Song Yeo
- Division of Pediatric Nephrology, Dialysis and Renal Transplantation, Shaw-National Kidney Foundation, National University Hospital Children's Kidney Centre, Khoo Teck Puat-National University, Children's Medical Institute, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Yao-Chun Zhang
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Daugs A, Lehmann N, Eroglu D, Meinke MC, Markhoff A, Bloch O. In VitroDetection System to Evaluate the Immunogenic Potential of Xenografts. Tissue Eng Part C Methods 2018; 24:280-288. [DOI: 10.1089/ten.tec.2017.0532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Aila Daugs
- Auto Tissue Berlin GmbH, Berlin, Germany
| | | | | | - Martina C. Meinke
- Center of Experimental and Applied Cutaneous Physiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
49
|
Thompson RE, Pardieck J, Smith L, Kenny P, Crawford L, Shoichet M, Sakiyama-Elbert S. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury. Biomaterials 2018; 162:208-223. [PMID: 29459311 PMCID: PMC5851469 DOI: 10.1016/j.biomaterials.2018.02.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 02/04/2018] [Indexed: 12/14/2022]
Abstract
One reason for the lack of regeneration, and poor clinical outcomes, following central nervous system (CNS) injury is the formation of a glial scar that inhibits new axon growth. In addition to forming the glial scar, astrocytes have been shown to be important for spontaneous SCI recovery in rodents, suggesting some astrocyte populations are pro-regenerative, while others are inhibitory following injury. In this work, the effect of implanting hyaluronic acid (HA) hydrogels containing extracellular matrix (ECM) harvested from mouse embryonic stem cell (mESC)-derived astrocytes on histologic outcomes following SCI in rats was explored. In addition, the ability of HA hydrogels with and without ECM to support the transplantation of mESC-derived V2a interneurons was tested. The incorporation of ECM harvested from protoplasmic (grey matter) astrocytes, but not ECM harvested from fibrous (white matter) astrocytes, into hydrogels was found to reduce the size of the glial scar, increase axon penetration into the lesion, and reduce macrophage/microglia staining two weeks after implantation. HA hydrogels were also found to support transplantation of V2a interneurons and the presence of these cells caused an increase in neuronal processes both within the lesion and in the 500 μm surrounding the lesion. Overall, protoplasmic mESC-derived astrocyte ECM showed potential to treat CNS injury. In addition, ECM:HA hydrogels represent a novel scaffold with beneficial effects on histologic outcomes after SCI both with and without cells.
Collapse
Affiliation(s)
- Russell E Thompson
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA; Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Jennifer Pardieck
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA; Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Laura Smith
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Peter Kenny
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA
| | - Lindsay Crawford
- Department of Biomedical Engineering, Washington University in St Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Molly Shoichet
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Shelly Sakiyama-Elbert
- Department of Biomedical Engineering, University of Texas at Austin, 107 W Dean Keeton, Austin, TX 78712, USA.
| |
Collapse
|
50
|
Mußbach F, Dahmen U, Dirsch O, Settmacher U. [Liver engineering as a new source of donor organs : A systematic review]. Chirurg 2018; 87:504-13. [PMID: 25986672 DOI: 10.1007/s00104-015-0015-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Organ engineering is a new strategy to cope with the shortage of donor organs. A functional scaffold from explanted organs is prepared by removing all cellular components (decellularization) and the reseeding (repopulation) of the organ scaffold to generate a functional organ in vitro for transplantation. This technique was also applied to the liver (liver engineering). OBJECTIVES Outline of the current state of the art and resulting approaches for future research strategies. MATERIAL AND METHODS Systematic review according to the PRISMA guidelines: a PubMed-based literature search (search terms liver, decellularization), selection of relevant articles based on predetermined criteria for relevance (e.g. decellularization, repopulation and transplantation), extraction and critical appraisal of data and results concerning the conditions for decellularization, repopulation and transplantation. RESULTS Decellularization was successfully performed in small and large animal models. Hepatocytes as well as stem cells and hepatic cell lines were applied for repopulation and 7 publications could show the successful transplantation of acellular and repopulated organ scaffolds. The current scientific need for further studies concerning the source of donor organs, optimization of the decellularization process, the cell type for the reseeding process and the establishment of the optimal conditions for the repopulation of the scaffold is still tremendous. For successful recellularization of the liver three goals need to be achieved: (1) reseeding of the organ scaffold with a sufficient amount of parenchymal cells, (2) endothelialization of the vascular tree to ensure the supply of oxygen and nutrients to parenchymal cells and (3) an appropriate epithelialization of the biliary tree. In order to progress to clinical trials a suitable transplantation model to verify the function of the organ constructs must be established. CONCLUSION Liver engineering using biological cell-free organ scaffolds represents a scientific and ethical challenge. The existing results emphasize the potential of this new and promising strategy to create organs for transplantation in the future.
Collapse
Affiliation(s)
- F Mußbach
- Experimentelle Transplantationschirurgie, Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Drackendorfer Straße 1, 07747, Jena, Deutschland
| | - U Dahmen
- Experimentelle Transplantationschirurgie, Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Drackendorfer Straße 1, 07747, Jena, Deutschland.
| | - O Dirsch
- Institut für Pathologie, Dr. Panofsky-Haus, Klinikum Chemnitz gGmbH, Chemnitz, Deutschland
| | - U Settmacher
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Universitätsklinikum Jena, Jena, Deutschland
| |
Collapse
|