1
|
Wang S, Qin JL, Yang LL, Ji YY, Huang HX, Gao XS, Zhou ZM, Guo ZR, Wu Y, Tian L, Ni HJ, Zhou ZH. Structural network communication differences in drug-naive depressed adolescents with non-suicidal self-injury and suicide attempts. World J Psychiatry 2025; 15:102706. [DOI: 10.5498/wjp.v15.i5.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Depression, non-suicidal self-injury (NSSI), and suicide attempts (SA) often co-occur during adolescence and are associated with long-term adverse health outcomes. Unfortunately, neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.
AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.
METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression. Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents, including 17 depressed adolescents without SA or NSSI (major depressive disorder group), 27 depressed adolescents with NSSI but no SA (NSSI group), and 41 depressed adolescents with SA and NSSI (NSSI + SA group).
RESULTS Significant differences in structural network communication were observed across the four groups, involving spatially widespread brain regions, particularly encompassing cortico-cortical connections (e.g., dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus; connections based on precentral gyrus) and cortico-subcortical circuits (e.g., the nucleus accumbens-frontal circuit). In addition, we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents. We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.
CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA, highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms. These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression.
Collapse
Affiliation(s)
- Shuai Wang
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
- Department of Clinical Psychology, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Jiao-Long Qin
- Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, Jiangsu Province, China
| | - Lian-Lian Yang
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Ying-Ying Ji
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Hai-Xia Huang
- Department of Medical Imaging, Huadong Sanatorium, Wuxi 214000, Jiangsu Province, China
| | - Xiao-Shan Gao
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Zi-Mo Zhou
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Zhen-Ru Guo
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, Jiangsu Province, China
| | - Lin Tian
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Huang-Jing Ni
- School of Computer Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, Jiangsu Province, China
| | - Zhen-He Zhou
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| |
Collapse
|
2
|
Dong J, Dai M, Guo Z, Xu T, Li F, Li J. The Targets of Deep Brain Stimulation in the Treatment of Treatment-Resistant Depression: A Review. Brain Behav 2025; 15:e70505. [PMID: 40321033 PMCID: PMC12050660 DOI: 10.1002/brb3.70505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
PURPOSE The purpose of this review is to evaluate the current state and potential future directions of deep brain stimulation (DBS) therapy for treatment-resistant depression (TRD), a condition that significantly impacts patients' quality of life and for which conventional treatments are often ineffective. METHOD This review synthesizes evidence from clinical trials and preclinical studies published in five years, identified through PubMed searches using keywords ("Deep Brain Stimulation" OR DBS) AND ("Treatment-Resistant Depression" OR TRD). Included studies encompassed clinical research (randomized/non-randomized trials, cohort studies) and mechanistic preclinical studies, excluding non-English publications and nonhuman experiments. Screening prioritized neuroanatomical targets (e.g., SCG, NAcc) and stimulation parameter optimization data. Examining the therapeutic mechanisms of DBS, the neuroanatomical targets utilized, and the clinical outcomes observed. It also discusses the challenges faced in DBS application and proposes potential technological advancements, such as closed-loop therapy and fiber tracking technology. FINDING Preliminary evidence exists regarding the efficacy and safety of DBS in the treatment of TRD in the subcortical cingulate gyrus (SCG), nucleus accumbens (NAcc), ventral capsule/ventral striatum (VC/VS), anterior limb of the internal capsule (ALIC), and so forth. Nevertheless, the optimal stimulation target remains undetermined. The review highlights the complexity of TRD and the need for personalized treatment strategies, noting that genetic, epigenetic, and neurophysiological changes are implicated in DBS's therapeutic effects. CONCLUSION In conclusion, while DBS for TRD remains an experimental therapy, it offers a unique and potentially effective treatment option for patients unresponsive to traditional treatments. The review emphasizes the need for further research to refine DBS targets and parameters, improve patient selection, and develop personalized treatment plans to enhance efficacy and safety in TRD management.
Collapse
Affiliation(s)
- Jianyang Dong
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Mengying Dai
- Department of RehabilitationShenzhen Children's HospitalShenzhenChina
| | - Zinan Guo
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Ting Xu
- Department of Neurology, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| | - Fangming Li
- Department of NeurologyShenzhen University, Shenzhen University General HospitalShenzhenChina
| | - Jianjun Li
- Department of RehabilitationShenzhen University, Shenzhen University General HospitalShenzhenChina
| |
Collapse
|
3
|
Che Q, Xi C, Sun Y, Zhao X, Wang L, Wu K, Mao J, Huang X, Wang K, Tian Y, Ye R, Yu F. EEG microstate as a biomarker of personalized transcranial magnetic stimulation treatment on anhedonia in depression. Behav Brain Res 2025; 483:115463. [PMID: 39920912 DOI: 10.1016/j.bbr.2025.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Anhedonia, a core feature of major depressive disorder (MDD), presents significant treatment challenges with conventional methods. Circuit-targeted, personalized repetitive transcranial magnetic stimulation (rTMS) has shown potentiation by focusing on disruptions in specific networks related to anhedonia. However, how rTMS modulates brain network dynamics in anhedonia is not yet fully understood. This research sought to explore these effects using EEG microstate analysis. In this double-blind, randomized, sham-controlled study, resting-state functional MRI was employed to pinpoint the left dorsolateral prefrontal cortex (DLPFC) region that exhibited the strongest functional connectivity to the nucleus accumbens (NAcc), used as the target for rTMS stimulation. Rest-state EEG data from 49 depressive patients with anhedonia(active=26, sham=23) were analyzed both at baseline and after treatment. In addition, a group of 15 healthy participants was included to serve as baseline controls. Resting-state EEG data were collected at baseline and post-treatment. Using polarity-insensitive k-means clustering, EEG microstates were segmented into five categories (A-E). Circuit-targeted rTMS significantly alleviated symptoms of anhedonia and depression. Compared to healthy controls, patients with anhedonia showed reduced microstate B and C occurrence, along with increased microstate D duration. After rTMS targeting the DLPFC-NAcc pathway, the active treatment group exhibited normalization of microstate C occurrence and a reduction in microstate E duration. Notably, the increase in microstate C was significantly correlated with improvements in anticipatory anhedonia, and these changes were observed specifically in treatment responders. The findings suggest that microstate C is linked to anhedonia and could serve as a reliable biomarker for personalized rTMS treatment. These results provide insights into the neural mechanisms underlying rTMS for anhedonia and highlight the potential of EEG microstate analysis in guiding personalized treatment strategies for depression.
Collapse
Affiliation(s)
- QiangYan Che
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yunlin Sun
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Xingyu Zhao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Lei Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Ke Wu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Junyu Mao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Xinyu Huang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230000, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui, China.
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
| | - Rong Ye
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230000, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui, China.
| | - Fengqiong Yu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230000, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui, China.
| |
Collapse
|
4
|
Al-Soleiti M, Vande Voort JL, Singh B. Anhedonia as a Core Symptom of Depression and a Construct for Biological Research. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2025; 23:163-172. [PMID: 40235618 PMCID: PMC11995908 DOI: 10.1176/appi.focus.20240050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Anhedonia is a key psychiatric symptom that has seen significant advances in its understanding in both clinical practice and research over the past few decades. Once considered primarily a feature of depression, recent studies have shown that anhedonia is also a core element of other psychiatric disorders and contributes to considerable morbidity, mortality, and suicidality. Emerging models of psychopathology and illness emphasize the transdiagnostic relevance of anhedonia. At the same time, neuroimaging research has provided deeper insights into its underlying pathophysiology, and several assessment scales with strong psychometric properties have been developed. Various treatment strategies-including psychopharmacology, neuromodulation, and psychotherapy-have demonstrated varying degrees of effectiveness. This review discusses the evolving understanding of anhedonia, its significance as both a symptom and a diagnostic marker, its prevalence, and its pathophysiological underpinnings. Additionally, the authors provide an overview of key assessment tools and explore the range of treatment approaches studied to date.
Collapse
Affiliation(s)
- Majd Al-Soleiti
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Okuda Y, Li D, Maruyama Y, Sonobe H, Mano T, Tainaka K, Shinohara R, Furuyashiki T. The activation of the piriform cortex to lateral septum pathway during chronic social defeat stress is crucial for the induction of behavioral disturbance in mice. Neuropsychopharmacology 2025; 50:828-840. [PMID: 39638863 PMCID: PMC11914691 DOI: 10.1038/s41386-024-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Chronic stress induces neural dysfunctions and risks mental illnesses. Clinical and preclinical studies have established the roles of brain regions underlying emotional and cognitive functions in stress and depression. However, neural pathways to perceive sensory stimuli as stress to cause behavioral disturbance remain unknown. Using whole-brain imaging of Arc-dVenus neuronal response reporter mice and machine learning analysis, here we unbiasedly demonstrated different patterns of contribution of widely distributed brain regions to neural responses to acute and chronic social defeat stress (SDS). Among these brain regions, multiple sensory cortices, especially the piriform (olfactory) cortex, primarily contributed to classifying neural responses to chronic SDS. Indeed, SDS-induced activation of the piriform cortex was augmented with repetition of SDS, accompanied by impaired odor discrimination. Axonal tracing and chemogenetic manipulation showed that excitatory neurons in the piriform cortex directly project to the lateral septum and activate it in response to chronic SDS, thereby inducing behavioral disturbance. These results pave the way for identifying a spatially defined sequence of neural consequences of stress and the roles of sensory pathways in perceiving chronic stress in mental illness pathology.
Collapse
Affiliation(s)
- Yuki Okuda
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Dongrui Li
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yuzuki Maruyama
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hirokazu Sonobe
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Mano
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, 904-0412, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Mishra A, Joshi RP. Assessing Thresholds for Nerve Activation and Action Potential Block Using a Multielectrode Array to Minimize External Stimulation. Bioengineering (Basel) 2025; 12:372. [PMID: 40281732 PMCID: PMC12025321 DOI: 10.3390/bioengineering12040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Devices based on electrical stimulation are in common use for a variety of therapeutic bio-applications, including, but not limited to, neuro-prosthetics, pain management or even in situ local anesthetic modalities. Many require the use of multielectrode systems to selectively activate a group of nerves. In this context, a modeling study is carried out to probe some of the details of nerve activation resulting from multielectrode excitation. In particular, aspects such as threshold stimulus currents, their variation with the number of electrodes used, dependence on nerve radii, and the possibility of blocking an action potential (AP) have been quantitatively analyzed. The injection currents needed to initiate an AP are shown to decrease as the number of stimulating electrodes increases. It is also demonstrated that blocking AP propagation in a nerve segment could be achieved more efficiently at lower magnitudes of the interruption signal if more electrodes in an electrical excitation array were to be used. This result is important and would have practical relevance since the lower intensity external signals indicate a safer and more reliable approach to both AP launches and possible AP blockages.
Collapse
Affiliation(s)
- Ashutosh Mishra
- Department of Applied Science (Bioengineering), IIIT-Allahabad, Prayagraj 21101, India;
| | - R. P. Joshi
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Jiang X, Wang X, Yu L, He J, Wu S, Zhou Y, Zhang M, Yao L, Yan J, Zheng Y, Chen Y. Network analysis of central symptoms in Chinese young adults with subthreshold depression. Transl Psychiatry 2025; 15:103. [PMID: 40155645 PMCID: PMC11953349 DOI: 10.1038/s41398-025-03307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Subthreshold depression (SD) is a prevalent condition among young adults, significantly increasing the risk of developing major depressive disorder (MDD). While the symptoms of MDD are well-documented, the network structure and key symptoms of SD, which forms a complex, interdependent system, have not been fully elucidated. This study sought to identify the central symptoms and their interconnections within the depressive symptom network in young adults with SD. A total of 834 Chinese young adults with SD completed the 21-item Beck Depression Inventory 2nd version (BDI-II) and were included in this study. Network analysis was employed to identify central symptoms (nodes) and associations between symptoms (edges) as assessed by the BDI-II. Additionally, centrality indicators for network robustness underwent assessment through stability and accuracy tests. The analysis revealed that Loss of interest was the most central node in the SD symptom network, with Tiredness/fatigue and Agitation following closely. Significant associations were observed between Loss of energy and Concentration difficulties, Agitation and Irritability, Guilty feelings and Self-dislike, as well as Tiredness and Loss of pleasure. The network demonstrated robustness across stability and accuracy assessments. Loss of interest, Tiredness/fatigue, and Agitation were pivotal symptoms within the depressive symptom network of SD in young adults. These symptoms may serve as critical targets for therapeutic interventions and should be prioritized in future psychological and neurobiological research to advance our understanding of SD.
Collapse
Affiliation(s)
- Xiumin Jiang
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Yu
- Department of Traditional Chinese Medicine, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Sleep Research Institute of Integrative Medicine, the Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- Rehabilitation Center, Counseling Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengwei Wu
- Department of Traditional Chinese Medicine, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Zhou
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Zhang
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglan Yan
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanjia Zheng
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjun Chen
- Institute of acupuncture and moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
8
|
Rotstein NM, Cohen ZD, Welborn A, Zbozinek TD, Akre S, Jones KG, Null KE, Pontanares J, Sanchez KL, Flanagan DC, Halavi SE, Kittle E, McClay MG, Bui AAT, Narr KL, Welsh RC, Craske MG, Kuhn TP. Investigating low intensity focused ultrasound pulsation in anhedonic depression-A randomized controlled trial. Front Hum Neurosci 2025; 19:1478534. [PMID: 40196448 PMCID: PMC11973349 DOI: 10.3389/fnhum.2025.1478534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Anhedonic depression is a subtype of depression characterized by deficits in reward processing. This subtype of depression is associated with higher suicide risk and longer depressive episodes, underscoring the importance of effective treatments. Anhedonia has also been found to correlate with alterations in activity in several subcortical regions, including the caudate head and nucleus accumbens. Low intensity focused ultrasound pulsation (LIFUP) is an emerging technology that enables non-invasive stimulation of these subcortical regions, which were previously only accessible with surgically-implanted electrodes. Methods This double-blinded, sham-controlled study aims to investigate the effects of LIFUP to the left caudate head and right nucleus accumbens in participants with anhedonic depression. Participants in this protocol will undergo three sessions of LIFUP over the span of 5-9 days. To investigate LIFUP-related changes, this 7-week protocol collects continuous digital phenotyping data, an array of self-report measures of depression, anhedonia, and other psychopathology, and magnetic resonance imaging (MRI) before and after the LIFUP intervention. Primary self-report outcome measures include Ecological Momentary Assessment, the Positive Valence Systems Scale, and the Patient Health Questionnaire. Primary imaging measures include magnetic resonance spectroscopy and functional MRI during reward-based tasks and at rest. Digital phenotyping data is collected with an Apple Watch and participants' personal iPhones throughout the study, and includes information about sleep, heart rate, and physical activity. Discussion This study is the first to investigate the effects of LIFUP to the caudate head or nucleus accumbens in depressed subjects. Furthermore, the data collected for this protocol covers a wide array of potentially affected modalities. As a result, this protocol will help to elucidate potential impacts of LIFUP in individuals with anhedonic depression.
Collapse
Affiliation(s)
- Natalie M. Rotstein
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary D. Cohen
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Amelia Welborn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tomislav D. Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samir Akre
- Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, CA, United States
| | - Keith G. Jones
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaylee E. Null
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jillian Pontanares
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katy L. Sanchez
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Demarko C. Flanagan
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sabrina E. Halavi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Evan Kittle
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mason G. McClay
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alex A. T. Bui
- Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert C. Welsh
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle G. Craske
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Huang X, Xi C, Fang Y, Ye R, Wang X, Zhang S, Cui Y, Guo Y, Zhang J, Ji GJ, Zhu C, Luo Y, Chen X, Wang K, Tian Y, Yu F. Therapeutic Efficacy of Reward Circuit‐Targeted Transcranial Magnetic Stimulation (TMS) on Suicidal Ideation in Depressed Patients: A Sham‐Controlled Trial of Two TMS Protocols. Depress Anxiety 2025; 2025. [DOI: 10.1155/da/1767477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/13/2024] [Indexed: 05/04/2025] Open
Abstract
Background: Suicide is one of the leading causes of premature death, and dysfunctional reward processing may serve as a potential mechanism. However, effective treatment targeting reward circuits is rarely reported.Objective: The present study investigated the therapeutic efficacy of two individualized protocols, repetitive transcranial magnetic stimulation (rTMS) and intermittent theta burst stimulation (iTBS), targeting the left dorsolateral prefrontal cortex (lDLPFC)–nucleus accumbens (NAcc) circuit on suicidal ideation among patients with major depressive disorder (MDD).Methods: Here, 40 healthy controls (HCs) and 70 MDD patients (MDDs) were recruited for this double‐blinded, sham‐controlled clinical trial. The reward learning process during the Iowa gambling task (IGT) was initially measured at the baseline. Further, 62 MDDs were assigned to receive 15 daily sessions of individualized rTMS (n = 25), iTBS (n = 15), or sham treatment (n = 22) to the site of strongest lDLPFC–NAcc connectivity.Results: We found MDDs demonstrated abnormalities in both IGT performance and reward‐associated event‐related potential (ERP) components compared to HCs. MDDs in the rTMS and iTBS groups showed significant improvements in suicidal ideation and anhedonia symptoms compared to the sham group. The rTMS group also exhibited a more negative‐going N170 and feedback‐related negativity (FRN) after treatment, and the increase in N170 absolute amplitude posttreatment showed a trend of correlation with improved Temporal Experience Pleasure Scales (TEPSs) and TEPS‐anticipatory (TEPS‐ant) scores.Conclusion: The current study indicates that reward circuit‐based rTMS and iTBS showed comparable antisuicidal effects in depressive patients, suggesting that the lDLPFC–NAcc pathway may serve as a potential treatment target.Trial Registration: ClinicalTrials.gov identifier: NCT03991572
Collapse
|
11
|
Ruan H, Tong G, Jin M, Koch K, Wang Z. Mechanisms of nucleus accumbens deep brain stimulation in treating mental disorders. FUNDAMENTAL RESEARCH 2025; 5:48-54. [PMID: 40166085 PMCID: PMC11955059 DOI: 10.1016/j.fmre.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 04/02/2025] Open
Abstract
Growing evidence supports the effectiveness of deep brain stimulation (DBS) in treating various psychiatric disorders. DBS has the potential to selectively stimulate specific subcortical brain areas thus providing high-frequency electric stimulation of these regions. The nucleus accumbens (NAc), a frequent DBS target, has shown promise in treating psychiatric conditions like depression, obsessive-compulsive disorder, and addiction. In this review, we provide an overview across studies investigating the effects of NAc DBS in humans and animals and discuss potential mechanisms underlying its clinical efficacy. We address the anatomical properties of NAc and discuss, in particular, the frequently reported differential effects of NAc shell and NAc core DBS. Moreover, by outlining the various NAc cell types, transmitter systems (i.e., predominantly GABAergic and dopaminergic systems) and anatomical pathways that have been shown to be relevant for NAc DBS stimulation effects, we aim to further elucidate the neurobiological determinants of NAc DBS efficacy. Finally, since treatment effects of NAc DBS are most probably also related to alterations in NAc connected circuits or networks, we review studies focusing on the investigation of NAc DBS network effects. By examining these various components that are assumed to be of relevance in the context of NAc DBS, this review will hopefully contribute to increasing our knowledge about the mechanisms underlying NAc DBS and optimizing future selection of optimal DBS targets.
Collapse
Affiliation(s)
- Hanyang Ruan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kathrin Koch
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich 81675, Germany
- Department of Neuroradiology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich 81675, Germany
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- School of Psychology, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
| |
Collapse
|
12
|
Yan H, Chu Z, Shen Z, Yuan L, Wu Y, Lu Y, Jiang H, Xu X. Disrupted functional connectivity of bilateral nucleus accumbens in major depressive disorder with and without melancholic features. Neuroreport 2024; 35:1063-1070. [PMID: 39292961 DOI: 10.1097/wnr.0000000000002097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Our study aims to explore the differences in functional connectivity in the nucleus accumbens (NAc) between patients with melancholic depression and non-melancholic depression (NMD) and their relation to melancholic depression's pathogenesis. We recruited 60 melancholic depression, 58 NMD, and 80 healthy controls, all matched for gender, age, and education. Functional connectivity analysis focused on bilateral NAc as the region of interest, comparing it with the whole brain and correlating significant differences with clinical scores. Melancholic depression patients showed reduced functional connectivity between the left NAc and anterior brain regions, and between the right NAc and temporal and frontal areas, compared to healthy controls. In contrast, NMD patients displayed reduced functional connectivity only between the left NAc and the posterior cingulate cortex. Melancholic depression patients also exhibited increased functional connectivity between the right NAc and the middle frontal gyrus, unlike NMD patients. The findings suggest that melancholic depression patients exhibit unique NAc functional connectivity patterns, particularly with the default mode network and prefrontal areas, suggesting atypical reward-circuitry interactions. The right NAc's connection to the prefrontal gyrus may distinguish melancholic depression from NMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | | |
Collapse
|
13
|
Bazarra Castro GJ, Casitas V, Martínez Macho C, Madero Pohlen A, Álvarez-Salas A, Barbero Pablos E, Fernández-Alén JA, Torres Díaz CV. Biomarkers: The Key to Enhancing Deep Brain Stimulation Treatment for Psychiatric Conditions. Brain Sci 2024; 14:1065. [PMID: 39595828 PMCID: PMC11592218 DOI: 10.3390/brainsci14111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is currently a promising technique for psychiatric patients with severe and treatment-resistant symptoms. However, the results to date have been quite heterogeneous, and the indications for psychosurgery with DBS remain in an experimental phase. One of the major challenges limiting the advancement of DBS in psychiatric disorders is the lack of objective criteria for diagnosing certain conditions, which are often based more on clinical scales rather than measurable biological markers. Additionally, there is a limited capacity to objectively assess treatment outcomes. METHODS This overview examines the literature on the available biomarkers in psychosurgery in relation to DBS, as well as other relevant biomarkers in psychiatry with potential applicability for this treatment modality. RESULTS There are five types of biomarkers: clinical/behavioral, omic, neuroimaging, electrophysiological, and neurobiochemical. The information provided by each biomarker within these categories is highly variable and may be relevant for diagnosis, response prediction, target selection, program adjustment, etc. Conclusions: A better understanding of biomarkers and their applications would allow DBS in psychosurgery to advance on a more objective basis, guided by the information provided by them and within the context of precision psychiatry.
Collapse
Affiliation(s)
| | - Vicente Casitas
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Carlos Martínez Macho
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Alejandra Madero Pohlen
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Amelia Álvarez-Salas
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Enrique Barbero Pablos
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Jose A. Fernández-Alén
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Cristina V. Torres Díaz
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| |
Collapse
|
14
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Kabotyanski KE, Najera RA, Banks GP, Sharma H, Provenza NR, Hayden BY, Mathew SJ, Sheth SA. Cost-effectiveness and threshold analysis of deep brain stimulation vs. treatment-as-usual for treatment-resistant depression. Transl Psychiatry 2024; 14:243. [PMID: 38849334 PMCID: PMC11161481 DOI: 10.1038/s41398-024-02951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Treatment-resistant depression (TRD) affects approximately 2.8 million people in the U.S. with estimated annual healthcare costs of $43.8 billion. Deep brain stimulation (DBS) is currently an investigational intervention for TRD. We used a decision-analytic model to compare cost-effectiveness of DBS to treatment-as-usual (TAU) for TRD. Because this therapy is not FDA approved or in common use, our goal was to establish an effectiveness threshold that trials would need to demonstrate for this therapy to be cost-effective. Remission and complication rates were determined from review of relevant studies. We used published utility scores to reflect quality of life after treatment. Medicare reimbursement rates and health economics data were used to approximate costs. We performed Monte Carlo (MC) simulations and probabilistic sensitivity analyses to estimate incremental cost-effectiveness ratios (ICER; USD/quality-adjusted life year [QALY]) at a 5-year time horizon. Cost-effectiveness was defined using willingness-to-pay (WTP) thresholds of $100,000/QALY and $50,000/QALY for moderate and definitive cost-effectiveness, respectively. We included 274 patients across 16 studies from 2009-2021 who underwent DBS for TRD and had ≥12 months follow-up in our model inputs. From a healthcare sector perspective, DBS using non-rechargeable devices (DBS-pc) would require 55% and 85% remission, while DBS using rechargeable devices (DBS-rc) would require 11% and 19% remission for moderate and definitive cost-effectiveness, respectively. From a societal perspective, DBS-pc would require 35% and 46% remission, while DBS-rc would require 8% and 10% remission for moderate and definitive cost-effectiveness, respectively. DBS-pc will unlikely be cost-effective at any time horizon without transformative improvements in battery longevity. If remission rates ≥8-19% are achieved, DBS-rc will likely be more cost-effective than TAU for TRD, with further increasing cost-effectiveness beyond 5 years.
Collapse
Affiliation(s)
| | - Ricardo A Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Garrett P Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Sanjay J Mathew
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Fitzgerald PB, Hoy K, Richardson KE, Gainsford K, Segrave R, Herring SE, Daskalakis ZJ, Bittar RG. No Consistent Antidepressant Effects of Deep Brain Stimulation of the Bed Nucleus of the Stria Terminalis. Brain Sci 2024; 14:499. [PMID: 38790480 PMCID: PMC11118510 DOI: 10.3390/brainsci14050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Applying deep brain stimulation (DBS) to several brain regions has been investigated in attempts to treat highly treatment-resistant depression, with variable results. Our initial pilot data suggested that the bed nucleus of the stria terminalis (BNST) could be a promising therapeutic target. OBJECTIVE The aim of this study was to gather blinded data exploring the efficacy of applying DBS to the BNST in patients with highly refractory depression. METHOD Eight patients with chronic severe treatment-resistant depression underwent DBS to the BNST. A randomised, double-blind crossover study design with fixed stimulation parameters was followed and followed by a period of open-label stimulation. RESULTS During the double-blind crossover phase, no consistent antidepressant effects were seen with any of the four stimulation parameters applied, and no patients achieved response or remission criteria during the blinded crossover phase or during a subsequent period of three months of blinded stimulation. Stimulation-related side effects, especially agitation, were reported by a number of patients and were reversible with adjustment of the stimulation parameters. CONCLUSIONS The results of this study do not support the application of DBS to the BNST in patients with highly resistant depression or ongoing research utilising stimulation at this brain site. The blocked randomised study design utilising fixed stimulation parameters was poorly tolerated by the participants and does not appear suitable for assessing the efficacy of DBS at this location.
Collapse
Affiliation(s)
- Paul B. Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia
| | - Kate Hoy
- Bionics Institute of Australia, East Melbourne, Melbourne, VIC 3002, Australia; (K.H.); (S.E.H.)
| | - Karyn E. Richardson
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3168, Australia; (K.E.R.)
| | - Kirsten Gainsford
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia
| | - Rebecca Segrave
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3168, Australia; (K.E.R.)
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia
| | - Sally E. Herring
- Bionics Institute of Australia, East Melbourne, Melbourne, VIC 3002, Australia; (K.H.); (S.E.H.)
| | - Zafiris J. Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard G. Bittar
- Precision Brain Spine and Pain Centre, Melbourne, VIC 3109, Australia
- Faculty of Health, Deakin University, Melbourne, VIC 3000, Australia
| |
Collapse
|
17
|
Song N, Liu Z, Gao Y, Lu S, Yang S, Yuan C. NAc-DBS corrects depression-like behaviors in CUMS mouse model via disinhibition of DA neurons in the VTA. Mol Psychiatry 2024; 29:1550-1566. [PMID: 38361128 DOI: 10.1038/s41380-024-02476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Major depressive disorder (MDD) is characterized by diverse debilitating symptoms that include loss of motivation and anhedonia. If multiple medications, psychotherapy, and electroconvulsive therapy fail in some patients with MDD, their condition is then termed treatment-resistant depression (TRD). MDD can be associated with abnormalities in the reward-system-dopaminergic mesolimbic pathway, in which the nucleus accumbens (NAc) and ventral tegmental area (VTA) play major roles. Deep brain stimulation (DBS) applied to the NAc alleviates the depressive symptoms of MDD. However, the mechanism underlying the effects of this DBS has remained elusive. In this study, using the chronic unpredictable mild stress (CUMS) mouse model, we investigated the behavioral and neurobiological effects of NAc-DBS on the multidimensional depression-like phenotypes induced by CUMS by integrating behavioral, in vivo microdialysis coupled with high-performance liquid chromatography-electrochemical detector (HPLC-ECD), calcium imaging, pharmacological, and genetic manipulation methods in freely moving mice. We found that long-term and repeated, but not single, NAc-DBS induced robust antidepressant responses in CUMS mice. Moreover, even a single trial NAc-DBS led to the elevation of the γ-aminobutyric acid (GABA) neurotransmitter, accompanied by the increase in dopamine (DA) neuron activity in the VTA. Both the inhibition of the GABAA receptor activity and knockdown of the GABAA-α1 gene in VTA-GABA neurons blocked the antidepressant effect of NAc-DBS in CUMS mice. Our results showed that NAc-DBS could disinhibit VTA-DA neurons by regulating the level of GABA and the activity of VTA-GABA in the VTA and could finally correct the depression-like behaviors in the CUMS mouse model.
Collapse
Affiliation(s)
- Nan Song
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Zhenhong Liu
- Institute for Brain Disorders, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yan Gao
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shanshan Lu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shenglian Yang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
18
|
Liang Y, Yang Y, Huang R, Ning J, Bao X, Yan Z, Chen H, Ding L, Shu C. Conjugation of sulpiride with a cell penetrating peptide to augment the antidepressant efficacy and reduce serum prolactin levels. Biomed Pharmacother 2024; 174:116610. [PMID: 38642503 DOI: 10.1016/j.biopha.2024.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
Depression ranks as the fourth most prevalent global disease, with suicide incidents occurring at a younger age. Sulpiride (SUL), an atypical antidepressant drug acting as a dopamine D2 receptor antagonist and possessing anti-inflammatory properties, exhibits limited ability to penetrate the blood brain barrier (BBB). This weak penetration hampers its inhibitory effect on prolactin release in the pituitary gland, consequently leading to hyperprolactinemia. In order to enhance the central nervous system efficacy of sulpiride and reduce serum prolactin levels, we covalently linked sulpiride to VPALR derived from the nuclear DNA repair protein ku70. In vivo study on depressive mice using intraperitoneal injection of VPALR-SUL demonstrated a significant increase in struggle time and total distance compared to those treated with only sulpiride while also reducing serum prolactin concentration. The pharmacokinetic study results showed that VPALR-SUL prolonged half-life and increased bioavailability. In conclusion, VPALR-SUL exhibited potential for enhancing sulpiride transport across the BBB, augmenting its antidepressant effects, and reducing serum prolactin levels. This study laid a foundation for improving sulpiride delivery and developing novel antidepressants.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ruiyan Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiangyue Ning
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xingyan Bao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zelong Yan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haotian Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
19
|
Patel E, Ramaiah P, Mamaril-Davis JC, Bauer IL, Koujah D, Seideman T, Kelbert J, Nosova K, Bina RW. Outcome differences between males and females undergoing deep brain stimulation for treatment-resistant depression: systematic review and individual patient data meta-analysis. J Affect Disord 2024; 351:481-488. [PMID: 38296058 DOI: 10.1016/j.jad.2024.01.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Treatment-resistant depression (TRD) occurs more commonly in women. Deep brain stimulation (DBS) is an emerging treatment for TRD, and its efficacy continues to be explored. However, differences in treatment outcomes between males and females have yet to be explored in formal analysis. METHODS A PRISMA-compliant systematic review of DBS for TRD studies was conducted. Patient-level data were independently extracted by two authors. Treatment response was defined as a 50 % or greater reduction in depression score. Percent change in depression scores by gender were evaluated using random-effects analyses. RESULTS Of 737 records, 19 studies (129 patients) met inclusion criteria. The mean reduction in depression score for females was 57.7 % (95 % CI, 64.33 %-51.13 %), whereas for males it was 35.2 % (95 % CI, 45.12 %-25.23 %) (p < 0.0001). Females were more likely to respond to DBS for TRD when compared to males (OR = 2.44, 95 % CI 1.06, 1.95). These differences varied in significance when stratified by DBS anatomical target, age, and timeframe for responder classification. LIMITATIONS Studies included were open-label trials with small sample sizes. CONCLUSIONS Our findings suggest that females with TRD respond at higher rates to DBS treatment than males. Further research is needed to elucidate the implications of these results, which may include connectomic sexual dimorphism, depression phenotype variations, or unrecognized symptom reporting differences. Methodological standardization of outcome scales, granular demographic data, and individual subject outcomes would allow for more robust comparisons between trials.
Collapse
Affiliation(s)
- Ekta Patel
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Priya Ramaiah
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | - Isabel L Bauer
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Dalia Koujah
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Travis Seideman
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - James Kelbert
- University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Kristin Nosova
- Department of Neurosurgery, Banner University Medical Center/University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center/University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
20
|
Patrick EE, Fleeting CR, Patel DR, Casauay JT, Patel A, Shepherd H, Wong JK. Modeling the volume of tissue activated in deep brain stimulation and its clinical influence: a review. Front Hum Neurosci 2024; 18:1333183. [PMID: 38660012 PMCID: PMC11039793 DOI: 10.3389/fnhum.2024.1333183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory therapy that has been FDA approved for the treatment of various disorders, including but not limited to, movement disorders (e.g., Parkinson's disease and essential tremor), epilepsy, and obsessive-compulsive disorder. Computational methods for estimating the volume of tissue activated (VTA), coupled with brain imaging techniques, form the basis of models that are being generated from retrospective clinical studies for predicting DBS patient outcomes. For instance, VTA models are used to generate target-and network-based probabilistic stimulation maps that play a crucial role in predicting DBS treatment outcomes. This review defines the methods for calculation of tissue activation (or modulation) including ones that use heuristic and clinically derived estimates and more computationally involved ones that rely on finite-element methods and biophysical axon models. We define model parameters and provide a comparison of commercial, open-source, and academic simulation platforms available for integrated neuroimaging and neural activation prediction. In addition, we review clinical studies that use these modeling methods as a function of disease. By describing the tissue-activation modeling methods and highlighting their application in clinical studies, we provide the neural engineering and clinical neuromodulation communities with perspectives that may influence the adoption of modeling methods for future DBS studies.
Collapse
Affiliation(s)
- Erin E. Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Chance R. Fleeting
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Drashti R. Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jed T. Casauay
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Hunter Shepherd
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Johnson KA, Okun MS, Scangos KW, Mayberg HS, de Hemptinne C. Deep brain stimulation for refractory major depressive disorder: a comprehensive review. Mol Psychiatry 2024; 29:1075-1087. [PMID: 38287101 PMCID: PMC11348289 DOI: 10.1038/s41380-023-02394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Deep brain stimulation (DBS) has emerged as a promising treatment for select patients with refractory major depressive disorder (MDD). The clinical effectiveness of DBS for MDD has been demonstrated in meta-analyses, open-label studies, and a few controlled studies. However, randomized controlled trials have yielded mixed outcomes, highlighting challenges that must be addressed prior to widespread adoption of DBS for MDD. These challenges include tracking MDD symptoms objectively to evaluate the clinical effectiveness of DBS with sensitivity and specificity, identifying the patient population that is most likely to benefit from DBS, selecting the optimal patient-specific surgical target and stimulation parameters, and understanding the mechanisms underpinning the therapeutic benefits of DBS in the context of MDD pathophysiology. In this review, we provide an overview of the latest clinical evidence of MDD DBS effectiveness and the recent technological advancements that could transform our understanding of MDD pathophysiology, improve the clinical outcomes for MDD DBS, and establish a path forward to develop more effective neuromodulation therapies to alleviate depressive symptoms.
Collapse
Affiliation(s)
- Kara A Johnson
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Katherine W Scangos
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
23
|
Waguespack HF, Jacobs JT, Park J, Campos-Rodriguez C, Maior RS, Forcelli PA, Malkova L. Pharmacological Inhibition of the Nucleus Accumbens Increases Dyadic Social Interaction in Macaques. eNeuro 2024; 11:ENEURO.0085-24.2024. [PMID: 38575350 PMCID: PMC11036116 DOI: 10.1523/eneuro.0085-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The nucleus accumbens (NAc) is a central component of the brain circuitry that mediates motivated behavior, including reward processing. Since the rewarding properties of social stimuli have a vital role in guiding behavior (both in humans and nonhuman animals), the NAc is likely to contribute to the brain circuitry controlling social behavior. In rodents, prior studies have found that focal pharmacological inhibition of NAc and/or elevation of dopamine in NAc increases social interactions. However, the role of the NAc in social behavior in nonhuman primates remains unknown. We measured the social behavior of eight dyads of male macaques following (1) pharmacological inhibition of the NAc using the GABAA agonist muscimol and (2) focal application of quinpirole, an agonist at the D2 family of dopamine receptors. Transient inhibition of the NAc with muscimol increased social behavior when drug was infused in submissive, but not dominant partners of the dyad. Focal application of quinpirole was without effect on social behavior when infused into the NAc of either dominant or submissive subjects. Our data demonstrate that the NAc contributes to social interactions in nonhuman primates.
Collapse
Affiliation(s)
- Hannah F Waguespack
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Jessica T Jacobs
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Janis Park
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | | | - Rafael S Maior
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70.910-900, Brazil
| | - Patrick A Forcelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Ludise Malkova
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| |
Collapse
|
24
|
Liu X, Read SJ. Development of a multivariate prediction model for antidepressant resistant depression using reward-related predictors. Front Psychiatry 2024; 15:1349576. [PMID: 38590792 PMCID: PMC10999634 DOI: 10.3389/fpsyt.2024.1349576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Individuals with depression who do not respond to two or more courses of serotonergic antidepressants tend to have greater deficits in reward processing and greater internalizing symptoms, yet there is no validated self-report method to determine the likelihood of treatment resistance based on these symptom dimensions. Methods This online case-control study leverages machine learning techniques to identify differences in self-reported anhedonia and internalizing symptom profiles of antidepressant non-responders compared to responders and healthy controls, as an initial proof-of-concept for relating these indicators to medication responsiveness. Random forest classifiers were used to identify a subset from a set of 24 reward predictors that distinguished among serotonergic medication resistant, non-resistant, and non-depressed individuals recruited online (N = 393). Feature selection was implemented to refine model prediction and improve interpretability. Results Accuracies for full predictor models ranged from .54 to .71, while feature selected models retained 3-5 predictors and generated accuracies of .42 to .70. Several models performed significantly above chance. Sensitivity for non-responders was greatest after feature selection when compared to only responders, reaching .82 with 3 predictors. The predictors retained from feature selection were then explored using factor analysis at the item level and cluster analysis of the full data to determine empirically driven data structures. Discussion Non-responders displayed 3 distinct symptom profiles along internalizing dimensions of anxiety, anhedonia, motivation, and cognitive function. Results should be replicated in a prospective cohort sample for predictive validity; however, this study demonstrates validity for using a limited anhedonia and internalizing self-report instrument for distinguishing between antidepressant resistant and responsive depression profiles.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | | |
Collapse
|
25
|
Unadkat P, Quevedo J, Soares J, Fenoy A. Opportunities and challenges for the use of deep brain stimulation in the treatment of refractory major depression. DISCOVER MENTAL HEALTH 2024; 4:9. [PMID: 38483709 PMCID: PMC10940557 DOI: 10.1007/s44192-024-00062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Major Depressive Disorder continues to remain one of the most prevalent psychiatric diseases globally. Despite multiple trials of conventional therapies, a subset of patients fail to have adequate benefit to treatment. Deep brain stimulation (DBS) is a promising treatment in this difficult to treat population and has shown strong antidepressant effects across multiple cohorts. Nearly two decades of work have provided insights into the potential for chronic focal stimulation in precise brain targets to modulate pathological brain circuits that are implicated in the pathogenesis of depression. In this paper we review the rationale that prompted the selection of various brain targets for DBS, their subsequent clinical outcomes and common adverse events reported. We additionally discuss some of the pitfalls and challenges that have prevented more widespread adoption of this technology as well as future directions that have shown promise in improving therapeutic efficacy of DBS in the treatment of depression.
Collapse
Affiliation(s)
- Prashin Unadkat
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Joao Quevedo
- Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Jair Soares
- Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, (UT Health), Houston, TX, USA
| | - Albert Fenoy
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine, Feinstein Institutes for Medical Research, Northwell Health, 805 Northern Boulevard, Suite 100, Great Neck, NY, 11021, USA.
| |
Collapse
|
26
|
Roalf DR, Figee M, Oathes DJ. Elevating the field for applying neuroimaging to individual patients in psychiatry. Transl Psychiatry 2024; 14:87. [PMID: 38341414 PMCID: PMC10858949 DOI: 10.1038/s41398-024-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.
Collapse
Affiliation(s)
- David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Desmond J Oathes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Neuromodulation in Depression and Stress, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Chen Z, Ou Y, Liu F, Li H, Li P, Xie G, Cui X, Guo W. Increased brain nucleus accumbens functional connectivity in melancholic depression. Neuropharmacology 2024; 243:109798. [PMID: 37995807 DOI: 10.1016/j.neuropharm.2023.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Melancholic depression, marked by typical symptoms of anhedonia, is regarded as a homogeneous subtype of major depressive disorder (MDD). However, little attention was paid to underlying mechanisms of melancholic depression. This study aims to examine functional connectivity of the reward circuit associated with anhedonia symptoms in melancholic depression. METHODS Fifty-nine patients with first-episode drug- naive MDD, including 31 melancholic patients and 28 non-melancholic patients, were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Thirty-two healthy volunteers were recruited as controls. Bilateral nucleus accumbens (NAc) were selected as seed points to form functional NAc network. Then support vector machine (SVM) was used to distinguish melancholic patients from non-melancholic patients. RESULTS Relative to non-melancholic patients, melancholic patients displayed increased functional connectivity (FC) between bilateral NAc and right middle frontal gyrus (MFG) and between right NAc and left cerebellum lobule VIII. Compared to healthy controls, melancholic patients showed increased FC between right NAc and right lingual gyrus and between left NAc and left postcentral gyrus; non-melancholic patients had increased FC between bilateral NAc and right lingual gyrus. No significant correlations were observed between altered FC and clinical variables in melancholic patients. SVM results showed that FC between left NAc and right MFG could accurately distinguish melancholic patients from non-melancholic patients. CONCLUSION Melancholic depression exhibited different patterns of functional connectivity of the reward circuit relative to non-melancholic patients. This study highlights the significance of the reward circuit in the neuropathology of melancholic depression.
Collapse
Affiliation(s)
- Zhaobin Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
28
|
Wang Q, Wang Y, Tian Y, Li Y, Han J, Tai F, Jia R. Social environment enrichment alleviates anxiety-like behavior in mice: Involvement of the dopamine system. Behav Brain Res 2024; 456:114687. [PMID: 37778421 DOI: 10.1016/j.bbr.2023.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Rearing environment plays a vital role in maintaining physical and mental health of both animals and humans. Plenty of studies have proved that physical environment enrichment in adolescence has protective effects on emotion, social behavior, learning and memory deficits. However, the following effects of social environment enrichment in adolescence remain largely elusive. Using the paradigm of companion rotation (CR), the present study found that social environment enrichment reduced anxiety-like behaviors of early adult male C57BL/6J mice. CR group also showed significantly higher expression of tyrosine hydroxylase in the ventral tegmental area and dopamine 1 receptor mRNA in the nucleus accumbens shell than control group. Taken together, these findings demonstrate that CR from adolescence to early adulthood can suppress the level of anxiety and upregulate dopaminergic neuron activity in early adult male C57BL/6J mice.
Collapse
Affiliation(s)
- Qun Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuqian Wang
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yaoyao Tian
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yanyan Li
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Rui Jia
- Institute of Brain and Behavioral Science, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
29
|
Sellers KK, Cohen JL, Khambhati AN, Fan JM, Lee AM, Chang EF, Krystal AD. Closed-loop neurostimulation for the treatment of psychiatric disorders. Neuropsychopharmacology 2024; 49:163-178. [PMID: 37369777 PMCID: PMC10700557 DOI: 10.1038/s41386-023-01631-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Despite increasing prevalence and huge personal and societal burden, psychiatric diseases still lack treatments which can control symptoms for a large fraction of patients. Increasing insight into the neurobiology underlying these diseases has demonstrated wide-ranging aberrant activity and functioning in multiple brain circuits and networks. Together with varied presentation and symptoms, this makes one-size-fits-all treatment a challenge. There has been a resurgence of interest in the use of neurostimulation as a treatment for psychiatric diseases. Initial studies using continuous open-loop stimulation, in which clinicians adjusted stimulation parameters during patient visits, showed promise but also mixed results. Given the periodic nature and fluctuations of symptoms often observed in psychiatric illnesses, the use of device-driven closed-loop stimulation may provide more effective therapy. The use of a biomarker, which is correlated with specific symptoms, to deliver stimulation only during symptomatic periods allows for the personalized therapy needed for such heterogeneous disorders. Here, we provide the reader with background motivating the use of closed-loop neurostimulation for the treatment of psychiatric disorders. We review foundational studies of open- and closed-loop neurostimulation for neuropsychiatric indications, focusing on deep brain stimulation, and discuss key considerations when designing and implementing closed-loop neurostimulation.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joshua L Cohen
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ankit N Khambhati
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Joline M Fan
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - A Moses Lee
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Andrew D Krystal
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
30
|
Mithani K, Suresh H, Ibrahim GM. Graph Theory and Modeling of Network Topology in Clinical Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:107-122. [PMID: 39523262 DOI: 10.1007/978-3-031-64892-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The last several decades have seen a shift in understanding many neurological disorders as abnormalities in brain networks rather than specific brain regions. This conceptual revolution, coupled with advancements in computing capabilities and resources, has enabled a wealth of research on delineating and treating aberrant brain networks. One approach to network neuroscience, graph theory, involves modeling network topologies as mathematical graphs and computing various metrics that describe its characteristics. Using graph theory, researchers have derived new insights into the pathophysiology of many neuropsychiatric disorders and even developed treatments targeted at restoring network disturbances. In this chapter, we provide an overview of the principles of graph theory and how to implement it, specific applications of graph theory within clinical neurosurgery, and a discussion on the advantages and limitations of these approaches.
Collapse
Affiliation(s)
- Karim Mithani
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Asir B, Boscutti A, Fenoy AJ, Quevedo J. Deep Brain Stimulation (DBS) in Treatment-Resistant Depression (TRD): Hope and Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:161-186. [PMID: 39261429 DOI: 10.1007/978-981-97-4402-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.
Collapse
Affiliation(s)
- Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
32
|
Chan JL, Carpentier AV, Middlebrooks EH, Okun MS, Wong JK. Current perspectives on tractography-guided deep brain stimulation for the treatment of mood disorders. Expert Rev Neurother 2024; 24:11-24. [PMID: 38037329 DOI: 10.1080/14737175.2023.2289573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an emerging therapy for mood disorders, particularly treatment-resistant depression (TRD). Different brain areas implicated in depression-related brain networks have been investigated as DBS targets and variable clinical outcomes highlight the importance of target identification. Tractography has provided insight into how DBS modulates disorder-related brain networks and is being increasingly used to guide DBS for psychiatric disorders. AREAS COVERED In this perspective, an overview of the current state of DBS for TRD and the principles of tractography is provided. Next, a comprehensive review of DBS targets is presented with a focus on tractography. Finally, the challenges and future directions of tractography-guided DBS are discussed. EXPERT OPINION Tractography-guided DBS is a promising tool for improving DBS outcomes for mood disorders. Tractography is particularly useful for targeting patient-specific white matter tracts that are not visible using conventional structural MRI. Developments in tractography methods will help refine DBS targeting for TRD and may facilitate symptom-specific precision neuromodulation. Ultimately, the standardization of tractography methods will be essential to transforming DBS into an established therapy for mood disorders.
Collapse
Affiliation(s)
- Jason L Chan
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Ariane V Carpentier
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | | | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Zhou E, Wang W, Ma S, Xie X, Kang L, Xu S, Deng Z, Gong Q, Nie Z, Yao L, Bu L, Wang F, Liu Z. Prediction of anxious depression using multimodal neuroimaging and machine learning. Neuroimage 2024; 285:120499. [PMID: 38097055 DOI: 10.1016/j.neuroimage.2023.120499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023] Open
Abstract
Anxious depression is a common subtype of major depressive disorder (MDD) associated with adverse outcomes and severely impaired social function. It is important to clarify the underlying neurobiology of anxious depression to refine the diagnosis and stratify patients for therapy. Here we explored associations between anxiety and brain structure/function in MDD patients. A total of 260 MDD patients and 127 healthy controls underwent three-dimensional T1-weighted structural scanning and resting-state functional magnetic resonance imaging. Demographic data were collected from all participants. Differences in gray matter volume (GMV), (fractional) amplitude of low-frequency fluctuation ((f)ALFF), regional homogeneity (ReHo), and seed point-based functional connectivity were compared between anxious MDD patients, non-anxious MDD patients, and healthy controls. A random forest model was used to predict anxiety in MDD patients using neuroimaging features. Anxious MDD patients showed significant differences in GMV in the left middle temporal gyrus and ReHo in the right superior parietal gyrus and the left precuneus than HCs. Compared with non-anxious MDD patients, patients with anxious MDD showed significantly different GMV in the left inferior temporal gyrus, left superior temporal gyrus, left superior frontal gyrus (orbital part), and left dorsolateral superior frontal gyrus; fALFF in the left middle temporal gyrus; ReHo in the inferior temporal gyrus and the superior frontal gyrus (orbital part); and functional connectivity between the left superior temporal gyrus(temporal pole) and left medial superior frontal gyrus. A diagnostic predictive random forest model built using imaging features and validated by 10-fold cross-validation distinguished anxious from non-anxious MDD with an AUC of 0.802. Patients with anxious depression exhibit dysregulation of brain regions associated with emotion regulation, cognition, and decision-making, and our diagnostic model paves the way for more accurate, objective clinical diagnosis of anxious depression.
Collapse
Affiliation(s)
- Enqi Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinhui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuxian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zipeng Deng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Gong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- PET/CT/MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
Liu F, Huang S, Guo D, Li X, Han Y. Deep brain stimulation of ventromedial prefrontal cortex reverses depressive-like behaviors via BDNF/TrkB signaling pathway in rats. Life Sci 2023; 334:122222. [PMID: 38084673 DOI: 10.1016/j.lfs.2023.122222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
AIM Deep brain stimulation (DBS) is currently under investigation as a potential therapeutic approach for managing major depressive disorder (MDD) and ventromedial prefrontal cortex (vmPFC) is recognized as a promising target region. Therefore, the present study aimed to investigate a preclinical paradigm of bilateral vmPFC DBS and examine the molecular mechanisms underlying its antidepressant-like effects using chronic unpredictable stress (CUS) model in rats. MAIN METHODS Male rats were subjected to stereotaxic surgery and deep brain stimulation paradigm in non-stressed and CUS rats respectively, and the therapeutic effect of DBS were assessed by a series of behavioral tests including sucrose preference test, open field test, elevated plus maze test, and forced swim test. The potential involvement of the BDNF/TrkB signaling pathway and its downstream effects in this process were also investigated using western blot. KEY FINDINGS We identified that a stimulation protocol consisting of 130 Hz, 200 μA, 90 μs pulses administered for 5 h per day over a period of 7 days effectively mitigated CUS-induced depressive-like and anxiety-like behaviors in rats. These therapeutic effects were associated with the enhancement of the BDNF/TrkB signaling pathway and its downstream ERK1/2 activity. SIGNIFICANCE These findings provide valuable insights into the potential clinical utility of vmPFC DBS as an approach of improving the symptoms experienced by individuals with MDD. This evidence contributes to our understanding of the neurobiological basis of depression and offers promise for the development of more effective treatments.
Collapse
Affiliation(s)
- Fanglin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dan Guo
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
35
|
Ding Y, Ou Y, Yan H, Liu F, Li H, Li P, Xie G, Cui X, Guo W. Uncovering the Neural Correlates of Anhedonia Subtypes in Major Depressive Disorder: Implications for Intervention Strategies. Biomedicines 2023; 11:3138. [PMID: 38137360 PMCID: PMC10740577 DOI: 10.3390/biomedicines11123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) represents a serious public health concern, negatively affecting individuals' quality of life and making a substantial contribution to the global burden of disease. Anhedonia is a core symptom of MDD and is associated with poor treatment outcomes. Variability in anhedonia components within MDD has been observed, suggesting heterogeneity in psychopathology across subgroups. However, little is known about anhedonia subgroups in MDD and their underlying neural correlates across subgroups. To address this question, we employed a hierarchical cluster analysis based on Temporal Experience of Pleasure Scale subscales in 60 first-episode, drug-naive MDD patients and 32 healthy controls. Then we conducted a connectome-wide association study and whole-brain voxel-wise functional analyses for identified subgroups. There were three main findings: (1) three subgroups with different anhedonia profiles were identified using a data mining approach; (2) several parts of the reward network (especially pallidum and dorsal striatum) were associated with anticipatory and consummatory pleasure; (3) different patterns of within- and between-network connectivity contributed to the disparities of anhedonia profiles across three MDD subgroups. Here, we show that anhedonia in MDD is not uniform and can be categorized into distinct subgroups, and our research contributes to the understanding of neural underpinnings, offering potential treatment directions. This work emphasizes the need for tailored approaches in the complex landscape of MDD. The identification of homogeneous, stable, and neurobiologically valid MDD subtypes could significantly enhance our comprehension and management of this multifaceted condition.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China;
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar 161006, China;
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.D.); (H.Y.); (G.X.)
| |
Collapse
|
36
|
Chahuan S, Grover S, Singh S. Amelioration of modified chronic unpredictable stress using Celastrus paniculatus seed oil alone and in combination with fluoxetine. Drug Chem Toxicol 2023; 46:879-894. [PMID: 35943180 DOI: 10.1080/01480545.2022.2105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
The various stressors in chronic unpredictable stress (CUS) triggers depressive behavior, impairs learning, and decision-making abilities. The present study investigated the effects of Celastrus paniculatus seed oil (CPSO) alone and in combination with fluoxetine (FLU) in modified CUS (mCUS) induced depression in mice. In this study, adult albino mice were subjected to a modified version of CUS protocol having six different stressors and were applied daily consistently for 15 days. The post-treatment with CPSO (50 and 100 mg/kg) and FLU (10 mg/kg) alone and in combination from day 16th to 36th. Group I: normal control; group II: diseased control (mCUS subjected group); group III: CPSO (50 mg/kg); group IV: CPSO (100 mg/kg); group V: CPSO (50 mg/kg)+FLU (10 mg/kg); group VI: CPSO (100 mg/kg)+FLU (10 mg/kg); group VII: FLU (10 mg/kg); group VIII: FLU (20 mg/kg). During experimentation, various behavioral, biochemical, oxidative stress, inflammatory, and neurotransmitters level were checked. The CUS treated mice exhibited increased escaped latency, decreased number of open arm entries, increased immobility time, decreased percentage of sucrose consumption, and number of the boxes crossed as compared to the normal group. The post-treatment with the CPSO 50 + FLU 10, CPSO 100 + FLU 10, FLU 10 significantly (p < 0.05) attenuated behavioral, biochemical, inflammation, corticosteroid, and neurotransmitters level as compared to CPSO 50, CPSO 100, and FLU 20 alone. CPSO along with FLU appreciably achieved anti-depressant effect via lowering stress, inflammation, corticosteroid level, and restoration of neurotransmitters level in mCUS induced depression mice model.
Collapse
Affiliation(s)
- Sanjana Chahuan
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Sania Grover
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| |
Collapse
|
37
|
Sobstyl M, Prokopienko M, Pietras T. The ventral capsule and ventral striatum-Stereotactic targets for the management of treatment-resistant depression. A systematic literature review. Front Psychiatry 2023; 14:1100609. [PMID: 37928918 PMCID: PMC10622982 DOI: 10.3389/fpsyt.2023.1100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 11/07/2023] Open
Abstract
Background Deep brain stimulation (DBS) is still an experimental treatment modality for psychiatric disorders including treatment-resistant depression (TRD). There is preliminary evidence that stimulation of brain reward circuit structures including the ventral striatum (VS) may exert an antidepressant effect. The main nucleus of the reward circuit is the nucleus accumbens (NAc). The NAc is a major structure of VS that plays a critical role in reward-seeking behavior, motivation, and addiction. Aims This study aimed to review the current studies including randomized clinical trials, open-label trials, and case reports of NAc/VS and VC DBS for TRD in humans. Method The literature was reviewed using a medical database-Medical Literature, Analysis, and Retrieval System Online (MEDLINE) on NAc/VS or VC DBS in TRD. The identified studies were assessed based on the patient's characteristics, clinical outcomes, and adverse events related to DBS as well as the stereotactic technique used to guide the implantation of DBS electrodes. The inclusion and exclusion criteria of DBS for TRD were presented and discussed. Results The searched literature revealed one case report, three open-label studies (OLS), one multicenter open-label study (mOLS), and two randomized clinical trials (RCTs). There were three additional studies reporting the clinical outcomes in the long term in TRD patients included in the two mentioned RCTs. The total number of patients with TRD treated by NAc/VS or VC is estimated to be 85 individuals worldwide. The response rate to DBS defined as a 50% reduction of postoperative Montgomery-Asberg Depression Rating Scale (MADRS) scores was achieved in 39.8% of the operated patients (range, 23-53%). The remission defined as MADRS scores of < 10 was found in 17.8% after DBS (range, 0-40%). The mean follow-up was 19.7 months (range 3.7-24 months). Conclusion The current results of NAc/VS and VC DBS are still limited by a relatively small number of patients treated worldwide. Nevertheless, the results suggest that NAc/VS and VC can be regarded as promising and efficacious targets for DBS, taking into account the response and remission rates among TRD patients with no other treatment option. The adverse events of NAc/VS and VC DBS are reversible due to the adjustment of stimulation parameters. The most common adverse events were hypomanic/manic states, suicidal thoughts/attempts, and suicides. Patients with TRD after NAc/VS and VC DBS should be strictly followed to prevent or diminish these stimulation-induced adverse events.
Collapse
Affiliation(s)
- Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marek Prokopienko
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tadeusz Pietras
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
38
|
Darrow SM, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J, Lisanby SH, Iosifescu D, Murrough JW, Yang H, Weiner RD, Sanacora G, Keefe RSE, Song A, Goodman W, Whitton AE, Potter WZ, Krystal AD. Using latent profile analyses to classify subjects with anhedonia based on reward-related measures obtained in the FAST-MAS study. J Affect Disord 2023; 339:584-592. [PMID: 37467805 DOI: 10.1016/j.jad.2023.07.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Growing evidence indicates that anhedonia is a multifaceted construct. This study examined the possibility of identifying subgroups of people with anhedonia using multiple reward-related measures to provide greater understanding the Research Domain Criteria's Positive Valence Systems Domain and pathways for developing treatments. METHODS Latent profile analysis of baseline data from a study that examined the effects of a novel kappa opioid receptor (KOR) antagonist drug on measures and biomarkers associated with anhedonia was used to identify subgroups. Measures included ventral striatal activation during the Monetary Incentive Delay task, response bias in the Probabilistic Reward Task, reward valuation scores from the Effort-Expenditure for Rewards Task, and scores from reward-related self-report measures. RESULTS Two subgroups were identified, which differed on self-report measures of reward. Participants in the subgroup reporting more anhedonia also reported more depression and had greater illness severity and functional impairments. Graphs of change with treatment showed a trend for the less severe subgroup to demonstrate higher response to KOR antagonist treatment on the neuroimaging measure, probabilistic reward task, and ratings of functioning; the subgroup with greater severity showed a trend for higher treatment response on reward-related self-report measures. LIMITATIONS The main limitations include the small sample size and exploratory nature of analyses. CONCLUSIONS Evidence of possible dissociation between self-reported measures of anhedonia and other measures with respect to treatment response emerged. These results highlight the importance for future research to consider severity of self-reported reward-related deficits and how the relationship across measurement methods may vary with severity.
Collapse
Affiliation(s)
- Sabrina M Darrow
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, United States of America.
| | | | - Moria Smoski
- Department of Psychiatry and Behavioral Sciences, Duke University, United States of America
| | | | - John Nurnberger
- Institute of Psychiatric Research, Indiana University Medical Center, United States of America
| | - Sarah H Lisanby
- National Institute of Mental Health, United States of America
| | | | - James W Murrough
- Department of Psychiatry, Mount Sinai School of Medicine, United States of America
| | | | | | - Gerard Sanacora
- Department of Psychiatry, Yale University, United States of America
| | - Richard S E Keefe
- Department of Psychiatry, Duke University Medical Center, United States of America
| | - Allen Song
- Duke University, United States of America
| | - Wayne Goodman
- Department of Psychiatry, Baylor College of Medicine, United States of America
| | | | | | - Andrew D Krystal
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, United States of America
| |
Collapse
|
39
|
Amiri S, Arbabi M, Rahimi M, Parvaresh-Rizi M, Mirbagheri MM. Effective connectivity between deep brain stimulation targets in individuals with treatment-resistant depression. Brain Commun 2023; 5:fcad256. [PMID: 37901039 PMCID: PMC10600572 DOI: 10.1093/braincomms/fcad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/27/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
The therapeutic effect of deep brain stimulation on patients with treatment-resistant depression is strongly dependent on the connectivity of the stimulation region with other regions associated with depression. The aims of this study are to characterize the effective connectivity between the brain regions playing important roles in depression and further investigate the underlying pathophysiological mechanisms of treatment-resistant depression and the mechanisms involving deep brain stimulation. Thirty-three individuals with treatment-resistant depression and 29 healthy control subjects were examined. All subjects underwent resting-state functional MRI scanning. The coupling parameters reflecting the causal interactions among deep brain stimulation targets and medial prefrontal cortex were estimated using spectral dynamic causal modelling. Our results showed that compared to the healthy control subjects, in the left hemisphere of treatment-resistant depression patients, the nucleus accumbens was inhibited by the inferior thalamic peduncle and excited the ventral caudate and the subcallosal cingulate gyrus, which in turn excited the lateral habenula. In the right hemisphere, the lateral habenula inhibited the ventral caudate and the nucleus accumbens, both of which inhibited the inferior thalamic peduncle, which in turn inhibited the cingulate gyrus. The ventral caudate excited the lateral habenula and the cingulate gyrus, which excited the medial prefrontal cortex. Furthermore, these effective connectivity links varied between males and females, and the left and right hemispheres. Our findings suggest that intrinsic excitatory/inhibitory connections between deep brain stimulation targets are impaired in treatment-resistant depression patients, and that these connections are sex dependent and hemispherically lateralized. This knowledge can help to better understand the underlying mechanisms of treatment-resistant depression, and along with tractography, structural imaging, and other relevant clinical information, may assist to determine the appropriate region for deep brain stimulation therapy in each treatment-resistant depression patient.
Collapse
Affiliation(s)
- Saba Amiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran 1983969367, Iran
| | - Mohammad Arbabi
- Psychiatry, Psychosomatic Medicine Research Center Department, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Milad Rahimi
- Medical Physics and Biomedical Engineering Group, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1461884513, Iran
| | - Mansour Parvaresh-Rizi
- Neurosurgery Department, Iran University of Medical Sciences (IUMS), Tehran 02166509120, Iran
| | - Mehdi M Mirbagheri
- Medical Physics and Biomedical Engineering Group, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1461884513, Iran
- Physical Medicine and Rehabilitation Department, Northwestern University, Chicago IL 60611, USA
- Neural Engineering and Rehabilitation Research Center, Tehran 1146733711, Iran
| |
Collapse
|
40
|
Zanao TA, Luethi MS, Goerigk S, Suen P, Diaz AP, Soares JC, Brunoni AR. White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1421-1431. [PMID: 36336757 DOI: 10.1007/s00406-022-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been used as treatment for depression, but its effects are heterogeneous. We investigated, in a subsample of the clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECTTDCS), whether white matter areas associated with depression disorder were associated with tDCS response. Baseline diffusion tensor imaging data were analyzed from 49 patients (34 females, mean age 41.9) randomized to escitalopram 20 mg/day, tDCS (2 mA, 30 min, 22 sessions), or placebo. Antidepressant outcomes were assessed by Hamilton Depression Rating Scale-17 (HDRS) after 10-week treatment. We used whole-brain tractography for extracting white matter measures for anterior corpus callosum, and bilaterally for cingulum bundle, striato-frontal, inferior occipito-frontal fasciculus and uncinate. For the rostral body, tDCS group showed higher MD associated with antidepressant effects (estimate = -5.13 ± 1.64, p = 0.002), and tDCS significantly differed from the placebo and the escitalopram group. The left striato-frontal tract showed higher FA associated with antidepressant effects (estimate = -2.14 ± 0.72, p = 0.003), and tDCS differed only from the placebo group. For the right uncinate, the tDCS group lower AD values were associated with higher HDRS decrease (estimate = -1.45 ± 0.67, p = 0.031). Abnormalities in white matter MDD-related areas are associated with tDCS antidepressant effects. Suggested better white matter microstructure of the left prefrontal cortex was associated with tDCS antidepressant effects. Future studies should investigate whether these findings are driven by electric field diffusion and density in these areas.
Collapse
Affiliation(s)
- Tamires A Zanao
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Matthias S Luethi
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Stephan Goerigk
- Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, Laboratory of Neurosciences LIM-27), São Paulo, Brazil
- Department of Psychological Methodology and Assessment, LMU Munich, Munich, Germany
| | - Paulo Suen
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre P Diaz
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Jair C Soares
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - Andre R Brunoni
- Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Hospital Universitário, Departamento de Clínica Médica, Faculdade de Medicina da USP, São Paulo, Brazil.
| |
Collapse
|
41
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
42
|
Rimti FH, Shahbaz R, Bhatt K, Xiang A. A review of new insights into existing major depressive disorder biomarkers. Heliyon 2023; 9:e18909. [PMID: 37664743 PMCID: PMC10469054 DOI: 10.1016/j.heliyon.2023.e18909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
As major depressive disorder (MDD) is such a diverse condition, there are currently no clear ways for determining its severity, endophenotype, or therapy response. The distinctive nature of depression, the variability of analysis in literature and the large number of conceptually complicated biomarkers are some of the many reasons for the lack of progress. Markers are involved in the process of neurotrophic, metabolic, and inflammation as well as neuroendocrine and neurotransmitter systems' components. Some clinical indicators are strong enough so that can be measured using assessments of proteomic, genetic, metabolomics, neuroimaging, epigenetic and transcriptomic. Markers of oxidative stress, endocrine, inflammatory, proteomic, and growth indicators are currently among the promising biologic systems/markers identified in this analysis. This narrative review examines succinct studies which investigated cytokines of inflammatory factors, peripheral factors of development, metabolic and endocrine markers as pathophysiological biomarkers of MDD, and treatment responses. Endocrine and metabolic alterations have also been linked to MDD in various studies. So, this study summarizes all of the numerous biomarkers that are significant in the detection or treatment of MDD patients. The paper also provides an overview of various biomarkers which are important for the regulation and its effects on MDD.
Collapse
Affiliation(s)
| | | | - Kunj Bhatt
- McMaster University, Ontario, 00000, Canada
| | - Alex Xiang
- McMaster University, Ontario, 00000, Canada
| |
Collapse
|
43
|
Hanuka S, Olson EA, Admon R, Webb CA, Killgore WDS, Rauch SL, Rosso IM, Pizzagalli DA. Reduced anhedonia following internet-based cognitive-behavioral therapy for depression is mediated by enhanced reward circuit activation. Psychol Med 2023; 53:4345-4354. [PMID: 35713110 DOI: 10.1017/s0033291722001106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent psychiatric condition, yet many patients do not receive adequate treatment. Novel and highly scalable interventions such as internet-based cognitive-behavioral-therapy (iCBT) may help to address this treatment gap. Anhedonia, a hallmark symptom of MDD that refers to diminished interest and ability to experience pleasure, has been associated with reduced reactivity in a neural reward circuit that includes medial prefrontal and striatal brain regions. Whether iCBT can reduce anhedonia severity in MDD patients, and whether these therapeutic effects are accompanied by enhanced reward circuit reactivity has yet to be examined. METHODS Fifty-two MDD patients were randomly assigned to either 10-week iCBT (n = 26) or monitored attention control (MAC, n = 26) programs. All patients completed pre- and post-treatment assessments of anhedonia (Snaith-Hamilton Pleasure Scale; SHAPS) and reward circuit reactivity [monetary incentive delay (MID) task during functional magnetic resonance imaging (fMRI)]. Healthy control participants (n = 42) also underwent two fMRI scans while completing the MID task 10 weeks apart. RESULTS Both iCBT and MAC groups exhibited a reduction in anhedonia severity post-treatment. Nevertheless, only the iCBT group exhibited enhanced nucleus accumbens (Nacc) and subgenual anterior cingulate cortex (sgACC) activation and functional connectivity from pre- to post-treatment in response to reward feedback. Enhanced Nacc and sgACC activations were associated with reduced anhedonia severity following iCBT treatment, with enhanced Nacc activation also mediating the reduction in anhedonia severity post-treatment. CONCLUSIONS These findings suggest that increased reward circuit reactivity may contribute to a reduction in anhedonia severity following iCBT treatment for depression.
Collapse
Affiliation(s)
- Shir Hanuka
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Elizabeth A Olson
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Christian A Webb
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Scott L Rauch
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Ranjandish R, Kim G. Does Charge Balancing Ensure the Safety of the Electrical Stimulation and Is It Power Efficientƒ. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083110 DOI: 10.1109/embc40787.2023.10340438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Safety issues are the most important concern in electrical stimulation. Equating the charge in the anodic and cathodic phases, namely charge balancing or charge equalizing, is a well-known method to avoid tissue damage and/or electrode corrosion. The electrode-tissue interface is not ideal in practice and with a charge-balanced waveform, the electrode voltage becomes more positive compared to the pre-pulse value and corrosion happens. In this paper, we show that a charge balancer ensures the safety of stimulation if the rate of the irreversible Faradaic reactions is negligible, or when the pulse width of the stimulation phases is not comparable to the time constant of the electrode-tissue interface. Furthermore, charge balancing is studied with mathematical modeling for different types of tissue models, and the results are used to show the conditions that charge balancing does not ensure the safety of the electrical stimulation, and employing charge balancing not only increases the power consumption of the electrical-stimulation systems but also increases the rate of the electrode corrosion in these conditions. The main goal of this paper is to show that a charge controller is a general solution for ensuring the safety of the electrical stimulation, with an efficient, not excessive, amount of charge for the reversal phase and should be employed instead of charge balancers in generic stimulators.
Collapse
|
45
|
Vega-Zelaya L, Pastor J. The Network Systems Underlying Emotions: The Rational Foundation of Deep Brain Stimulation Psychosurgery. Brain Sci 2023; 13:943. [PMID: 37371421 PMCID: PMC10296681 DOI: 10.3390/brainsci13060943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Science and philosophy have tried to understand the origin of emotions for centuries. However, only in the last 150 years have we started to try to understand them in a neuroscientific scope. Emotions include physiological changes involving different systems, such as the endocrine or the musculoskeletal, but they also cause a conscious experience of those changes that are embedded in memory. In addition to the cortico-striato-thalamo-cortical circuit, which is the most important of the basal ganglia, the limbic system and prefrontal circuit are primarily involved in the process of emotion perceptions, thoughts, and memories. The purpose of this review is to describe the anatomy and physiology of the different brain structures involved in circuits that underlie emotions and behaviour, underlying the symptoms of certain psychiatric pathologies. These circuits are targeted during deep brain stimulation (DBS) and knowledge of them is mandatory to understand the clinical-physiological implications for the treatment. We summarize the main outcomes of DBS treatment in several psychiatric illness such as obsessive compulsive disorder, refractory depression, erethism and other conditions, aiming to understand the rationale for selecting these neural systems as targets for DBS.
Collapse
Affiliation(s)
| | - Jesús Pastor
- Clinical Neurophysiology, Instituto de Investigación Biomédica Hospital, Universitario de La Princesa, C/Diego de León 62, 28006 Madrid, Spain;
| |
Collapse
|
46
|
Chu Z, Yuan L, He M, Cheng Y, Lu Y, Xu X, Shen Z. Atrophy of bilateral nucleus accumbens in melancholic depression. Neuroreport 2023; 34:493-500. [PMID: 37270840 DOI: 10.1097/wnr.0000000000001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence from previous literature suggests that the nucleus accumbens (NAc), hippocampus, and amygdala play critical roles in the reward circuit. Meanwhile, it was also suggested that abnormalities in the reward circuit might be closely associated with the symptom of anhedonia of depression. However, few studies have investigated the structural alterations of the NAc, hippocampus, and amygdala in depression with anhedonia as the main clinical manifestation. Thus, the current study aimed to explore the structural changes of the subcortical regions among melancholic depression (MD) patients, especially in the NAc, hippocampus, and amygdala, to provide a theoretical basis for understanding the pathological mechanisms of MD. Seventy-two MD patients, 74 nonmelancholic depression (NMD) patients, and 81 healthy controls (HCs) matched for sex, age, and years of education were included in the study. All participants underwent T1-weighted MRI scans. Subcortical structure segmentation was performed using the FreeSurfer software. MD and NMD patients had reduced left hippocampal volume compared with HCs. Meanwhile, only MD patients had reduced bilateral NAc volumes. Moreover, correlation analyses showed correlations between left NAc volume and late insomnia and lassitude in MD patients. The reduced hippocampal volume may be related to the pathogenesis of major depressive disorder (MDD), and the reduced volume of the NAc may be the unique neural mechanism of MD. The findings of the current study suggest that future studies should investigate the different pathogenic mechanisms of different subtypes of MDD further to contribute to the development of individualized diagnostic and treatment protocols.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Lijin Yuan
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Mengxin He
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Yi Lu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University
- Yunnan Clinical Research Center for Mental Disorders
| |
Collapse
|
47
|
Runia N, Bergfeld IO, de Kwaasteniet BP, Luigjes J, van Laarhoven J, Notten P, Beute G, van den Munckhof P, Schuurman R, Denys D, van Wingen GA. Deep brain stimulation normalizes amygdala responsivity in treatment-resistant depression. Mol Psychiatry 2023; 28:2500-2507. [PMID: 36991129 DOI: 10.1038/s41380-023-02030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Deep brain stimulation (DBS) of the ventral anterior limb of the internal capsule (vALIC) is a promising intervention for treatment-resistant depression (TRD). However, the working mechanisms of vALIC DBS in TRD remain largely unexplored. As major depressive disorder has been associated with aberrant amygdala functioning, we investigated whether vALIC DBS affects amygdala responsivity and functional connectivity. To investigate the long-term effects of DBS, eleven patients with TRD performed an implicit emotional face-viewing paradigm during functional magnetic resonance imaging (fMRI) before DBS surgery and after DBS parameter optimization. Sixteen matched healthy controls performed the fMRI paradigm at two-time points to control for test-retest effects. To investigate the short-term effects of DBS de-activation after parameter optimization, thirteen patients additionally performed the fMRI paradigm after double-blind periods of active and sham stimulation. Results showed that TRD patients had decreased right amygdala responsivity compared to healthy controls at baseline. Long-term vALIC DBS normalized right amygdala responsivity, which was associated with faster reaction times. This effect was not dependent on emotional valence. Furthermore, active compared to sham DBS increased amygdala connectivity with sensorimotor and cingulate cortices, which was not significantly different between responders and non-responders. These results suggest that vALIC DBS restores amygdala responsivity and behavioral vigilance in TRD, which may contribute to the DBS-induced antidepressant effect.
Collapse
Affiliation(s)
- Nora Runia
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Isidoor O Bergfeld
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bart P de Kwaasteniet
- Isala Hospital, Department of Radiology and Nuclear Medicine, Zwolle, The Netherlands
| | - Judy Luigjes
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jan van Laarhoven
- Department of Psychiatry, ETZ, location Elisabeth, Tilburg, The Netherlands
| | - Peter Notten
- Department of Psychiatry, ETZ, location Elisabeth, Tilburg, The Netherlands
| | - Guus Beute
- Department of Neurosurgery, ETZ, location Elisabeth, Tilburg, The Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
| | - Rick Schuurman
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
| | - Damiaan Denys
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Pourahmad R, Saleki K, Esmaili M, Abdollahi A, Alijanizadeh P, Gholinejad MZ, Banazadeh M, Ahmadi M. Deep brain stimulation (DBS) as a therapeutic approach in gait disorders: What does it bring to the table? IBRO Neurosci Rep 2023; 14:507-513. [PMID: 37304345 PMCID: PMC10248795 DOI: 10.1016/j.ibneur.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Gait deficits are found in various degenerative central nervous system conditions, and are particularly a hallmark of Parkinson's disease (PD). While there is no cure for such neurodegenerative disorders, Levodopa is considered as the standard medication in PD patients. Often times, the therapy of severe PD consists of deep brain stimulation (DBS) of the subthalamic nucleus. Earlier research exploring the effect of gait have reported contradictory results or insufficient efficacy. A change in gait includes various parameters, such as step length, cadence, Double-stance phase duration which may be positively affected by DBS. DBS could also be effective in correcting the levodopa-induced postural sway abnormalities. Moreover, during normal walking, interaction among the subthalamic nucleus and cortex -essential regions which exert a role in locomotion- are coupled. However, during the freezing of gait, the activity is desynchronized. The mechanisms underlying DBS-induced neurobehavioral improvements in such scenarios requires further study. The present review discusses DBS in the context of gait, the benefits associated with DBS compared to standard pharmacotherapy options, and provides insights into future research.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Arian Abdollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Ahmadi
- Department of Neurology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
49
|
Jiang Y, Zhang T, Zhang M, Xie X, Tian Y, Wang K, Bai T. Apathy in melancholic depression and abnormal neural activity within the reward-related circuit. Behav Brain Res 2023; 444:114379. [PMID: 36870397 DOI: 10.1016/j.bbr.2023.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Major depressive disorder is a heterogeneous syndrome, of which the most common subtype is melancholic depression (MEL). Previous studies have indicated that anhedonia is frequently a cardinal feature in MEL. As a common syndrome of motivational deficit, anhedonia is closely associated with dysfunction in reward-related networks. However, little is currently known about apathy, another syndrome of motivational deficits, and the underlying neural mechanisms in MEL and non-melancholic depression (NMEL). Herein, the Apathy Evaluation Scale (AES) was used to compare apathy between MEL and NMEL. On the basis of resting-state functional magnetic resonance imaging, functional connectivity strength (FCS) and seed-based functional connectivity (FC) were calculated within reward-related networks and compared among 43 patients with MEL, 30 patients with NMEL, and 35 healthy controls. Patients with MEL had higher AES scores than those with NMEL (t = -2.20, P = 0.03). Relative to NMEL, MEL was associated with greater FCS (t = 4.27, P < 0.001) in the left ventral striatum (VS), and greater FC of the VS with the ventral medial prefrontal cortex (t = 5.03, P < 0.001) and dorsolateral prefrontal cortex (t = 3.18, P = 0.005). Taken together the results indicate that reward-related networks may play diverse pathophysiological roles in MEL and NMEL, thus providing potential directions for future interventions in the treatment of various depression subtypes.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ting Zhang
- Department of Psychiatry, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mengdan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaohui Xie
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanghua Tian
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| |
Collapse
|
50
|
Papp M, Gruca P, Litwa E, Lason M, Willner P. Optogenetic stimulation of transmission from prelimbic cortex to nucleus accumbens core overcomes resistance to venlafaxine in an animal model of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110715. [PMID: 36610613 DOI: 10.1016/j.pnpbp.2023.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Our earlier study demonstrated that repeated optogenetic stimulation of afferents from ventral hippocampus (vHIP) to the prelimbic region of medial prefrontal cortex (mPFC) overcame resistance to antidepressant treatment in Wistar-Kyoto (WKY) rats. These results suggested that antidepressant resistance may result from an insufficiency of transmission from vHIP to mPFC. Here we examined whether similar effects can be elicited from major output of mPFC; the pathway from to nucleus accumbens core (NAc). METHOD WKY rats were subjected to Chronic Mild Stress and were used in two sets of experiments: 1) they were treated acutely with optogenetic stimulation of afferents to NAc core originating from the mPFC, and 2) they were treated with chronic (5 weeks) venlafaxine (10 mg/kg) and/or repeated (once weekly) optogenetic stimulation of afferents to NAc originating from either mPFC or vHIP. RESULTS Chronic mild stress procedure decreased sucrose intake, open arm entries on elevated plus maze, and novel object recognition test. Acute optogenetic stimulation of the mPFC-NAc and vHIP-NAc pathways had no effect in sucrose or plus maze tests, but increased object recognition. Neither venlafaxine nor mPFC-NAc optogenetic stimulation alone was effective in reversing the effects of CMS, but the combination of chronic antidepressant and repeated optogenetic stimulation improved behaviour on all three measures. CONCLUSIONS The synergism between venlafaxine and mPFC-NAc optogenetic stimulation supports the hypothesis that the mechanisms of non-responsiveness of WKY rats involves a failure of antidepressant treatment to restore transmission in the mPFC-NAc pathway. Together with earlier results, this implicates insufficiency in a vHIP-mPFC-NAc circuit in non-responsiveness to antidepressant drugs.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|