1
|
Byeon H. Unveiling the invisible: How cutting-edge neuroimaging transforms adolescent depression diagnosis. World J Psychiatry 2025; 15:102953. [DOI: 10.5498/wjp.v15.i5.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025] Open
Abstract
Yu et al's study has advanced the understanding of the neural mechanisms underlying major depressive disorder (MDD) in adolescents, emphasizing the significant role of the amygdala. While traditional diagnostic methods have limitations in objectivity and accuracy, this research demonstrates a notable advancement through the integration of machine learning techniques with neuroimaging data. Utilizing resting-state functional magnetic resonance imaging (fMRI), the study investigated functional connectivity (FC) in adolescents with MDD, identifying notable reductions in regions such as the left inferior temporal gyrus and right lingual gyrus, alongside increased connectivity in Vermis-10. The application of support vector machines (SVM) to resting-state fMRI (rs-fMRI) data achieved an accuracy of 83.91%, sensitivity of 79.55%, and specificity of 88.37%, with an area under the curve of 0.6765. These results demonstrate how SVM analysis of rs-fMRI data represents a significant improvement in diagnostic precision, with reduced FC in the right lingual gyrus emerging as a particularly critical marker. These findings underscore the critical role of the amygdala in MDD pathophysiology and highlight the potential of rs-fMRI and SVM as tools for identifying reliable neuroimaging biomarkers.
Collapse
Affiliation(s)
- Haewon Byeon
- Worker's Care and Digital Health Lab, Department of Future Technology, Korea University of Technology and Education, Cheonan 31253, South Korea
| |
Collapse
|
2
|
Yin SQ, Li YH. Advancing the diagnosis of major depressive disorder: Integrating neuroimaging and machine learning. World J Psychiatry 2025; 15:103321. [PMID: 40109992 PMCID: PMC11886342 DOI: 10.5498/wjp.v15.i3.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025] Open
Abstract
Major depressive disorder (MDD), a psychiatric disorder characterized by functional brain deficits, poses considerable diagnostic and treatment challenges, especially in adolescents owing to varying clinical presentations. Biomarkers hold substantial clinical potential in the field of mental health, enabling objective assessments of physiological and pathological states, facilitating early diagnosis, and enhancing clinical decision-making and patient outcomes. Recent breakthroughs combine neuroimaging with machine learning (ML) to distinguish brain activity patterns between MDD patients and healthy controls, paving the way for diagnostic support and personalized treatment. However, the accuracy of the results depends on the selection of neuroimaging features and algorithms. Ensuring privacy protection, ML model accuracy, and fostering trust are essential steps prior to clinical implementation. Future research should prioritize the establishment of comprehensive legal frameworks and regulatory mechanisms for using ML in MDD diagnosis while safeguarding patient privacy and rights. By doing so, we can advance accuracy and personalized care for MDD.
Collapse
Affiliation(s)
- Shi-Qi Yin
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Ying-Huan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Chu T, Si X, Xie H, Ma H, Shi Y, Yao W, Xing D, Zhao F, Dong F, Gai Q, Che K, Guo Y, Chen D, Ming D, Mao N. Regional Structural-Functional Connectivity Coupling in Major Depressive Disorder Is Associated With Neurotransmitter and Genetic Profiles. Biol Psychiatry 2025; 97:290-301. [PMID: 39218135 DOI: 10.1016/j.biopsych.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abnormalities in structural-functional connectivity (SC-FC) coupling have been identified globally in patients with major depressive disorder (MDD). However, investigations have neglected the variability and hierarchical distribution of these abnormalities across different brain regions. Furthermore, the biological mechanisms that underlie regional SC-FC coupling patterns are not well understood. METHODS We enrolled 182 patients with MDD and 157 healthy control participants and quantified the intergroup differences in regional SC-FC coupling. Extreme gradient boosting (XGBoost), support vector machine, and random forest models were constructed to assess the potential of SC-FC coupling as biomarkers for MDD diagnosis and symptom prediction. Then, we examined the link between changes in regional SC-FC coupling in patients with MDD, neurotransmitter distributions, and gene expression. RESULTS We observed increased regional SC-FC coupling in the default mode network (t337 = 3.233) and decreased coupling in the frontoparietal network (t337 = -3.471) in patients with MDD compared with healthy control participants. XGBoost (area under the receiver operating characteristic curve = 0.853), support vector machine (area under the receiver operating characteristic curve = 0.832), and random forest (p < .05) models exhibited good prediction performance. The alterations in regional SC-FC coupling in patients with MDD were correlated with the distributions of 4 neurotransmitters (p < .05) and expression maps of specific genes. These enriched genes were implicated in excitatory neurons, inhibitory neurons, cellular metabolism, synapse function, and immune signaling. These findings were replicated on 2 brain atlases. CONCLUSIONS This work enhances our understanding of MDD and paves the way for the development of additional targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tongpeng Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Wei Yao
- Department of Neurology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Dong Xing
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business, University, Yantai, Shandong, China
| | - Fanghui Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yuting Guo
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Danni Chen
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
4
|
Zhang Y, Liu X, Tang P, Zhang Z. AFMDD: Analyzing Functional Connectivity Feature of Major Depressive Disorder by Graph Neural Network-Based Model. J Comput Biol 2025; 32:156-163. [PMID: 39899351 DOI: 10.1089/cmb.2024.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
The extraction of biomarkers from functional connectivity (FC) in the brain is of great significance for the diagnosis of mental disorders. In recent years, with the development of deep learning, several methods have been proposed to assist in the diagnosis of depression and promote its automatic identification. However, these methods still have some limitations. The current approaches overlook the importance of subgraphs in brain graphs, resulting in low accuracy. Using these methods with low accuracy for FC analysis may lead to unreliable results. To address these issues, we have designed a graph neural network-based model called AFMDD, specifically for analyzing FC features of depression and depression identification. Through experimental validation, our model has demonstrated excellent performance in depression diagnosis, achieving an accuracy of 73.15%, surpassing many state-of-the-art methods. In our study, we conducted visual analysis of nodes and edges in the FC networks of depression and identified several novel FC features. Those findings may provide valuable clues for the development of biomarkers for the clinical diagnosis of depression.
Collapse
Affiliation(s)
- Yan Zhang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xin Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Panrui Tang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zuping Zhang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
5
|
Fang Y, Wu J, Wang Q, Qiu S, Bozoki A, Liu M. Source-free collaborative domain adaptation via multi-perspective feature enrichment for functional MRI analysis. PATTERN RECOGNITION 2025; 157:110912. [PMID: 39246820 PMCID: PMC11378862 DOI: 10.1016/j.patcog.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Resting-state functional MRI (rs-fMRI) is increasingly employed in multi-site research to analyze neurological disorders, but there exists cross-site/domain data heterogeneity caused by site effects such as differences in scanners/protocols. Existing domain adaptation methods that reduce fMRI heterogeneity generally require accessing source domain data, which is challenging due to privacy concerns and/or data storage burdens. To this end, we propose a source-free collaborative domain adaptation (SCDA) framework using only a pretrained source model and unlabeled target data. Specifically, a multi-perspective feature enrichment method (MFE) is developed to dynamically exploit target fMRIs from multiple views. To facilitate efficient source-to-target knowledge transfer without accessing source data, we initialize MFE using parameters of a pretrained source model. We also introduce an unsupervised pretraining strategy using 3,806 unlabeled fMRIs from three large-scale auxiliary databases. Experimental results on three public and one private datasets show the efficacy of our method in cross-scanner and cross-study prediction.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinjian Wu
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510130, China
| | - Qianqian Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shijun Qiu
- Department of Radiology, The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Andrea Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Wang P, Bai Y, Xiao Y, Zheng Y, Sun L, Consortium TD, Wang J, Xue S. Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder. J Zhejiang Univ Sci B 2024; 26:39-51. [PMID: 39815609 PMCID: PMC11735912 DOI: 10.1631/jzus.b2300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/19/2024] [Indexed: 01/18/2025]
Abstract
White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown. Herein, we investigated the topological structure alterations of white-matter morphological brain networks in 233 MDD patients versus 257 matched healthy controls (HCs) from the DIRECT consortium. White-matter networks were derived from magnetic resonance imaging (MRI) data by combining voxel-based morphometry (VBM) and three-dimensional discrete wavelet transform (3D-DWT) approaches. Support vector machine (SVM) analysis was performed to discriminate MDD patients from HCs. The results indicated that the network topological changes in node degree, node efficiency, and node betweenness were mainly located in the sensorimotor superficial white-matter system in MDD. Using network nodal topological properties as classification features, the SVM model could effectively distinguish MDD patients from HCs. These findings provide new evidence to highlight the importance of the sensorimotor system in brain mechanisms underlying MDD from a new perspective of white-matter morphological network.
Collapse
Affiliation(s)
- Peng Wang
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
| | - Yanling Bai
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Xiao
- Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing 100191, China
| | - Yuhong Zheng
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
| | - Li Sun
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
| | - The Direct Consortium
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou 311121, China
- Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing 100191, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Shaowei Xue
- Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China.
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou 311121, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, China.
| |
Collapse
|
7
|
Li J, Segel A, Feng X, Tu JC, Eck A, King KT, Adeyemo B, Karcher NR, Chen L, Eggebrecht AT, Wheelock MD. Network-level enrichment provides a framework for biological interpretation of machine learning results. Netw Neurosci 2024; 8:762-790. [PMID: 39355443 PMCID: PMC11349033 DOI: 10.1162/netn_a_00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Machine learning algorithms are increasingly being utilized to identify brain connectivity biomarkers linked to behavioral and clinical outcomes. However, research often prioritizes prediction accuracy at the expense of biological interpretability, and inconsistent implementation of ML methods may hinder model accuracy. To address this, our paper introduces a network-level enrichment approach, which integrates brain system organization in the context of connectome-wide statistical analysis to reveal network-level links between brain connectivity and behavior. To demonstrate the efficacy of this approach, we used linear support vector regression (LSVR) models to examine the relationship between resting-state functional connectivity networks and chronological age. We compared network-level associations based on raw LSVR weights to those produced from the forward and inverse models. Results indicated that not accounting for shared family variance inflated prediction performance, the k-best feature selection via Pearson correlation reduced accuracy and reliability, and raw LSVR model weights produced network-level associations that deviated from the significant brain systems identified by forward and inverse models. Our findings offer crucial insights for applying machine learning to neuroimaging data, emphasizing the value of network enrichment for biological interpretation.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Ari Segel
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Xinyang Feng
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Andy Eck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Kelsey T. King
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Nicole R. Karcher
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Likai Chen
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Muriah D. Wheelock
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| |
Collapse
|
8
|
Karatzoglou V, Carollo A, Karagiannopoulou E, Esposito G, Séaghdha XTÓ, Dimitriou D. A scientometric review of the association between childhood trauma and sleep. Acta Psychol (Amst) 2024; 250:104488. [PMID: 39303583 DOI: 10.1016/j.actpsy.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Sleep is a complex state which involves interactions between neurophysiological, psychological and neurochemical processes which in turn have an important impact on brain functioning, immune responses, mental health, and quality of life. The incidence of Adverse Childhood Experiences (ACEs) varies across different countries and have been linked with lifespan sleep disturbances with further effects on people's physical and mental health functioning. This review aims to explore the significance of ACE and its impact on sleep by identifying key documents, thematic trends, and knowledge gaps in the literature. A document co-citation analysis of 882 documents from Scopus was conducted to achieve this goal. Research trends focused on the long-term consequences of childhood adverse events with respect to sleep, with emphasis on the role of type, timing and accumulation of these experiences. A recent study has also taken advantage of machine learning and network analysis for discovering essential factors could offer useful information about adults with history of childhood adversity and sleep problems. The studies show unanimously that ACEs are associated with multiple sleep disturbances/disorders which can persist into adulthood, with consequences for suboptimal cognitive and behavioral functioning. Such neurobiological scars can be associated with an increased risk of mental disorders. Future studies are needed that focus on longitudinal analysis of the relationship between early adversity, sleep, and resilience characteristics in adult populations exploring the use of objective assessment measures as well as neurobiological markers.
Collapse
Affiliation(s)
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | | | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Xóté Tadhg Ó Séaghdha
- ReducingSAD - The National Organisation for Reducing Stress, Anxiety & Depression, Johann Aberli Strasse, CH-2503 Biel/Bienne, Switzerland
| | - Dagmara Dimitriou
- Sleep Education and Research Laboratory, Psychology and Human Development, UCL Institute of Education, London WC1H 0AA, UK.
| |
Collapse
|
9
|
He P, Lu X, Zhong M, Weng H, Wang J, Zhang X, Jiang C, Geng F, Shi Y, Zhang G. Plasma alpha-trypsin inhibitor heavy chain 4 as an age-specific biomarker in the diagnosis and treatment of major depressive disorder. Front Psychiatry 2024; 15:1449202. [PMID: 39323962 PMCID: PMC11422199 DOI: 10.3389/fpsyt.2024.1449202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background The diagnosis of major depressive disorder (MDD) mainly depends on subjective clinical symptoms, without an acceptable objective biomarker for the clinical application of MDD. Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) showed a high specificity as biomarker for the diagnosis and treatment of MDD. The present study aimed to investigate differences in plasma ITIH4 in two different aged MDD patients and underlying pathological mechanisms of plasma ITIH4 in the occurrence and development of MDD. Methods Sixty-five adult MDD patients, 51 adolescent MDD patients, and 64 healthy controls (HCs) were included in the present study. A 14-days' antidepressive treatment was conducted in all MDD patients. Psychological assessments were performed and plasma ITIH4 and astrocyte-related markers were detected for all participants. Results (1) Plasma levels of ITIH4 in adult MDD patients were significantly higher than adolescent MDD patients and HCs, and significantly increased plasma ITIH4 levels was observed in adolescent MDD patients compared with HCs (2). There were positive correlations between plasma ITIH4 levels and 24-item Hamilton Depression Scale (HAMD-24) scores and plasma glial fibrillary acidic protein (GFAP) levels in MDD patients, however, plasma ITIH4 levels were significantly correlated with age just in adult MDD patients (3). Plasma ITIH4 showed area under the curve values of 0.824 and 0.729 to differentiate adult MDD patients and adolescent MDD patients from HCs, respectively (4). There was significant decrease in plasma levels of ITIH4 between before and after antidepressive treatment in adult MDD patients, but not in adolescent MDD patients (5). Changed value of ITIH4 levels were correlated with the changed value of GFAP levels and changed rate of HAMD-24 scores in adult MDD patients following antidepressive treatment. Conclusion Plasma ITIH4 may be potential plasma biomarkers of MDD with age-related specificity, which was associated with depressive symptoms astrocyte-related pathologic changes, and antidepressive treatment efficacy.
Collapse
Affiliation(s)
- Ping He
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xuefang Lu
- Department of Rehabilitation Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Weng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jialu Wang
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chen Jiang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Gaojia Zhang
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Chan YL, Ho CSH, Tay GWN, Tan TWK, Tang TB. MicroRNA classification and discovery for major depressive disorder diagnosis: Towards a robust and interpretable machine learning approach. J Affect Disord 2024; 360:326-335. [PMID: 38788856 DOI: 10.1016/j.jad.2024.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is notably underdiagnosed and undertreated due to its complex nature and subjective diagnostic methods. Biomarker identification would help provide a clearer understanding of MDD aetiology. Although machine learning (ML) has been implemented in previous studies to study the alteration of microRNA (miRNA) levels in MDD cases, clinical translation has not been feasible due to the lack of interpretability (i.e. too many miRNAs for consideration) and stability. METHODS This study applied logistic regression (LR) model to the blood miRNA expression profile to differentiate patients with MDD (n = 60) from healthy controls (HCs, n = 60). Embedded (L1-regularised logistic regression) feature selector was utilised to extract clinically relevant miRNAs, and optimized for clinical application. RESULTS Patients with MDD could be differentiated from HCs with the area under the receiver operating characteristic curve (AUC) of 0.81 on testing data when all available miRNAs were considered (which served as a benchmark). Our LR model selected miRNAs up to 5 (known as LR-5 model) emerged as the best model because it achieved a moderate classification ability (AUC = 0.75), relatively high interpretability (feature number = 5) and stability (ϕ̂Z=0.55) compared to the benchmark. The top-ranking miRNAs identified by our model have demonstrated associations with MDD pathways involving cytokine signalling in the immune system, the reelin signalling pathway, programmed cell death and cellular responses to stress. CONCLUSION The LR-5 model, which is optimised based on ML design factors, may lead to a robust and clinically usable MDD diagnostic tool.
Collapse
Affiliation(s)
- Yee Ling Chan
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar 32610, Perak, Malaysia
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Gabrielle W N Tay
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Trevor W K Tan
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore 117456, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar 32610, Perak, Malaysia.
| |
Collapse
|
11
|
Hu J, Huang Y, Wang N, Dong S. BrainNPT: Pre-Training Transformer Networks for Brain Network Classification. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2727-2736. [PMID: 39074019 DOI: 10.1109/tnsre.2024.3434343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, such as natural language processing. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged token as a classification embedding vector for the Transformer model to effectively capture the representation of brain networks. Second, we proposed a pre-training framework for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain functional networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies and the data augmentation methods, analyzed the influence of the parameters of the model, and explained the trained model.
Collapse
|
12
|
Wu Y, Yao J, Xu XM, Zhou LL, Salvi R, Ding S, Gao X. Combination of static and dynamic neural imaging features to distinguish sensorineural hearing loss: a machine learning study. Front Neurosci 2024; 18:1402039. [PMID: 38933814 PMCID: PMC11201293 DOI: 10.3389/fnins.2024.1402039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose Sensorineural hearing loss (SNHL) is the most common form of sensory deprivation and is often unrecognized by patients, inducing not only auditory but also nonauditory symptoms. Data-driven classifier modeling with the combination of neural static and dynamic imaging features could be effectively used to classify SNHL individuals and healthy controls (HCs). Methods We conducted hearing evaluation, neurological scale tests and resting-state MRI on 110 SNHL patients and 106 HCs. A total of 1,267 static and dynamic imaging characteristics were extracted from MRI data, and three methods of feature selection were computed, including the Spearman rank correlation test, least absolute shrinkage and selection operator (LASSO) and t test as well as LASSO. Linear, polynomial, radial basis functional kernel (RBF) and sigmoid support vector machine (SVM) models were chosen as the classifiers with fivefold cross-validation. The receiver operating characteristic curve, area under the curve (AUC), sensitivity, specificity and accuracy were calculated for each model. Results SNHL subjects had higher hearing thresholds in each frequency, as well as worse performance in cognitive and emotional evaluations, than HCs. After comparison, the selected brain regions using LASSO based on static and dynamic features were consistent with the between-group analysis, including auditory and nonauditory areas. The subsequent AUCs of the four SVM models (linear, polynomial, RBF and sigmoid) were as follows: 0.8075, 0.7340, 0.8462 and 0.8562. The RBF and sigmoid SVM had relatively higher accuracy, sensitivity and specificity. Conclusion Our research raised attention to static and dynamic alterations underlying hearing deprivation. Machine learning-based models may provide several useful biomarkers for the classification and diagnosis of SNHL.
Collapse
Affiliation(s)
- Yuanqing Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Otorhinolaryngology Head and Neck Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Min Xu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei-Lei Zhou
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Shaohua Ding
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Xia Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Dai P, Shi Y, Lu D, Zhou Y, Luo J, He Z, Chen Z, Zou B, Tang H, Huang Z, Liao S. Classification of recurrent major depressive disorder using a residual denoising autoencoder framework: Insights from large-scale multisite fMRI data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108114. [PMID: 38447315 DOI: 10.1016/j.cmpb.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder. METHODS We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD. The functional connectivity (FC) was extracted from fMRI data as features. The framework addresses site heterogeneity by employing the Combat method to harmonize feature distribution differences. A feature selection method based on Fisher scores was used to reduce redundant information in the features. A data augmentation strategy using a Synthetic Minority Over-sampling Technique algorithm based on Extended Frobenius Norm measure was incorporated to increase the sample size. Furthermore, a residual module was integrated into the autoencoder network to preserve important features and improve the classification accuracy. RESULTS We tested our framework on a large-scale, multisite fMRI dataset, which includes 189 rMDD patients and 427 healthy controls. The Res-DAE achieved an average accuracy of 75.1 % (sensitivity = 69 %, specificity = 77.8 %) in cross-validation, thereby outperforming comparison methods. In a larger dataset that also includes first-episode depression (comprising 832 MDD patients and 779 healthy controls), the accuracy reached 70 %. CONCLUSIONS We proposed a deep learning framework that can effectively classify rMDD and 33 identify the altered FC associated with rMDD. Our study may reveal changes in brain function 34 associated with rMDD and provide assistance for the diagnosis and treatment of rMDD.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yun Shi
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Da Lu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jialin Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhuang He
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Tang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410083, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410083, China
| | - Shenghui Liao
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
14
|
Luo J, Chen Y, Tao Y, Xu Y, Yu K, Liu R, Jiang Y, Cai C, Mao Y, Li J, Yang Z, Deng T. Major Depressive Disorder Prediction Based on Sleep-Wake Disorders Symptoms in US Adolescents: A Machine Learning Approach from National Sleep Research Resource. Psychol Res Behav Manag 2024; 17:691-703. [PMID: 38410378 PMCID: PMC10896099 DOI: 10.2147/prbm.s453046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Background There is substantial evidence from previous studies that abnormalities in sleep parameters associated with depression are demonstrated in almost all stages of sleep architecture. Patients with symptoms of sleep-wake disorders have a much higher risk of developing major depressive disorders (MDD) compared to those without. Objective The aim of the present study is to establish and compare the performance of different machine learning models based on sleep-wake disorder symptoms data and to select the optimal model to interpret the importance of sleep-wake disorder symptoms to predict MDD occurrence in adolescents. Methods We derived data for this work from 2020 to 2021 Assessing Nocturnal Sleep/Wake Effects on Risk of Suicide Phase I Study from National Sleep Research Resource. Using demographic and sleep-wake disorder symptoms data as predictors and the occurrence of MDD measured base on the center for epidemiologic studies depression scale as an outcome, the following six machine learning predictive models were developed: eXtreme Gradient Boosting model (XGBoost), Light Gradient Boosting mode, AdaBoost, Gaussian Naïve Bayes, Complement Naïve Bayes, and multilayer perceptron. The models' performance was assessed using the AUC and other metrics, and the final model's predictor importance ranking was explained. Results XGBoost is the optimal predictive model in comprehensive performance with the AUC of 0.804 in the test set. All sleep-wake disorder symptoms were significantly positively correlated with the occurrence of adolescent MDD. The insomnia severity was the most important predictor compared with the other predictors in this study. Conclusion This machine learning predictive model based on sleep-wake disorder symptoms can help to raise the awareness of risk of symptoms between sleep-wake disorders and MDD in adolescents and improve primary care and prevention.
Collapse
Affiliation(s)
- Jingsong Luo
- School of Nursing, The Chengdu University of Traditional Chinese Medicine, Sichuan, 610000, People's Republic of China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yuxin Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yanmin Tao
- School of Nursing, The Chengdu University of Traditional Chinese Medicine, Sichuan, 610000, People's Republic of China
| | - Yaxin Xu
- School of Nursing, Tongji University, Shanghai, 200000, People's Republic of China
| | - Kexin Yu
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ranran Liu
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yuchen Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Cichong Cai
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yiyang Mao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jingyi Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ziyi Yang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tingting Deng
- School of Nursing, The Chengdu University of Traditional Chinese Medicine, Sichuan, 610000, People's Republic of China
| |
Collapse
|
15
|
Jin Y, Xu S, Shao Z, Luo X, Wang Y, Yu Y, Wang Y. Discovery of depression-associated factors among childhood trauma victims from a large sample size: Using machine learning and network analysis. J Affect Disord 2024; 345:300-310. [PMID: 37865343 DOI: 10.1016/j.jad.2023.10.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Experiences of childhood trauma (CT) would lead to serious mental problems, especially depression. Therefore, it becomes crucial to identify influential factors related to depression and explore their associations. The objectives were to 1) identify critical depression-related factors using the extreme gradient boosting (XGBoost) method from a large-scale survey data; 2) explore associations between these factors for targeted interventions and treatments. METHODS A large-scale epidemiological study covering 63 universities was conducted in Jilin Province, China. The XGBoost model was trained and tested to classify young adults with CT experiences who had or did not have depression (N = 27,671). The essential factors were selected by SHapley Additive exPlanations (SHAP) value. Multiple logistic regression analyses were conducted for validation. The associations between these depression-related factors were further explored using network analysis. RESULTS The XGBoost model selected the top 10 features associated with depression with satisfactory performance (AUC = 0.91; sensitivity = 0.88 and specificity = 0.76). These factors significantly differed between depression and non-depression groups (p < 0.001). There are strong positive associations between anxiety and obsessive-compulsive disorder (OCD), anxiety and post-traumatic stress disorder (PTSD), social anxiety disorder (SAD) and appearance anxiety, and negative associations between sleep quality and anxiety, sleep quality and PTSD among CT participants with depression. LIMITATIONS The cross-sectional design cannot draw causality, and biases in self-report measurements cannot be ignored. CONCLUSIONS XGBoost model and network analysis were useful methods for discovering and understanding depression-related factors in this epidemiological study. Moreover, these essential factors could offer insights into future interventions and treatments for depressed young adults with CT experiences.
Collapse
Affiliation(s)
- Yu Jin
- College of Education for the Future, Beijing Normal University, Beijing, China
| | - Shicun Xu
- Northeast Asian Research Center, Jilin University, Changchun, China; Department of Population, Resources and Environment, Northeast Asian Studies College, Jilin University, Changchun, China; China Center for Aging Studies and Social-Economic Development, Jilin University, Changchun, China
| | - Zhixian Shao
- School of Statistics, Beijing Normal University, Beijing, China
| | - Xianyu Luo
- College of Education for the Future, Beijing Normal University, Beijing, China
| | - Yinzhe Wang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Yi Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
16
|
Dai P, Zhou Y, Shi Y, Lu D, Chen Z, Zou B, Liu K, Liao S, The REST‐meta‐MDD Consortium. Classification of MDD using a Transformer classifier with large-scale multisite resting-state fMRI data. Hum Brain Mapp 2024; 45:e26542. [PMID: 38088473 PMCID: PMC10789197 DOI: 10.1002/hbm.26542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024] Open
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide with high recurrence rate. Identifying MDD patients, particularly those with recurrent episodes with resting-state fMRI, may reveal the relationship between MDD and brain function. We proposed a Transformer-Encoder model, which utilized functional connectivity extracted from large-scale multisite rs-fMRI datasets to classify MDD and HC. The model discarded the Transformer's Decoder part, reducing the model's complexity and decreasing the number of parameters to adapt to the limited sample size and it does not require a complex feature selection process and achieves end-to-end classification. Additionally, our model is suitable for classifying data combined from multiple brain atlases and has an optional unsupervised pre-training module to acquire optimal initial parameters and speed up the training process. The model's performance was tested on a large-scale multisite dataset and identified brain regions affected by MDD using the Grad-CAM method. After conducting five-fold cross-validation, our model achieved an average classification accuracy of 68.61% on a dataset consisting of 1611 samples. For the selected recurrent MDD dataset, the model reached an average classification accuracy of 78.11%. Abnormalities were detected in the frontal gyri and cerebral cortex of MDD patients in both datasets. Furthermore, the identified brain regions in the recurrent MDD dataset generally exhibited a higher contribution to the model's performance.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Ying Zhou
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Yun Shi
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Da Lu
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Zailiang Chen
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Beiji Zou
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Kun Liu
- Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaChina
| | - Shenghui Liao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | | |
Collapse
|
17
|
Luo Y, Chen W, Zhan L, Qiu J, Jia T. Multi-feature concatenation and multi-classifier stacking: An interpretable and generalizable machine learning method for MDD discrimination with rsfMRI. Neuroimage 2024; 285:120497. [PMID: 38142755 DOI: 10.1016/j.neuroimage.2023.120497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Major depressive disorder (MDD) is a serious and heterogeneous psychiatric disorder that needs accurate diagnosis. Resting-state functional MRI (rsfMRI), which captures multiple perspectives on brain structure, function, and connectivity, is increasingly applied in the diagnosis and pathological research of MDD. Different machine learning algorithms are then developed to exploit the rich information in rsfMRI and discriminate MDD patients from normal controls. Despite recent advances reported, the MDD discrimination accuracy has room for further improvement. The generalizability and interpretability of the discrimination method are not sufficiently addressed either. Here, we propose a machine learning method (MFMC) for MDD discrimination by concatenating multiple features and stacking multiple classifiers. MFMC is tested on the REST-meta-MDD data set that contains 2428 subjects collected from 25 different sites. MFMC yields 96.9% MDD discrimination accuracy, demonstrating a significant improvement over existing methods. In addition, the generalizability of MFMC is validated by the good performance when the training and testing subjects are from independent sites. The use of XGBoost as the meta classifier allows us to probe the decision process of MFMC. We identify 13 feature values related to 9 brain regions including the posterior cingulate gyrus, superior frontal gyrus orbital part, and angular gyrus, which contribute most to the classification and also demonstrate significant differences at the group level. The use of these 13 feature values alone can reach 87% of MFMC's full performance when taking all feature values. These features may serve as clinically useful diagnostic and prognostic biomarkers for MDD in the future.
Collapse
Affiliation(s)
- Yunsong Luo
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| | - Wenyu Chen
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| | - Ling Zhan
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, PR China; School of Psychology, Southwest University (SWU), Chongqing, 400715, PR China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, 400715, PR China.
| | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
18
|
Chen Y, Zhao W, Yi S, Liu J. The diagnostic performance of machine learning based on resting-state functional magnetic resonance imaging data for major depressive disorders: a systematic review and meta-analysis. Front Neurosci 2023; 17:1174080. [PMID: 37811326 PMCID: PMC10559726 DOI: 10.3389/fnins.2023.1174080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Machine learning (ML) has been widely used to detect and evaluate major depressive disorder (MDD) using neuroimaging data, i.e., resting-state functional magnetic resonance imaging (rs-fMRI). However, the diagnostic efficiency is unknown. The aim of the study is to conduct an updated meta-analysis to evaluate the diagnostic performance of ML based on rs-fMRI data for MDD. Methods English databases were searched for relevant studies. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the methodological quality of the included studies. A random-effects meta-analytic model was implemented to investigate the diagnostic efficiency, including sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). Regression meta-analysis and subgroup analysis were performed to investigate the cause of heterogeneity. Results Thirty-one studies were included in this meta-analysis. The pooled sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.80 (0.75, 0.83), 0.83 (0.74, 0.82), 14.00 (9, 22.00), and 0.86 (0.83, 0.89), respectively. Substantial heterogeneity was observed among the studies included. The meta-regression showed that the leave-one-out cross-validation (loocv) (sensitivity: p < 0.01, specificity: p < 0.001), graph theory (sensitivity: p < 0.05, specificity: p < 0.01), n > 100 (sensitivity: p < 0.001, specificity: p < 0.001), simens equipment (sensitivity: p < 0.01, specificity: p < 0.001), 3.0T field strength (Sensitivity: p < 0.001, specificity: p = 0.04), and Beck Depression Inventory (BDI) (sensitivity: p = 0.04, specificity: p = 0.06) might be the sources of heterogeneity. Furthermore, the subgroup analysis showed that the sample size (n > 100: sensitivity: 0.71, specificity: 0.72, n < 100: sensitivity: 0.81, specificity: 0.79), the different levels of disease evaluated by the Hamilton Depression Rating Scale (HDRS/HAMD) (mild vs. moderate vs. severe: sensitivity: 0.52 vs. 0.86 vs. 0.89, specificity: 0.62 vs. 0.78 vs. 0.82, respectively), the depression scales in patients with comparable levels of severity. (BDI vs. HDRS/HAMD: sensitivity: 0.86 vs. 0.87, specificity: 0.78 vs. 0.80, respectively), and the features (graph vs. functional connectivity: sensitivity: 0.84 vs. 0.86, specificity: 0.76 vs. 0.78, respectively) selected might be the causes of heterogeneity. Conclusion ML showed high accuracy for the automatic diagnosis of MDD. Future studies are warranted to promote the potential use of these classification algorithms in clinical settings.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
19
|
Fang Y, Potter GG, Wu D, Zhu H, Liu M. Addressing multi-site functional MRI heterogeneity through dual-expert collaborative learning for brain disease identification. Hum Brain Mapp 2023; 44:4256-4271. [PMID: 37227019 PMCID: PMC10318248 DOI: 10.1002/hbm.26343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Several studies employ multi-site rs-fMRI data for major depressive disorder (MDD) identification, with a specific site as the to-be-analyzed target domain and other site(s) as the source domain. But they usually suffer from significant inter-site heterogeneity caused by the use of different scanners and/or scanning protocols and fail to build generalizable models that can well adapt to multiple target domains. In this article, we propose a dual-expert fMRI harmonization (DFH) framework for automated MDD diagnosis. Our DFH is designed to simultaneously exploit data from a single labeled source domain/site and two unlabeled target domains for mitigating data distribution differences across domains. Specifically, the DFH consists of a domain-generic student model and two domain-specific teacher/expert models that are jointly trained to perform knowledge distillation through a deep collaborative learning module. A student model with strong generalizability is finally derived, which can be well adapted to unseen target domains and analysis of other brain diseases. To the best of our knowledge, this is among the first attempts to investigate multi-target fMRI harmonization for MDD diagnosis. Comprehensive experiments on 836 subjects with rs-fMRI data from 3 different sites show the superiority of our method. The discriminative brain functional connectivities identified by our method could be regarded as potential biomarkers for fMRI-related MDD diagnosis.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Guy G. Potter
- Departments of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Di Wu
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Hongtu Zhu
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Mingxia Liu
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
20
|
Shi Y, Zhao E, Li L, Zhao S, Mao H, Deng J, Ji W, Li Y, Gao Q, Zeng S, Ma L, Xi G, You Y, Shao J, Fang X, Wang F. Alteration and clinical potential in gut microbiota in patients with cerebral small vessel disease. Front Cell Infect Microbiol 2023; 13:1231541. [PMID: 37496806 PMCID: PMC10366612 DOI: 10.3389/fcimb.2023.1231541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a cluster of microvascular disorders with unclear pathological mechanisms. The microbiota-gut-brain axis is an essential regulatory mechanism between gut microbes and their host. Therefore, the compositional and functional gut microbiota alterations lead to cerebrovascular disease pathogenesis. The current study aims to determine the alteration and clinical value of the gut microbiota in CSVD patients. Methods Sixty-four CSVD patients and 18 matched healthy controls (HCs) were included in our study. All the participants underwent neuropsychological tests, and the multi-modal magnetic resonance imaging depicted the changes in brain structure and function. Plasma samples were collected, and the fecal samples were analyzed with 16S rRNA gene sequencing. Results Based on the alpha diversity analysis, the CSVD group had significantly decreased Shannon and enhanced Simpson compared to the HC group. At the genus level, there was a significant increase in the relative abundances of Parasutterella, Anaeroglobus, Megasphaera, Akkermansia, Collinsella, and Veillonella in the CSVD group. Moreover, these genera with significant differences in CSVD patients revealed significant correlations with cognitive assessments, plasma levels of the blood-brain barrier-/inflammation-related indexes, and structural/functional magnetic resonance imaging changes. Functional prediction demonstrated that lipoic acid metabolism was significantly higher in CSVD patients than HCs. Additionally, a composite biomarker depending on six gut microbiota at the genus level displayed an area under the curve of 0.834 to distinguish CSVD patients from HCs using the least absolute shrinkage and selection operator (LASSO) algorithm. Conclusion The evident changes in gut microbiota composition in CSVD patients were correlated with clinical features and pathological changes of CSVD. Combining these gut microbiota using the LASSO algorithm helped identify CSVD accurately.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - En Zhao
- Department of Gastroenterology, Xishan People’s Hospital of Wuxi City, Wuxi, China
| | - Lei Li
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Haixia Mao
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jingyu Deng
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yang Li
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Siyuan Zeng
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lin Ma
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yiping You
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junfei Shao
- Department of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Department of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
21
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
22
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
23
|
Fang Y, Wang M, Potter GG, Liu M. Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification. Med Image Anal 2023; 84:102707. [PMID: 36512941 PMCID: PMC9850278 DOI: 10.1016/j.media.2022.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
24
|
Park SY, Kim YW, Song YR, Bak SB, Jang YP, Kim IK, Kim JH, Kim CE. Compound-level identification of sasang constitution type-specific personalized herbal medicine using data science approach. Heliyon 2023; 9:e13692. [PMID: 36852049 PMCID: PMC9957892 DOI: 10.1016/j.heliyon.2023.e13692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Sasang Constitutional Medicine (SCM) is a type of traditional Korean medicine where patients are classified as one of four Sasang constitution types (Sasang type) and medications consisting of medicinal herbs are prescribed according to the Sasang type. Despite the importance of personalized medicine, the operation mechanism is largely unknown. To gain a better understanding, we investigated the compound information that composes Sasang type-specific personalized herbal medicines on both multivariate and univariate levels. Methods Five machine learning classifiers including extremely randomized trees (ERT) were trained to investigate whether the Sasang type can be explained by compound information at the multivariate level. Hierarchical clustering was conducted to determine whether compounds are processed distributedly or specifically. Taxonomic and biosynthetic analyses were conducted on these compounds. A univariate level statistical test was conducted to provide more robust Sasang type-specific compound information. Results Using the trained ERT classifier, sixty important compounds were extracted. The sixty compounds were clustered into three groups, corresponding to each Sasang type-prominent compounds, suggesting that most compounds have specific preference for the Sasang type. Structural and biosynthetic characteristics of these Sasang type-prominent compounds were determined based on taxonomy and pathway analyses. Fourteen compounds showed statistically significant relevance with the Sasang type. Additionally, we predicted the Sasang type of unknown herbs, which were confirmed by their biological effects in functional assays. Conclusion This study investigated the personalized herbal medicines of the SCM using compound information. This study provided information on the chemical characteristics of the compounds that are essential for classifying the Sasang type of medicinal herbs, as well as predictions regarding the Sasang type of the commonly used but unidentified medicinal herbs.
Collapse
Affiliation(s)
- Sa-Yoon Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Young Woo Kim
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.,School of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yu Rim Song
- School of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Young Pyo Jang
- College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Il-Kon Kim
- Department of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hwan Kim
- Department of Sasang Constitutional Medicine, Gil Hospital of Korean Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
25
|
Gomes SRBS, von Schantz M, Leocadio-Miguel M. Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach. Sleep Med 2023; 102:123-131. [PMID: 36641929 DOI: 10.1016/j.sleep.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Comorbid depression is a highly prevalent and debilitating condition in middle-aged and elderly adults, particularly when associated with obesity, diabetes, and sleep disturbances. In this context, there is a growing need to develop efficient screening methods for cases based on clinical health markers for these comorbidities and sleep data. Thus, our objective was to detect depressive symptoms in these subjects, considering general biomarkers of obesity and diabetes and variables related to sleep and physical exercise through a machine learning approach. METHODS We used the National Health and Nutrition Examination Survey (NHANES) 2015-2016 data. Eighteen variables on self-reported physical activity, self-reported sleep habits, sleep disturbance indicative, anthropometric measurements, sociodemographic characteristics and plasma biomarkers of obesity and diabetes were selected as predictors. A total of 2907 middle-aged and elderly subjects were eligible for the study. Supervised learning algorithms such as Lasso penalized Logistic Regression (LR), Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were implemented. RESULTS XGBoost provided greater accuracy and precision (87%), with a proportion of hits in cases with depressive symptoms above 80%. In addition, daytime sleepiness was the most significant predictor variable for predicting depressive symptoms. CONCLUSIONS Sleep and physical activity variables, in addition to obesity and diabetes biomarkers, together assume significant importance to predict, with accuracy and precision of 87%, the occurrence of depressive symptoms in middle-aged and elderly individuals.
Collapse
Affiliation(s)
| | | | - Mario Leocadio-Miguel
- Department of Physiology and Behavior, Federal University of Rio Grande Do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
26
|
Zhu M, Quan Y, He X. The classification of brain network for major depressive disorder patients based on deep graph convolutional neural network. Front Hum Neurosci 2023; 17:1094592. [PMID: 36778038 PMCID: PMC9908753 DOI: 10.3389/fnhum.2023.1094592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The early diagnosis of major depressive disorder (MDD) is very important for patients that suffer from severe and irreversible consequences of depression. It has been indicated that functional connectivity (FC) analysis based on functional magnetic resonance imaging (fMRI) data can provide valuable biomarkers for clinical diagnosis. However, previous studies mainly focus on brain disease classification in small sample sizes, which may lead to dramatic divergences in classification accuracy. Methods This paper attempts to address this limitation by applying the deep graph convolutional neural network (DGCNN) method on a large multi-site MDD dataset. The resting-state fMRI data are acquired from 830 MDD patients and 771 normal controls (NC) shared by the REST-meta-MDD consortium. Results The DGCNN model trained with the binary network after thresholding, identified MDD patients from normal controls and achieved an accuracy of 72.1% with 10-fold cross-validation, which is 12.4%, 9.8%, and 7.6% higher than SVM, RF, and GCN, respectively. Moreover, the process of dataset reading and model training is faster. Therefore, it demonstrates the advantages of the DGCNN model with low time complexity and sound classification performance. Discussion Based on a large, multi-site dataset from MDD patients, the results expressed that DGCNN is not an extremely accurate method for MDD diagnosis. However, there is an improvement over previous methods with our goal of better understanding brain function and ultimately providing a biomarker or diagnostic capability for MDD diagnosis.
Collapse
Affiliation(s)
- Manyun Zhu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yu Quan
- Information Center of Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuan He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
27
|
Fu CHY, Erus G, Fan Y, Antoniades M, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Garcia J, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Woodham RD, Zahn R, Anderson IM, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder: COORDINATE-MDD consortium design and rationale. BMC Psychiatry 2023; 23:59. [PMID: 36690972 PMCID: PMC9869598 DOI: 10.1186/s12888-022-04509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.
Collapse
Affiliation(s)
- Cynthia H Y Fu
- Department of Psychological Sciences, University of East London, London, UK.
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, USA
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Vibe G Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Jose Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Beata R Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Canada
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Canada
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rachel D Woodham
- Department of Psychological Sciences, University of East London, London, UK
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - J F William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, USA
| | | | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Toronto, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Canada
- Unity Health Toronto, Toronto, Canada
| | - Gitte M Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, USA
| | - Heather C Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
28
|
A systematic review on the potential use of machine learning to classify major depressive disorder from healthy controls using resting state fMRI measures. Neurosci Biobehav Rev 2023; 144:104972. [PMID: 36436736 DOI: 10.1016/j.neubiorev.2022.104972] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a psychiatric disorder characterized by functional brain deficits, as documented by resting-state functional magnetic resonance imaging (rs-fMRI) studies. AIMS In recent years, some studies used machine learning (ML) approaches, based on rs-fMRI features, for classifying MDD from healthy controls (HC). In this context, this review aims to provide a comprehensive overview of the results of these studies. DESIGN The studies research was performed on 3 online databases, examining English-written articles published before August 5, 2022, that performed a two-class ML classification using rs-fMRI features. The search resulted in 20 eligible studies. RESULTS The reviewed studies showed good performance metrics, with better performance achieved when the dataset was restricted to a more homogeneous group in terms of disease severity. Regions within the default mode network, salience network, and central executive network were reported as the most important features in the classification algorithms. LIMITATIONS The small sample size together with the methodological and clinical heterogeneity limited the generalizability of the findings. CONCLUSIONS In conclusion, ML applied to rs-fMRI features can be a valid approach to classify MDD and HC subjects and to discover features that can be used for additional investigation of the pathophysiology of the disease.
Collapse
|
29
|
Jing R, Huo Y, Si J, Li H, Yu M, Lin X, Liu G, Li P. Altered spatio-temporal state patterns for functional dynamics estimation in first-episode drug-naive major depression. Brain Imaging Behav 2022; 16:2744-2754. [PMID: 36333522 PMCID: PMC9638404 DOI: 10.1007/s11682-022-00739-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Patients with major depressive disorder (MDD) display affective and cognitive impairments. Although MDD-associated abnormalities of brain function and structure have been explored in depth, the relationships between MDD and spatio-temporal large-scale functional networks have not been evaluated in large-sample datasets. We employed data from International Big-Data Center for Depression Research (IBCDR), and comparable 543 healthy controls (HC) and 314 first-episode drug-naive (FEDN) MDD patients were included. We used a multivariate pattern classification method to learn informative spatio-temporal functional states. Brain states of each participant were extracted for functional dynamic estimation using an independent component analysis. Then, a multi-kernel pattern classification method was developed to identify discriminative spatio-temporal states associated with FEDN MDD. Finally, statistical analysis was applied to intrinsic and clinical brain characteristics. Compared with HC, FEDN MDD patients exhibited altered spatio-temporal functional states of the default mode network (DMN), the salience network, a hub network (centered on the dorsolateral prefrontal cortex), and a relatively complex coupling network (visual, DMN, motor-somatosensory and subcortical networks). Multi-kernel classification models to distinguish patients from HC obtained areas under the receiver operating characteristic curves up to 0.80. Classification scores correlated with Hamilton Depression Rating Scale scores and age at MDD onset. FEDN MDD patients had multiple abnormal spatio-temporal functional states. Classification scores derived from these states were related to symptom severity. The assessment of spatio-temporal states may represent a powerful clinical and research tool to distinguish between neuropsychiatric patients and controls.
Collapse
Affiliation(s)
- Rixing Jing
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China.
| | - Yanxi Huo
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Juanning Si
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Huiyu Li
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Mingxin Yu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuanbei Road, Beijing, 100191, China
| | - Guozhong Liu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 12 Qinghexiaoyingdong Road, Beijing, 100192, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuanbei Road, Beijing, 100191, China.
| |
Collapse
|
30
|
Combined HTR1A/1B methylation and human functional connectome to recognize patients with MDD. Psychiatry Res 2022; 317:114842. [PMID: 36150307 DOI: 10.1016/j.psychres.2022.114842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to use a machine-learning method to identify HTR1A/1B methylation and resting-state functional connectivity (rsFC) related to the diagnosis of MDD, then try to build classification models for MDD diagnosis based on the identified features. METHODS Peripheral blood samples were collected from all recruited participants, and part of the participants underwent the resting-state fMRI scan. Features including HTR1A/1B methylation and rsFC were calculated. Then, the initial feature sets of epigenetics and neuroimaging were separately input into an all-relevant feature selection to generate significant discriminative power for MDD diagnosis. Random forest classifiers were constructed and evaluated based on identified features. In addition, the SHapley Additive exPlanations (SHAP) method was adapted to interpret the diagnostic model. RESULTS A combination of selected HTR1A/1B methylation and rsFC feature sets achieved better performance than using either one alone - a distinction between MDD and healthy control groups was achieved at 81.78% classification accuracy and 0.8948 AUC. CONCLUSION A high classification accuracy can be achieved by combining multidimensional information from epigenetics and cerebral radiomic features in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD and further exploring the pathogenesis of MDD.
Collapse
|
31
|
Xu M, Zhang X, Li Y, Chen S, Zhang Y, Zhou Z, Lin S, Dong T, Hou G, Qiu Y. Identification of suicidality in patients with major depressive disorder via dynamic functional network connectivity signatures and machine learning. Transl Psychiatry 2022; 12:383. [PMID: 36097160 PMCID: PMC9467986 DOI: 10.1038/s41398-022-02147-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder (MDD) is a severe brain disease associated with a significant risk of suicide. Identification of suicidality is sometimes life-saving for MDD patients. We aimed to explore the use of dynamic functional network connectivity (dFNC) for suicidality detection in MDD patients. A total of 173 MDD patients, including 48 without suicide risk (NS), 74 with suicide ideation (SI), and 51 having attempted suicide (SA), participated in the present study. Thirty-eight healthy controls were also recruited for comparison. A sliding window approach was used to derive the dFNC, and the K-means clustering method was used to cluster the windowed dFNC. A linear support vector machine was used for classification, and leave-one-out cross-validation was performed for validation. Other machine learning methods were also used for comparison. MDD patients had widespread hypoconnectivity in both the strongly connected states (states 2 and 5) and the weakly connected state (state 4), while the dysfunctional connectivity within the weakly connected state (state 4) was mainly driven by suicidal attempts. Furthermore, dFNC matrices, especially the weakly connected state, could be used to distinguish MDD from healthy controls (area under curve [AUC] = 82), and even to identify suicidality in MDD patients (AUC = 78 for NS vs. SI, AUC = 88 for NS vs. SA, and AUC = 74 for SA vs. SI), with vision-related and default-related inter-network connectivity serving as important features. Thus, the dFNC abnormalities observed in this study might further improve our understanding of the neural substrates of suicidality in MDD patients.
Collapse
Affiliation(s)
- Manxi Xu
- grid.410737.60000 0000 8653 1072Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou, People’s Republic of China ,grid.33199.310000 0004 0368 7223Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 People’s Republic of China
| | - Xiaojing Zhang
- grid.263488.30000 0001 0472 9649Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060 People’s Republic of China
| | - Yanqing Li
- grid.410737.60000 0000 8653 1072Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou, People’s Republic of China
| | - Shengli Chen
- grid.33199.310000 0004 0368 7223Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 People’s Republic of China
| | - Yingli Zhang
- grid.452897.50000 0004 6091 8446Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020 People’s Republic of China
| | - Zhifeng Zhou
- grid.452897.50000 0004 6091 8446Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020 People’s Republic of China
| | - Shiwei Lin
- grid.33199.310000 0004 0368 7223Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000 People’s Republic of China
| | - Tianfa Dong
- grid.410737.60000 0000 8653 1072Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou, People’s Republic of China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, People's Republic of China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
32
|
Shi Y, Mao H, Gao Q, Xi G, Zeng S, Ma L, Zhang X, Li L, Wang Z, Ji W, He P, You Y, Chen K, Shao J, Mao X, Fang X, Wang F. Potential of brain age in identifying early cognitive impairment in subcortical small-vessel disease patients. Front Aging Neurosci 2022; 14:973054. [PMID: 36118707 PMCID: PMC9475066 DOI: 10.3389/fnagi.2022.973054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background Reliable and individualized biomarkers are crucial for identifying early cognitive impairment in subcortical small-vessel disease (SSVD) patients. Personalized brain age prediction can effectively reflect cognitive impairment. Thus, the present study aimed to investigate the association of brain age with cognitive function in SSVD patients and assess the potential value of brain age in clinical assessment of SSVD. Materials and methods A prediction model for brain age using the relevance vector regression algorithm was developed using 35 healthy controls. Subsequently, the prediction model was tested using 51 SSVD patients [24 subjective cognitive impairment (SCI) patients and 27 mild cognitive impairment (MCI) patients] to identify brain age-related imaging features. A support vector machine (SVM)-based classification model was constructed to differentiate MCI from SCI patients. The neurobiological basis of brain age-related imaging features was also investigated based on cognitive assessments and oxidative stress biomarkers. Results The gray matter volume (GMV) imaging features accurately predicted brain age in individual patients with SSVD (R2 = 0.535, p < 0.001). The GMV features were primarily distributed across the subcortical system (e.g., thalamus) and dorsal attention network. SSVD patients with age acceleration showed significantly poorer Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) scores. The classification model based on GMV features could accurately distinguish MCI patients from SCI patients (area under the curve = 0.883). The classification outputs of the classification model exhibited significant associations with MoCA scores, Trail Making Tests A and B scores, Stroop Color and Word Test C scores, information processing speed total scores, and plasma levels of total antioxidant capacity in SSVD patients. Conclusion Brain age can be accurately quantified using GMV imaging data and shows potential clinical value for identifying early cognitive impairment in SSVD patients.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Yachen Shi,
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Siyuan Zeng
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Lin Ma
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiuping Zhang
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Lei Li
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Zhuoyi Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wei Ji
- Department of Functional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ping He
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yiping You
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Functional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Kefei Chen
- Department of Functional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Junfei Shao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xuqiang Mao
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Xiangming Fang,
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Feng Wang,
| |
Collapse
|
33
|
Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders. J Pers Med 2022; 12:jpm12091403. [PMID: 36143188 PMCID: PMC9504356 DOI: 10.3390/jpm12091403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Depressive disorders are highly heterogeneous in nature. Previous studies have not been useful for the clinical diagnosis and prediction of outcomes of major depressive disorder (MDD) at the individual level, although they provide many meaningful insights. To make inferences beyond group-level analyses, machine learning (ML) techniques can be used for the diagnosis of subtypes of MDD and the prediction of treatment responses. We searched PubMed for relevant studies published until December 2021 that included depressive disorders and applied ML algorithms in neuroimaging fields for depressive disorders. We divided these studies into two sections, namely diagnosis and treatment outcomes, for the application of prediction using ML. Structural and functional magnetic resonance imaging studies using ML algorithms were included. Thirty studies were summarized for the prediction of an MDD diagnosis. In addition, 19 studies on the prediction of treatment outcomes for MDD were reviewed. We summarized and discussed the results of previous studies. For future research results to be useful in clinical practice, ML enabling individual inferences is important. At the same time, there are important challenges to be addressed in the future.
Collapse
|
34
|
Tang S, Wu Z, Cao H, Chen X, Wu G, Tan W, Liu D, Yang J, Long Y, Liu Z. Age-Related Decrease in Default-Mode Network Functional Connectivity Is Accelerated in Patients With Major Depressive Disorder. Front Aging Neurosci 2022; 13:809853. [PMID: 35082661 PMCID: PMC8785895 DOI: 10.3389/fnagi.2021.809853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder which is associated with an accelerated biological aging. However, little is known whether such process would be reflected by a more rapid aging of the brain function. In this study, we tested the hypothesis that MDD would be characterized by accelerated aging of the brain's default-mode network (DMN) functions. Resting-state functional magnetic resonance imaging data of 971 MDD patients and 902 healthy controls (HCs) was analyzed, which was drawn from a publicly accessible, multicenter dataset in China. Strength of functional connectivity (FC) and temporal variability of dynamic functional connectivity (dFC) within the DMN were calculated. Age-related effects on FC/dFC were estimated by linear regression models with age, diagnosis, and diagnosis-by-age interaction as variables of interest, controlling for sex, education, site, and head motion effects. The regression models revealed (1) a significant main effect of age in the predictions of both FC strength and dFC variability; and (2) a significant main effect of diagnosis and a significant diagnosis-by-age interaction in the prediction of FC strength, which was driven by stronger negative correlation between age and FC strength in MDD patients. Our results suggest that (1) both healthy participants and MDD patients experience decrease in DMN FC strength and increase in DMN dFC variability along age; and (2) age-related decrease in DMN FC strength may occur at a faster rate in MDD patients than in HCs. However, further longitudinal studies are still needed to understand the causation between MDD and accelerated aging of brain.
Collapse
Affiliation(s)
- Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Zhipeng Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Xudong Chen
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guowei Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjian Tan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dayi Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yicheng Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Ye S, Zhu B, Zhao L, Tian X, Yang Q, Krueger F. Connectome-based model predicts individual psychopathic traits in college students. Neurosci Lett 2021; 769:136387. [PMID: 34883220 DOI: 10.1016/j.neulet.2021.136387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Psychopathic traits have been suggested to increase the risk of violations of socio-moral norms. Previous studies revealed that abnormal neural signatures are associated with elevated psychopathic traits; however, whether the intrinsic network architecture can predict psychopathic traits at the individual level remains unclear. METHODS The present study utilized connectome-based predictive modeling (CPM) to investigate whether whole-brain resting-state functional connectivity (RSFC) can predict psychopathic traits in the general population. Resting-state fMRI data were collected from 84 college students with varying psychopathic traits measured by the Levenson Self-Report Psychopathy Scale (LSRP). RESULTS Functional connections that were negatively correlated with psychopathic traits predicted individual differences in total LSRP and secondary psychopathy score but not primary score. Particularly, nodes with the most connections in the predictive connectome anchored in the prefrontal cortex (e.g., anterior prefrontal cortex and orbitofrontal cortex) and limbic system (e.g., anterior cingulate cortex and insula). In addition, the connections between the occipital network (OCCN) and cingulo-opercular network (CON) served as a significant predictive connectome for total LSRP and secondary psychopathy score. CONCLUSION CPM constituted by whole-brain RSFC significantly predicted psychopathic traits individually in the general population. The brain areas including the prefrontal cortex and limbic system and large-scale networks including the CON and OCCN play special roles in the predictive model-possibly reflecting atypical cognitive control and affective processing for individuals with elevated psychopathic traits. These findings may facilitate detection and potential intervention of individuals with maladaptive psychopathic tendency.
Collapse
Affiliation(s)
- Shuer Ye
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Bing Zhu
- School of Marxism, Zhejiang Yuexiu University, Shaoxing, China
| | - Lei Zhao
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China; Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xuehong Tian
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Qun Yang
- Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA; Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
36
|
Shi Y, Zhang L, He C, Yin Y, Song R, Chen S, Fan D, Zhou D, Yuan Y, Xie C, Zhang Z. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: A multicenter study based on machine learning. J Affect Disord 2021; 295:148-155. [PMID: 34461370 DOI: 10.1016/j.jad.2021.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Objective biomarkers are crucial for overcoming the clinical dilemma in major depressive disorder (MDD), and the individualized diagnosis is essential to facilitate the precise medicine for MDD. METHODS Sleep disturbance-related magnetic resonance imaging (MRI) features was identified in the internal dataset (92 MDD patients) using the relevance vector regression algorithm, which was further verified in 460 MDD patients of an independent, multicenter dataset. Subsequently, using these MRI features, the eXtreme Gradient Boosting classification model was constructed in the current multicenter dataset (460 MDD patients and 470 normal controls). Meanwhile, the association between classification outputs and the severity of depressive symptoms was also investigated. RESULTS In MDD patients, the combination of gray matter density and fractional amplitude of low-frequency fluctuation can accurately predict individual sleep disturbance score that was calculated by the sum of item 4 score, item 5 score, and item 6 score of the 17-Item Hamilton Rating Scale for Depression (HAMD-17) (R2 = 0.158 in the internal dataset; R2 = 0.110 in multicenter dataset). Furthermore, the classification model based on these MRI features distinguished MDD patients from normal controls with 86.3% accuracy (area under the curve = 0.937). Importantly, the classification outputs significantly correlated with HAMD-17 scores in MDD patients. LIMITATION Lacking some specialized tools to assess the personal sleep quality, e.g. Pittsburgh Sleep Quality Index. CONCLUSION Neuroimaging features can reflect accurately individual sleep disturbance manifestation and serve as potential diagnostic biomarkers of MDD.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Linhai Zhang
- School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ruize Song
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Deyu Zhou
- School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210009, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, Guangdong 510330, China.
| |
Collapse
|