Copyright
©The Author(s) 2025.
World J Psychiatry. Sep 19, 2025; 15(9): 108359
Published online Sep 19, 2025. doi: 10.5498/wjp.v15.i9.108359
Published online Sep 19, 2025. doi: 10.5498/wjp.v15.i9.108359
Table 1 Characteristics of the collected dataset
Feature | Schizophrenia (n = 67) | Healthy control (n = 46) |
Sex (female/male) | 15/52 | 10/36 |
Mean age, years | Female: 45.10 ± 7.72, male: 41.74 ± 9.00 | Female: 30.60 ± 6.45, male: 36.82 ± 5.24 |
Age range, years | Female: 33-54, male: 18-59 | Female: 25-45, male: 20-52 |
Education, years | Female: 5.90 ± 1.44, male: 17.00 ± 21.01 | Female: 8.60 ± 1.25, male: 16.75 ± 3.12 |
Table 2 Test train image counts in the collected dataset
Diagnosis | Orientation | Train images | Test images | Total images |
Schizophrenia | Left to right | 1461 | 416 | 1877 |
Healthy control | Left to right | 912 | 260 | 1172 |
Schizophrenia | Top to bottom | 1461 | 416 | 1877 |
Healthy control | Top to bottom | 912 | 260 | 1172 |
Table 3 Sociodemographic information of participants for the Mendeley dataset
Diagnosis | DME | CNV | Drusen | Normal |
Number of patients | 709 | 791 | 713 | 3548 |
Mean age, years | 57 | 83 | 82 | 60 |
Age range, years | 20-90 | 58-97 | 40-95 | 21-86 |
Male, n (%) | 38.3 | 54.2 | 44.4 | 59.2 |
Female, n (%) | 61.7 | 45.8 | 55.6 | 40.8 |
Table 4 Distribution of the images for the Mendeley dataset
Diagnosis | Train images | Test images | Total |
CNV | 37213 | 242 | 37455 |
DME | 11356 | 242 | 11598 |
Drusen | 8624 | 242 | 8866 |
Normal | 26323 | 242 | 26565 |
Table 5 Test results of our proposed convolutional neural network for our collected dataset, n (%)
Dataset | Class | Accuracy | Sensitivity | Specificity | Precision | F1-score | AUROC |
From left to right | Healthy control | 97.49 | 96.92 | 97.84 | 96.55 | 96.74 | 97.38 |
Schizophrenia | 97.84 | 96.92 | 98.07 | 97.95 | 97.38 | ||
Overall | 97.38 | 97.38 | 97.31 | 97.35 | 97.38 | ||
From top to bottom | Healthy control | 98.96 | 98.08 | 99.52 | 99.22 | 98.65 | 98.80 |
Schizophrenia | 99.52 | 98.08 | 98.81 | 99.16 | 98.80 | ||
Overall | 98.80 | 98.80 | 99.02 | 98.91 | 98.80 |
Table 6 Test results of the proposed Self-AttentionNeXt for the Mendeley dataset (Optical coherence tomography 2017 dataset), n (%)
Classes | Accuracy | Sensitivity | Specificity | Precision | F1-score | AUROC |
CNV | 95.87 | 99.59 | 95.59 | 88.28 | 93.59 | 97.59 |
DME | 91.32 | 99.86 | 99.55 | 95.26 | 95.59 | |
Drusen | 93.39 | 100 | 100 | 96.58 | 96.69 | |
Normal | 99.17 | 99.04 | 97.17 | 98.16 | 99.10 | |
Overall | 95.87 | 98.63 | 96.25 | 95.90 | 97.25 |
Table 7 Comparative results
Ref. | Model | Dataset | Results, n (%) |
He et al[51] | Swin-poly transformer network | OCT2017 | Accuracy: 99.80; precision: 99.80; recall: 99.80; F1-score: 99.80; AUC: 99.99 |
Yoo et al[52] | Few-shot learning, generative adversarial network | OCT2017 | Accuracy: 93.90 |
Huang et al[53] | Novel layer guided CNN | OCT2017 | Accuracy: 93.30; sensitivity: 93.30; specificity: 93.30; precision: 91.50 |
Rajagopalan et al[54] | CNN, Kuan filter | OCT2017 | Accuracy: 95.70 |
Self-AttentionNeXt | OCT2017 | Accuracy: 95.87; sensitivity: 95.86; specificity: 98.62; F1-score: 96.25; precision: 95.89 |
- Citation: Kaya MK, Arslan S, Kaya S, Tasci G, Tasci B, Ozsoy F, Dogan S, Tuncer T. Self-AttentionNeXt: Exploring schizophrenic optical coherence tomography image detection investigations. World J Psychiatry 2025; 15(9): 108359
- URL: https://www.wjgnet.com/2220-3206/full/v15/i9/108359.htm
- DOI: https://dx.doi.org/10.5498/wjp.v15.i9.108359