1
|
Rodas G, Ferrer E, Sanjuan JD, Quintás G. UPLC-MS and multivariate analysis reveal metabolic pathway adaptations to training in professional football players. Talanta 2025; 291:127893. [PMID: 40058141 DOI: 10.1016/j.talanta.2025.127893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
Metabolomics provides direct insights into biological processes by analyzing metabolites. While univariate and multivariate analyses, alongside pathway and functional analysis tools like mummichog, are commonly employed, integrating these results to interpret biological significance remains a challenge, limiting the potential of metabolomic analyses. This study introduces innovative methods to analyze metabolic adaptations in professional football players using a unique UPLC-TOF-MS dataset comprising 93 urinary samples collected over a 10-month football season. Urinary metabolomic profiles were linked to training load data obtained through an electronic performance tracking system. Three approaches combining multivariate analysis with pathway-level insights were developed. PLS regression p-values integrated with functional metabolic analysis identified training load-associated pathways overlooked by univariate methods. Cluster cross-validation enhanced these insights by assessing the contribution of each pathway to the predictive performance, ranking pathways driving the PLS model. Backward feature elimination refined metabolic features most strongly linked to training load, improving the practicality of findings for targeted biomarker validation. Univariate analyses highlighted alterations in Phenylalanine and Histidine metabolisms related to total external load. Multivariate methods identified additional pathways, including Tryptophan, Purine, and Tyrosine metabolisms, as top contributors to the association between metabolic profiles and training load. Results demonstrate that combining multivariate techniques with functional analysis expands understanding of athletes' metabolic responses, offering more comprehensive biomarker discovery beyond the scope of univariate approaches. These findings underscore the value of integrating multivariate strategies with pathway insights to enhance the biological interpretation of metabolomic data.
Collapse
Affiliation(s)
- Gil Rodas
- FC Barcelona Medical Department (FIFA Medical Center of Excellence), Barcelona, Spain; Barça Innovation Hub, Health & Wellness Area, Barcelona, Spain; Leitat Technological Center, Terrassa, Spain
| | - Eva Ferrer
- FC Barcelona Medical Department (FIFA Medical Center of Excellence), Barcelona, Spain; Barça Innovation Hub, Health & Wellness Area, Barcelona, Spain
| | | | | |
Collapse
|
2
|
Zhao T, Liu T, Li T, Chen S, Wang L, Zhang M. The expression of glycolysis-related proteins in urine significantly increases after running. Front Physiol 2024; 15:1481741. [PMID: 39717827 PMCID: PMC11663847 DOI: 10.3389/fphys.2024.1481741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Objective Glucose metabolism is the main way in which cells obtain energy during exercise and plays an important role in exercise. The purpose of this study was to explore the changes in the expression of glucose metabolism-related proteins in urine after running, and finally applied to the monitoring of running training. Methods Urine samples were collected before and after running, and urine proteomics information was collected to explore the expression of proteins in the urine using LC-MS/MS in DDA mode and DIA mode. Receiver operating characteristic (ROC) curve was drawn to evaluate the value of target proteins in monitoring running training. Results A total of 140 proteins were identified using LC-MS/MS in DDA mode, of which 49 urine proteins showed increased expression after running. KEGG analysis revealed that glucose metabolism-related proteins are mainly concentrated in glycolysis. There were six glycolysis-related proteins, among which urine proteins PKM, TPI1, ENO1 and LDHB were significantly increased after running (P < 0.05). This changes in urine proteins PKM, TPI1, ENO1 and LDHB were further verified by the results of LC-MS/MS in DIA mode. The concentrations of the urine proteins TPI1, ENO1 and LDHB showed a significant linear relationship with PKM. ROC curve analysis showed that PKM, TPI1, ENO1 and LDHB proteins in urine had good monitoring values for running training. Conclusion The expression of glycolysis-related proteins PKM, TPI1, ENO1 and LDHB in urine was significantly increased after running, which may be applied to the monitoring of running training.
Collapse
Affiliation(s)
- Tian Zhao
- College of Information Engineering, Hangzhou Dianzi University, Hangzhou, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Tianci Liu
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shengcun Chen
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lupeng Wang
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Nakhod VI, Butkova TV, Malsagova KA, Petrovskiy DV, Izotov AA, Nikolsky KS, Kaysheva AL. Sample Preparation for Metabolomic Analysis in Exercise Physiology. Biomolecules 2024; 14:1561. [PMID: 39766268 PMCID: PMC11673972 DOI: 10.3390/biom14121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently. Understanding the metabolite composition of biosamples from athletes can significantly improve our knowledge of molecular processes associated with the efficiency of training and recovery. Such knowledge may also lead to new management opportunities. Successful execution of metabolomic studies requires simultaneous qualitative and quantitative analyses of numerous small biomolecules in samples under test. Unlike genomics and proteomics, which do not allow for direct assessment of enzymatic activity, metabolomics focuses on biochemical phenotypes, providing unique information about health and physiological features. Crucial factors in ensuring the efficacy of metabolomic analysis are the meticulous selection and pre-treatment of samples.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (V.I.N.); (T.V.B.); (D.V.P.); (A.A.I.); (K.S.N.); (A.L.K.)
| | | | | | | | | |
Collapse
|
4
|
Saito N. Basic accuracy of a 1D NOESY with presaturation method using standard solutions of amino and maleic acids. Anal Bioanal Chem 2024; 416:5721-5731. [PMID: 39177791 DOI: 10.1007/s00216-024-05491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
1D NOESY with presaturation (NOESY-presat) is the most popular water suppression method. When D2O solutions of L-phenylalanine or L-valine were measured using NOESY, the absolute concentration biases increased with longer mixing and evolution times, reaching a maximum of 54% with respect to the preparation values. At mixing and evolution times of 0 ms and 0 µs, respectively, the absolute concentration biases were reduced to less than 3%. The remaining biases were caused by the off-resonance effect, which was prevented by setting the frequency offset to an intermediate value between the analyte and internal standard 3-(trimethylsilyl)-1-propanesulfonic acid-d6 (DSS-d6) signals. Nevertheless, NOESY-presat gave maximum absolute biases of 26% and 11% for glycine and maleic acid concentrations, respectively, in three H2O/D2O (90/10 vol%) solutions. The proposed NOESY-dual-presat method reduced the absolute biases to below 4%. However, water suppression was insufficient but was improved by setting the frequency offset to the same as the presaturation offset with the H2O signal, although the absolute biases rose to 5 to 13%. Quantitative analyses using NOESY-presat and NOESY-dual-presat require careful consideration of the off-resonance effect.
Collapse
Affiliation(s)
- Naoki Saito
- Center for Environmental Standards and Measurement, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
5
|
Zou H, Gong L, Wang Z, Huang C, Luo Y, Jia X, Yu J, Lin D, Zhang Y. Effects of Trimethylamine N-Oxide in Improving Exercise Performance in Mice: A 1H-NMR-Based Metabolomic Analysis Approach. Molecules 2024; 29:4128. [PMID: 39274977 PMCID: PMC11397221 DOI: 10.3390/molecules29174128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
To improve exercise performance, the supplement of nutrients has become a common practice before prolonged exercise. Trimethylamine N-oxide (TMAO) has been shown to ameliorate oxidative stress damage, which may be beneficial in improving exercise capacity. Here, we assessed the effects of TMAO on mice with exhaustive swimming, analyzed the metabolic changes, and identified significantly altered metabolic pathways of skeletal muscle using a nuclear magnetic resonance-based (NMR-based) metabolomics approach to uncover the effects of TMAO improving exercise performance of mice. We found that TMAO pre-administration markedly prolonged the exhaustive time in mice. Further investigation showed that TMAO pre-administration increased levels of 3-hydroxybutyrate, isocitrate, anserine, TMA, taurine, glycine, and glutathione and disturbed the three metabolic pathways related to oxidative stress and protein synthesis in skeletal muscle. Our results provide a metabolic mechanistic understanding of the effects of TMAO supplements on the exercise performance of skeletal muscle in mice. This work may be beneficial in exploring the potential of TMAO to be applied in nutritional supplementation to improve exercise performance. This work will lay a scientific foundation and be beneficial to exploring the potential of TMAO to apply in nutritional supplementation.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- Physical Education Department, Xiamen University, Xiamen 361005, China
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhiyuan Wang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China
| | - Yue Luo
- School of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xiao Jia
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
6
|
Brandao CFC, Krempf M, Giolo de Carvalho F, Aguesse A, Junqueira-Franco MVM, Batitucci G, de Freitas EC, Noronha NY, Rodrigues GDS, Junqueira GP, Borba DA, Billon-Crossouard S, Croyal M, Marchini JS. Sphingolipid and Trimethylamine-N-Oxide (TMAO) Levels in Women with Obesity after Combined Physical Training. Metabolites 2024; 14:398. [PMID: 39195494 DOI: 10.3390/metabo14080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity causes metabolic changes, such as the development of cardiovascular diseases. Moreover, physical exercise promotes protection against these diseases. Thus, the objective of the present study was to evaluate whether combined physical training can improve the metabolic system of women with obesity, reducing plasma concentrations of trimethylamine N-oxide (TMAO) and sphingolipids, regardless of weight loss. Fourteen obese women (BMI 30-40 kg/m2), aged 20-40 years, sedentary, were submitted to 8 weeks of combined physical training (strength and aerobic exercises). The training was performed three times/week, 55 min/session, at 75-90% maximum heart rate. All participants were evaluated pre- and post-exercise intervention, and their body composition, plasma TMAO, creatinine, lipid profile, and sphingolipid concentrations were recorded. Maximum oxygen consumption (VO2max), Speed lactate threshold 1 (SpeedLT1), and Speed lactate threshold 2 (SpeedLT2) evaluated physical performance. Results: After combined exercise, it did not change body composition, but TMAO, total cholesterol, and sphingolipid concentrations significantly decreased (p < 0.05). There was an increase in physical performance by improving VO2max, SpeedLT1, and SpeedLT2 (p < 0.05). The combined physical exercise could induce cardiovascular risk protection by decreasing TMAO in obese women, parallel to physical performance improvement, independent of weight loss.
Collapse
Affiliation(s)
- Camila Fernanda Cunha Brandao
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35500-000, Minas Gerais, Brazil
| | - Michel Krempf
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Flávia Giolo de Carvalho
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Audrey Aguesse
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | | | - Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Rod. Araraquara-Jau Km 1, Araraquara 14800-000, São Paulo, Brazil
| | - Ellen Cristini de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Rod. Araraquara-Jau Km 1, Araraquara 14800-000, São Paulo, Brazil
| | - Natalia Yumi Noronha
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Guilherme da Silva Rodrigues
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Gizela Pedroso Junqueira
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Diego Alcantara Borba
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35500-000, Minas Gerais, Brazil
| | - Stéphanie Billon-Crossouard
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Mikael Croyal
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Julio Sergio Marchini
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| |
Collapse
|
7
|
Zou H, Zhou Y, Gong L, Huang C, Liu X, Lu R, Yu J, Kong Z, Zhang Y, Lin D. Trimethylamine N-Oxide Improves Exercise Performance by Reducing Oxidative Stress through Activation of the Nrf2 Signaling Pathway. Molecules 2024; 29:759. [PMID: 38398511 PMCID: PMC10893042 DOI: 10.3390/molecules29040759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Trimethylamine N-oxide (TMAO) has attracted interest because of its association with cardiovascular disease and diabetes, and evidence for the beneficial effects of TMAO is accumulating. This study investigates the role of TMAO in improving exercise performance and elucidates the underlying molecular mechanisms. Using C2C12 cells, we established an oxidative stress model and administered TMAO treatment. Our results indicate that TMAO significantly protects myoblasts from oxidative stress-induced damage by increasing the expression of Nrf2, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase (NQO1), and catalase (CAT). In particular, suppression of Nrf2 resulted in a loss of the protective effects of TMAO and a significant decrease in the expression levels of Nrf2, HO-1, and NQO1. In addition, we evaluated the effects of TMAO in an exhaustive swimming test in mice. TMAO treatment significantly prolonged swimming endurance, increased glutathione and taurine levels, enhanced glutathione peroxidase activity, and increased the expression of Nrf2 and its downstream antioxidant genes, including HO-1, NQO1, and CAT, in skeletal muscle. These findings underscore the potential of TMAO to counteract exercise-induced oxidative stress. This research provides new insights into the ability of TMAO to alleviate exercise-induced oxidative stress via the Nrf2 signaling pathway, providing a valuable framework for the development of sports nutrition supplements aimed at mitigating oxidative stress.
Collapse
Affiliation(s)
- Hong Zou
- Physical Education Department, Xiamen University, Xiamen 361005, China;
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
| | - Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Lijing Gong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
- Affiliated High School of Minnan, Normal University, Zhangzhou 363005, China
| | - Jingjing Yu
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Zhenxing Kong
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Yimin Zhang
- Key Laboratory of Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing 100084, China; (L.G.); (J.Y.); (Z.K.)
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China (X.L.); (R.L.)
| |
Collapse
|
8
|
Qi S, Li X, Yu J, Yin L. Research advances in the application of metabolomics in exercise science. Front Physiol 2024; 14:1332104. [PMID: 38288351 PMCID: PMC10822880 DOI: 10.3389/fphys.2023.1332104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Exercise training can lead to changes in the metabolic composition of an athlete's blood, the magnitude of which depends largely on the intensity and duration of exercise. A variety of behavioral, biochemical, hormonal, and immunological biomarkers are commonly used to assess an athlete's physical condition during exercise training. However, traditional invasive muscle biopsy testing methods are unable to comprehensively detect physiological differences and metabolic changes in the body. Metabolomics technology is a high-throughput, highly sensitive technique that provides a comprehensive assessment of changes in small molecule metabolites (molecular weight <1,500 Da) in the body. By measuring the overall metabolic characteristics of biological samples, we can study the changes of endogenous metabolites in an organism or cell at a certain moment in time, and investigate the interconnection and dynamic patterns between metabolites and physiological changes, thus further understanding the interactions between genes and the environment, and providing possibilities for biomarker discovery, precise training and nutritional programming of athletes. This paper summaries the progress of research on the application of exercise metabolomics in sports science, and looks forward to the future development of exercise metabolomics, with a view to providing new approaches and perspectives for improving human performance, promoting exercise against chronic diseases, and advancing sports science research.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Lanng SK, Oxfeldt M, Johansen FT, Risikesan J, Hansen M, Bertram HC. Acute changes in the metabolome following resistance exercise combined with intake of different protein sources (cricket, pea, whey). Metabolomics 2023; 19:98. [PMID: 37999866 DOI: 10.1007/s11306-023-02064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Separately, both exercise and protein ingestion have been shown to alter the blood and urine metabolome. This study goes a step further and examines changes in the metabolome derived from blood, urine and muscle tissue extracts in response to resistance exercise combined with ingestion of three different protein sources. METHODS In an acute parallel study, 52 young males performed one-legged resistance exercise (leg extension, 4 × 10 repetitions at 10 repetition maximum) followed by ingestion of either cricket (insect), pea or whey protein (0.25 g protein/kg fat free mass). Blood and muscle tissue were collected at baseline and three hours after protein ingestion. Urine was collected at baseline and four hours after protein ingestion. Mixed-effects analyses were applied to examine the effect of the time (baseline vs. post), protein (cricket, pea, whey), and time x protein interaction. RESULTS Nuclear magnetic resonance (NMR)-based metabolomics resulted in the annotation and quantification of 25 metabolites in blood, 35 in urine and 21 in muscle tissue. Changes in the muscle metabolome after combined exercise and protein intake indicated effects related to the protein source ingested. Muscle concentrations of leucine, methionine, glutamate and myo-inositol were higher after intake of whey protein compared to both cricket and pea protein. The blood metabolome revealed changes in a more ketogenic direction three hours after exercise reflecting that the trial was conducted after overnight fasting. Urinary concentration of trimethylamine N-oxide was significantly higher after ingestion of cricket than pea and whey protein. CONCLUSION The blood, urine and muscle metabolome showed different and supplementary responses to exercise and ingestion of the different protein sources, and in synergy the summarized results provided a more complete picture of the metabolic state of the body.
Collapse
Affiliation(s)
- Sofie Kaas Lanng
- Department of Food Science, Aarhus University, Aarhus N, 8200, Denmark
- CiFOOD, Centre for Innovative Food Research, Aarhus University, Aarhus N, 8200, Denmark
| | - Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus C, 8000, Denmark
| | | | - Jeyanthini Risikesan
- Department of Child and Adolescent Medicine, Regional Hospital Gødstrup, Aarhus C, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, 8000, Denmark
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Aarhus N, 8200, Denmark.
- CiFOOD, Centre for Innovative Food Research, Aarhus University, Aarhus N, 8200, Denmark.
| |
Collapse
|
10
|
Meihua S, Jiahui J, Yujia L, Shuang Z, Jingjing Z. Research on sweat metabolomics of athlete's fatigue induced by high intensity interval training. Front Physiol 2023; 14:1269885. [PMID: 38033334 PMCID: PMC10684900 DOI: 10.3389/fphys.2023.1269885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Objective: Sweat is an important specimen of human metabolism, which can simply and non-invasively monitor the metabolic state of the body, and its metabolites can be used as biomarkers for disease diagnosis, while the changes of sweat metabolites before and after exercise-induced fatigue are still unclear. Methods: In this experiment, high-performance chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) was used to metabolomic 28 sweat samples before and after exercise-induced fatigue of 14 long-distance runners, also IsoMS PRO and SPSS22.0 software were used to analyze the metabolite changes and differential metabolic pathways. Results: A total of 446 metabolites with high confidence were identified, and the sweat metabolome group before and after high-intensity interval exercise-induced fatigue was obvious, among which the upregulated differential metabolites mainly included hypoxanthine, pyruvate, several amino acids, etc., while the downregulated differential metabolites mainly included amino acid derivatives, vitamin B6, theophylline, etc. Conclusion: The change of hypoxanthine concentration in sweat can be used as a good biomarker for the diagnosis of exercise-induced fatigue, while the change of pyruvate content in sweat can be used as a discriminant index for the energy metabolism mode of the body before and after exercise. The main metabolic pathways involved in differential metabolites produced before and after HIIT exercise-induced fatigue are purine metabolism and amino acid metabolism.
Collapse
Affiliation(s)
- Su Meihua
- School of Physical Education, Jimei University, Xiamen, Fujian, China
| | - Jin Jiahui
- School of Physical Education, Jimei University, Xiamen, Fujian, China
| | - Li Yujia
- School of Physical Education, Jimei University, Xiamen, Fujian, China
| | - Zhao Shuang
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian, China
| | - Zhan Jingjing
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian, China
| |
Collapse
|
11
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
12
|
Sang PP, Li J, Tan XD, Peng W, Zhou HH, Tian YP, Zhang ML. Associations between Borg’s rating of perceived exertion and changes in urinary organic acid metabolites after outdoor weight-bearing hiking. World J Psychiatry 2023; 13:234-246. [PMID: 37303930 PMCID: PMC10251356 DOI: 10.5498/wjp.v13.i5.234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Developing methods to monitor exercise load and evaluate body fatigue and muscle injury over time in hiking training remains a key problem to be solved. A widely used psycho-physical tool to assess the subjective perception of effort during exercise is Borg’s rating of perceived exertion (BRPE) scale. Data on the relationships and validity of the BRPE compared to objectively assessed metabolic criteria are still lacking, especially urinary organic acid concentrations.
AIM To verify whether the BRPE scale could be used in the prescription of outdoor hiking with weight-bearing and reveal the relationship between the BRPE scale and urinary physiological measures.
METHODS Eighty-nine healthy men (average age: 22 years) were enrolled in a 40 km (6 h) hiking training exercise with a 20 kg load. After training, the BRPE scale (6-20) was completed. All participants were divided into three groups according to the rating of the BRPE scale. Urine samples were collected before and after training. Urinary myoglobin levels were measured immediately using the fluorescent immunoassay method. The remaining urine was subpacked and frozen for the subsequent detection of urinary organic acids using gas chromatography and mass spectrometry.
RESULTS The contents of organic acids and myoglobin in urine were significantly increased after participants hiked 40 km (6 h) with a 20 kg load. Only orthogonal partial least-squares discrimination analysis performed well in separating the group with a BRPE score of 6-12 from the group with a BRPE score of 13-20. Significant differences in the urine levels of several organic acids were observed between the two groups, and the heatmap also presented different metabolic profiles based on BRPE. According to the standard of a variable importance in the projection > 1, fold change > 1.5 and P < 0.05, 19 different metabolites of urinary organic acids were screened and enriched in pathways mainly including the citrate cycle (tricarboxylic acid cycle) and alanine, aspartate and glucose metabolism.
CONCLUSION The BRPE scale identified significantly different urinary organic acid profiles between the higher and lower BRPE value groups, and, thus, could be used to monitor body fatigue in individuals participating in long-distance outdoor hiking with weight bearing.
Collapse
Affiliation(s)
- Pei-Pei Sang
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Jin Li
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Xu-Dong Tan
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Peng
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong-Hui Zhou
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Ya-Ping Tian
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| | - Man-Li Zhang
- Birth Defect Prevention and Control Technology Research Center, Medicine Innovation Research Division, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Kistner S, Mack CI, Rist MJ, Krüger R, Egert B, Biniaminov N, Engelbert AK, Seifert S, Dörr C, Ferrario PG, Neumann R, Altmann S, Bub A. Acute effects of moderate vs. vigorous endurance exercise on urinary metabolites in healthy, young, physically active men-A multi-platform metabolomics approach. Front Physiol 2023; 14:1028643. [PMID: 36798943 PMCID: PMC9927024 DOI: 10.3389/fphys.2023.1028643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body's adaptations to different endurance exercise protocols are not entirely understood. Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS). Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or <0. 6 ¯ (NMR, LC-MS) or >2.0 or <0.5 (GC×GC-MS), being classified as either exercise-responsive or intensity-dependent. Our findings indicate that CVE induced more profound alterations in the urinary metabolome than CME, especially at U01, returning to baseline within 24 h after U00. Most differences between exercise trials are likely to reflect higher energy requirements during CVE, as demonstrated by greater shifts in metabolites related to glycolysis (e.g., lactate, pyruvate), tricarboxylic acid cycle (e.g., cis-aconitate, malate), purine nucleotide breakdown (e.g., hypoxanthine), and amino acid mobilization (e.g., alanine) or degradation (e.g., 4-hydroxyphenylacetate). Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.
Collapse
Affiliation(s)
- Sina Kistner
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany,*Correspondence: Sina Kistner, ; Achim Bub,
| | - Carina I. Mack
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Björn Egert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Nathalie Biniaminov
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Stephanie Seifert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Claudia Dörr
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Paola G. Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Rainer Neumann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan Altmann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany,TSG ResearchLab gGmbH, Zuzenhausen, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany,Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany,*Correspondence: Sina Kistner, ; Achim Bub,
| |
Collapse
|
14
|
Yang X, Zhang X, Shu X, Zhang W, Kai J, Tang M, Gong J, Yang J, Lin J, Chai Y, Liu J. Effects of multi-walled carbon nanotubes in soil on earthworm growth and reproduction, enzymatic activities, and metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114158. [PMID: 36228358 DOI: 10.1016/j.ecoenv.2022.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Increased production and environmental release of multi-walled carbon nanotubes (MWCNTs) increase soil exposure and potential risk to earthworms. However, MWCNT toxicity to earthworms remains unclear, with some studies identifying negative effects and others negligible effects. In this study, to determine whether exposure to MWCNTs negatively affects earthworms and to elucidate possible mechanisms of toxicity, earthworms were exposed to sublethal soil concentrations of MWCNTs (10, 50, and 100 mg/kg) for 28 days. Earthworm growth and reproduction, activities of cytochrome P450 (CYP) isoforms (1A2, 2C9, and 3A4) and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST)), and metabolomics were determined. Effects of MWCNTs on earthworms depended on exposure concentration. Exposure to MWCNTs did not significantly affect growth and reproduction of individual earthworms. Exposure to 50 mg/kg MWCNTs significantly increased activities of CYP2C9, CYP3A4, SOD, CAT, and GST but clearly reduced levels of L-aspartate, L-asparagine, and glutamine. With exposure to 100 mg/kg MWCNTs, toxic effects on earthworms were observed, with significant inhibition in activities of CYP isoenzymes and SOD, significant reductions in L-aspartate, L-asparagine, glutamine, and tryptophan, and simultaneous accumulations of citrate, isocitrate, fumarate, 2-oxoglutarate, pyruvate, D-galactose, carbamoyl phosphate, formyl anthranilate, hypoxanthine, and xanthine. Results suggest that toxicity of MWCNTs to earthworms is associated with reduced detoxification capacity, excessive oxidative stress, and disturbance of multiple metabolic pathways, including amino acids metabolism, the tricarboxylic acid cycle, pyruvate metabolism, D-galactose metabolism, and purine metabolism. The study provides new insights to better understand and predict the toxicity of MWCNTs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianrong Kai
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Mingfeng Tang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China.
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Junjie Lin
- Institute of Quality Standard and Testing Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China; Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| |
Collapse
|
15
|
Rodas G, Ferrer E, Reche X, Sanjuan-Herráez JD, McCall A, Quintás G. A targeted metabolic analysis of football players and its association to player load: Comparison between women and men profiles. Front Physiol 2022; 13:923608. [PMID: 36246100 PMCID: PMC9561103 DOI: 10.3389/fphys.2022.923608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Professional athletes undertake a variety of training programs to enhance their physical performance, technical-tactical skills, while protecting their health and well-being. Regular exercise induces widespread changes in the whole body in an extremely complex network of signaling, and evidence indicates that phenotypical sex differences influence the physiological adaptations to player load of professional athletes. Despite that there remains an underrepresentation of women in clinical studies in sports, including football. The objectives of this study were twofold: to study the association between the external load (EPTS) and urinary metabolites as a surrogate of the adaptation to training, and to assess the effect of sex on the physiological adaptations to player load in professional football players. Targeted metabolic analysis of aminoacids, and tryptophan and phenylalanine metabolites detected progressive changes in the urinary metabolome associated with the external training load in men and women’s football teams. Overrepresentation analysis and multivariate analysis of metabolic data showed significant differences of the effect of training on the metabolic profiles in the men and women teams analyzed. Collectively, our results demonstrate that the development of metabolic models of adaptation in professional football players can benefit from the separate analysis of women and men teams, providing more accurate insights into how adaptation to the external load is related to changes in the metabolic phenotypes. Furthermore, results support the use of metabolomics to understand changes in specific metabolic pathways provoked by the training process.
Collapse
Affiliation(s)
- Gil Rodas
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
- Sports and Exercise Medicine Unit, Hospital Clinic and Sant Joan de Deu, Barcelona, Spain
- *Correspondence: Gil Rodas,
| | - Eva Ferrer
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
- Sports and Exercise Medicine Unit, Hospital Clinic and Sant Joan de Deu, Barcelona, Spain
| | - Xavier Reche
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
| | | | - Alan McCall
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | | |
Collapse
|
16
|
Douzi W, Bon D, Suikkanen S, Soukkio P, Boildieu N, Nenonen A, Hupli M, Kukkonen-Harjula K, Dugué B. 1H NMR Urinary Metabolomic Analysis in Older Adults after Hip Fracture Surgery May Provide Valuable Information for Patient Profiling-A Preliminary Investigation. Metabolites 2022; 12:metabo12080744. [PMID: 36005617 PMCID: PMC9415398 DOI: 10.3390/metabo12080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
In these times of precision and personalized medicine, profiling patients to identify their needs is crucial to providing the best and most cost-effective treatment. In this study, we used urine metabolomics to explore the characterization of older adults with hip fractures and to explore the forecasting of patient outcomes. Overnight urine specimens were collected from 33 patients (mean age 80 ± 8 years) after hip fracture surgery during their stay at a rehabilitation hospital. The specimens were analyzed with 1H NMR spectroscopy. We performed a metabolomics study regarding assessments of frailty status, Functional Independence Measure (FIM), and Short Physical Performance Battery (SPPB). The main metabolic variations concerned 10 identified metabolites: paracetamol derivatives (4 peaks: 2.15 ppm; 2.16 ppm; 7.13 ppm and 7.15 ppm); hippuric acid; acetate; acetone; dimethylamine; glycine; alanine; lactate; valine; TMAO. At baseline, the urinary levels of these metabolites were significantly higher (i) in frail compared with non-frail patients, (ii) in persons with poorer FIM scores, and (iii) in persons with poorer compared SPPB scores. Our findings suggested that patients with increased levels of urine metabolites associated with metabolic, inflammatory, and renal disorders presented clear signs of frailty, impaired functional independence, and poor physical performance. Metabolomics could be a valuable tool to further characterize older adults, especially after major medical events.
Collapse
Affiliation(s)
- Wafa Douzi
- Laboratoire «Mobilité, Vieillissement, Exercice (MOVE)—UR 20296», Faculté des Sciences du Sport, Université de Poitiers, 8 Allée Jean Monnet, 86000 Poitiers, France
| | - Delphine Bon
- INSERM U1313, (IRMETIST), Poitiers, France and Faculty of Medicine and Pharmacy, University of Poitiers, 86000 Poitiers, France
| | - Sara Suikkanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
- Faculty of Social Services and Health Care, LAB University of Applied Sciences, 53130 Lappeenranta, Finland
| | - Paula Soukkio
- Rehabilitation and Laboratory Center, South Karelia Social and Health Care District (Eksote), Valto Käkelän katu 3, 53130 Lappeenranta, Finland
| | - Nadège Boildieu
- INSERM U1313, (IRMETIST), Poitiers, France and Faculty of Medicine and Pharmacy, University of Poitiers, 86000 Poitiers, France
| | - Arja Nenonen
- Rehabilitation and Laboratory Center, South Karelia Social and Health Care District (Eksote), Valto Käkelän katu 3, 53130 Lappeenranta, Finland
| | - Markku Hupli
- Rehabilitation and Laboratory Center, South Karelia Social and Health Care District (Eksote), Valto Käkelän katu 3, 53130 Lappeenranta, Finland
| | - Katriina Kukkonen-Harjula
- Rehabilitation and Laboratory Center, South Karelia Social and Health Care District (Eksote), Valto Käkelän katu 3, 53130 Lappeenranta, Finland
| | - Benoit Dugué
- Laboratoire «Mobilité, Vieillissement, Exercice (MOVE)—UR 20296», Faculté des Sciences du Sport, Université de Poitiers, 8 Allée Jean Monnet, 86000 Poitiers, France
- Correspondence: ; Tel.: +33-549-454-040; Fax: +33-549-453-396
| |
Collapse
|
17
|
Metabolomics as an Important Tool for Determining the Mechanisms of Human Skeletal Muscle Deconditioning. Int J Mol Sci 2021; 22:ijms222413575. [PMID: 34948370 PMCID: PMC8706620 DOI: 10.3390/ijms222413575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle deconditioning impairs both locomotor function and metabolic health, and is associated with reduced quality life and increased mortality rates. Despite an appreciation of the existence of phenomena such as muscle anabolic resistance, mitophagy, and insulin resistance with age and disease in humans, little is known about the mechanisms responsible for these negative traits. With the complexities surrounding these unknowns and the lack of progress to date in development of effective interventions, there is a need for alternative approaches. Metabolomics is the study of the full array of metabolites within cells or tissues, which collectively constitute the metabolome. As metabolomics allows for the assessment of the cellular metabolic state in response to physiological stimuli, any chronic change in the metabolome is likely to reflect adaptation in the physiological phenotype of an organism. This, therefore, provides a holistic and unbiased approach that could be applied to potentially uncover important novel facets in the pathophysiology of muscle decline in ageing and disease, as well as identifying prognostic markers of those at risk of decline. This review will aim to highlight the current knowledge and potential impact of metabolomics in the study of muscle mass loss and deconditioning in humans and will highlight key areas for future research.
Collapse
|
18
|
Puigarnau S, Fernàndez A, Obis E, Jové M, Castañer M, Pamplona R, Portero-Otin M, Camerino O. Metabolomics reveals that fittest trail runners show a better adaptation of bioenergetic pathways. J Sci Med Sport 2021; 25:425-431. [DOI: 10.1016/j.jsams.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
|
19
|
Khoramipour K, Sandbakk Ø, Keshteli AH, Gaeini AA, Wishart DS, Chamari K. Metabolomics in Exercise and Sports: A Systematic Review. Sports Med 2021; 52:547-583. [PMID: 34716906 DOI: 10.1007/s40279-021-01582-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metabolomics is a field of omics science that involves the comprehensive measurement of small metabolites in biological samples. It is increasingly being used to study exercise physiology and exercise-associated metabolism. However, the field of exercise metabolomics has not been extensively reviewed or assessed. OBJECTIVE This review on exercise metabolomics has three aims: (1) to provide an introduction to the general workflow and the different metabolomics technologies used to conduct exercise metabolomics studies; (2) to provide a systematic overview of published exercise metabolomics studies and their findings; and (3) to discuss future perspectives in the field of exercise metabolomics. METHODS We searched electronic databases including Google Scholar, Science Direct, PubMed, Scopus, Web of Science, and the SpringerLink academic journal database between January 1st 2000 and September 30th 2020. RESULTS Based on our detailed analysis of the field, exercise metabolomics studies fall into five major categories: (1) exercise nutrition metabolism; (2) exercise metabolism; (3) sport metabolism; (4) clinical exercise metabolism; and (5) metabolome comparisons. Exercise metabolism is the most popular category. The most common biological samples used in exercise metabolomics studies are blood and urine. Only a small minority of exercise metabolomics studies employ targeted or quantitative techniques, while most studies used untargeted metabolomics techniques. In addition, mass spectrometry was the most commonly used platform in exercise metabolomics studies, identified in approximately 54% of all published studies. Our data indicate that biomarkers or biomarker panels were identified in 34% of published exercise metabolomics studies. CONCLUSION Overall, there is an increasing trend towards better designed, more clinical, mass spectrometry-based metabolomics studies involving larger numbers of participants/patients and larger numbers of metabolites being identified.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Medical Faculty, Kerman University of Medical Sciences, Blvd. 22 Bahman, Kerman, Iran.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Computing Science, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| | - Karim Chamari
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
20
|
Bermingham KM, Brennan L, Segurado R, Barron RE, Gibney ER, Ryan MF, Gibney MJ, O'Sullivan AM. Genetic and Environmental Contributions to Variation in the Stable Urinary NMR Metabolome over Time: A Classic Twin Study. J Proteome Res 2021; 20:3992-4000. [PMID: 34304563 PMCID: PMC8397426 DOI: 10.1021/acs.jproteome.1c00319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Genes, sex, age,
diet, lifestyle, gut microbiome, and multiple
other factors affect human metabolomic profiles. Understanding metabolomic
variation is critical in human nutrition research as metabolites that
are sensitive to change versus those that are more stable might be
more informative for a particular study design. This study aims to
identify stable metabolomic regions and determine the genetic and
environmental contributions to stability. Using a classic twin design, 1H nuclear magnetic resonance (NMR) urinary metabolomic profiles
were measured in 128 twins at baseline, 1 month, and 2 months. Multivariate
mixed models identified stable urinary metabolites with intraclass
correlation coefficients ≥0.51. Longitudinal twin modeling
measured the contribution of genetic and environmental influences
to variation in the stable urinary NMR metabolome, comprising stable
metabolites. The conservation of an individual’s stable urinary
NMR metabolome over time was assessed by calculating conservation
indices. In this study, 20% of the urinary NMR metabolome is stable
over 2 months (intraclass correlation (ICC) 0.51–0.65). Common
genetic and shared environmental factors contributed to variance in
the stable urinary NMR metabolome over time. Using the stable metabolome,
91% of individuals had good metabolomic conservation indices ≥0.70.
To conclude, this research identifies 20% of the urinary NMR metabolome
as stable, improves our knowledge of the sources of metabolomic variation
over time, and demonstrates the conservation of an individual’s
urinary NMR metabolome.
Collapse
Affiliation(s)
- Kate M Bermingham
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Rebecca E Barron
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Miriam F Ryan
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Michael J Gibney
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Aifric M O'Sullivan
- UCD Institute of Food and health, School of Agriculture and Food Science, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
21
|
Molecular Portrait of an Athlete. Diagnostics (Basel) 2021; 11:diagnostics11061095. [PMID: 34203902 PMCID: PMC8232626 DOI: 10.3390/diagnostics11061095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Sequencing of the human genome and further developments in "omics" technologies have opened up new possibilities in the study of molecular mechanisms underlying athletic performance. It is expected that molecular markers associated with the development and manifestation of physical qualities (speed, strength, endurance, agility, and flexibility) can be successfully used in the selection systems in sports. This includes the choice of sports specialization, optimization of the training process, and assessment of the current functional state of an athlete (such as overtraining). This review summarizes and analyzes the genomic, proteomic, and metabolomic studies conducted in the field of sports medicine.
Collapse
|
22
|
Qi J, Spinelli JJ, Dummer TJB, Bhatti P, Playdon MC, Levitt JO, Hauner B, Moore SC, Murphy RA. Metabolomics and cancer preventive behaviors in the BC Generations Project. Sci Rep 2021; 11:12094. [PMID: 34103643 PMCID: PMC8187402 DOI: 10.1038/s41598-021-91753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolomics can detect metabolic shifts resulting from lifestyle behaviors and may provide insight on the relevance of changes to carcinogenesis. We used non-targeted nuclear magnetic resonance to examine associations between metabolic measures and cancer preventive behaviors in 1319 participants (50% male, mean age 54 years) from the BC Generations Project. Behaviors were dichotomized: BMI < 25 kg/m2, ≥ 5 servings of fruits or vegetables/day, ≤ 2 alcoholic drinks/day for men or 1 drink/day for women and ≥ 30 min of moderate or vigorous physical activity/day. Linear regression was used to estimate coefficients and 95% confidence intervals with a false discovery rate (FDR) of 0.10. Of the 218 metabolic measures, 173, 103, 71 and 6 were associated with BMI, fruits and vegetables, alcohol consumption and physical activity. Notable findings included negative associations between glycoprotein acetyls, an inflammation-related metabolite with lower BMI and greater fruit and vegetable consumption, a positive association between polyunsaturated fatty acids and fruit and vegetable consumption and positive associations between high-density lipoprotein subclasses with lower BMI. These findings provide insight into metabolic alterations in the context of cancer prevention and the diverse biological pathways they are involved in. In particular, behaviors related to BMI, fruit and vegetable and alcohol consumption had a large metabolic impact.
Collapse
Affiliation(s)
- J Qi
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - J J Spinelli
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - T J B Dummer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - P Bhatti
- Cancer Control Research, BC Cancer, 2-107, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - M C Playdon
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - J Olin Levitt
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - B Hauner
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - S C Moore
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD, USA
| | - R A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada. .,Cancer Control Research, BC Cancer, 2-107, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
23
|
Wang Y, Zhou W, Lyu C, Li Q, Kou F, Jiang M, Wei H. Metabolomics study on the intervention effect of Radix Salviae Miltiorrhizae extract in exercise-induced exhaustion rat using gas chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122805. [PMID: 34224965 DOI: 10.1016/j.jchromb.2021.122805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
The metabolomics approach based on the gas chromatography coupled to mass spectrometry (GC-MS) was adopted to explore the underlying mechanism of the anti-fatigue effect of Radix Salviae Miltiorrhizae (RSM), a famous herbal medicine in China used for multiple biological functions, in load-weighted swimming test in rat, combined with biochemical parameters evaluations. As a result, the metabolomics study followed by orthogonal partial least-square (OPLS) analysis could differentiate metabolic profiling between the control and exhaustive exercise group, showing the rats underwent an obvious metabolic perturbation, whereas RSM treatment restored scores plot close to normal and showed regulatory effects on the muscle metabolic profiles. The changed metabolic pathways of the potential biomarkers in response to the effect of RSM treatment for exhaustive exercise rats included in glucose metabolism (glucose, lactic acid, alanine), glutathione metabolism (glycine, glutamate, 5-oxo-proline), TCA cycle (succinic acid), arginine biosynthesis (glutamine, ornithine, urea), glyoxylate and dicarboxylate metabolism (serine, glycine), oxidative stress (taurine) and purine metabolism (inosine). In addition, intervention of RSM increased hepatic glycogen, muscle glycogen and serum glucose, and decreased triglyceride and blood urea nitrogen levels, indicating RSM treatment may regulate energy metabolism by increasing the rate of fat utilization, decrease the protein and carbohydrate utilization. Furthermore, RSM reduced exhaustive exercise-induced accumulation of the lipid peroxidation byproduct malonaldehyde and elevated antioxidants' levels, including reduced glutathione and superoxide dismutase, which might be a positive reflection of improved oxidant-antioxidant balance. Moreover, RSM could protect against exercise-induced muscle damage by attenuating creatine kinase release. In summary, RSM provided a good anti-fatigue effect by regulating energy metabolism, oxidant-antioxidant balance, and the endogenous metabolites in the exercising muscle. This study demonstrates that metabolomics is an effective tool for the estimation of the potential anti-fatigue effect of RSM and for the illustration of its pharmacological mechanism.
Collapse
Affiliation(s)
- Yuyan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbin Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunming Lyu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Jiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
24
|
Bhushan B, Upadhyay D, Sharma U, Jagannathan N, Singh SB, Ganju L. Urine metabolite profiling of Indian Antarctic Expedition members: NMR spectroscopy-based metabolomic investigation. Heliyon 2021; 7:e07114. [PMID: 34113732 PMCID: PMC8170161 DOI: 10.1016/j.heliyon.2021.e07114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The southernmost region of earth, Antarctica, has world's most challenging environments. Those who live for long time and work in Antarctic stations are subjected to environmental stresses such as cold weather, photoperiod variations leading to disrupted sleep cycles, constrained living spaces, dry air, non-availability of fresh food items, and high electromagnetic radiations, psychological factors, such as geographical and social isolation, etc. All these factors have a significant impact on the human body. The present study investigated the impact of Antarctica harsh environment on human physiology and its metabolic processes by evaluating urine metabolome, using 1H NMR spectroscopy and analyzing certain physiological and clinical parameters for correlation with physiological expression data and metabolite results. Two study groups - before Antarctic exposure (B) and after Antarctic exposure (E), consisting of 11 subjects, exposed to one-month summer expedition, were compared. 35 metabolites in urine samples were identified from the 700 MHz 1H NMR spectra from where integral intensity of 22 important metabolites was determined. Univariate analysis indicated significant decrease in the levels of citrate and creatinine in samples collected post-expedition. Multivariate analysis was also performed using 1H NMR spectroscopy, because independent metabolite abundances may complement each other in predicting the dependent variables. 10 metabolites were identified among the groups; the OPLS-DA and VIP score indicated variation in appearance of metabolites over different time periods with insignificant change in the intensities. Metabolite results illustrate the impact of environmental stress or altered life style including the diet with absence of fresh fruits and vegetables, on the pathophysiology of the human health. Metabolic adaptation to Antarctic environmental stressors may help to highlight the effect of short-term physiological status and provide important information during Antarctic expeditions to formulate management programmes.
Collapse
Affiliation(s)
- Brij Bhushan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Deepti Upadhyay
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Uma Sharma
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | - Shashi Bala Singh
- National Institute of Pharmaceutical Education and Research (NIPER), NH 9, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana 500037, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, New Delhi 110054, India
- Corresponding author.
| |
Collapse
|
25
|
Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci 2021; 22:ijms22020896. [PMID: 33477427 PMCID: PMC7831009 DOI: 10.3390/ijms22020896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.
Collapse
|
26
|
Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats. Metabolites 2020; 10:metabo10120481. [PMID: 33255518 PMCID: PMC7760742 DOI: 10.3390/metabo10120481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
Life expectancy has risen in the past decades, resulting in an increase in the number of aged individuals. Exercise remains one of the most cost-effective treatments against disease and the physical consequences of aging. The purpose of this research was to investigate the effects of aging, long-term and lifelong exercise on the rat urinary metabolome. Thirty-six male Wistar rats were divided into four equal groups: exercise from 3 to 12 months of age (A), lifelong exercise from 3 to 21 months of age (B), no exercise (C), and exercise from 12 to 21 months of age (D). Exercise consisted in swimming for 20 min/day, 5 days/week. Urine samples collection was performed at 3, 12 and 21 months of life and their analysis was conducted by liquid chromatography-mass spectrometry. Multivariate analysis of the metabolite data did not show any discrimination between groups at any of the three aforementioned ages. However, multivariate analysis discriminated the three ages clearly when the groups were treated as one. Univariate analysis showed that training increased the levels of urinary amino acids and possibly protected against sarcopenia, as evidenced by the higher levels of creatine in the exercising groups. Aging was accompanied by decreased levels of urinary amino acids and signs of increased glycolysis. Concluding, both aging and, to a lesser degree, exercise affected the rat urinary metabolome, including metabolites related to energy metabolism, with exercise showing a potential to mitigate the consequences of aging.
Collapse
|
27
|
Nayor M, Shah RV, Miller PE, Blodgett JB, Tanguay M, Pico AR, Murthy VL, Malhotra R, Houstis NE, Deik A, Pierce KA, Bullock K, Dailey L, Velagaleti RS, Moore SA, Ho JE, Baggish AL, Clish CB, Larson MG, Vasan RS, Lewis GD. Metabolic Architecture of Acute Exercise Response in Middle-Aged Adults in the Community. Circulation 2020; 142:1905-1924. [PMID: 32927962 PMCID: PMC8049528 DOI: 10.1161/circulationaha.120.050281] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Whereas regular exercise is associated with lower risk of cardiovascular disease and mortality, mechanisms of exercise-mediated health benefits remain less clear. We used metabolite profiling before and after acute exercise to delineate the metabolic architecture of exercise response patterns in humans. METHODS Cardiopulmonary exercise testing and metabolite profiling was performed on Framingham Heart Study participants (age 53±8 years, 63% women) with blood drawn at rest (n=471) and at peak exercise (n=411). RESULTS We observed changes in circulating levels for 502 of 588 measured metabolites from rest to peak exercise (exercise duration 11.9±2.1 minutes) at a 5% false discovery rate. Changes included reductions in metabolites implicated in insulin resistance (glutamate, -29%; P=1.5×10-55; dimethylguanidino valeric acid [DMGV], -18%; P=5.8×10-18) and increases in metabolites associated with lipolysis (1-methylnicotinamide, +33%; P=6.1×10-67), nitric oxide bioavailability (arginine/ornithine + citrulline, +29%; P=2.8×10-169), and adipose browning (12,13-dihydroxy-9Z-octadecenoic acid +26%; P=7.4×10-38), among other pathways relevant to cardiometabolic risk. We assayed 177 metabolites in a separate Framingham Heart Study replication sample (n=783, age 54±8 years, 51% women) and observed concordant changes in 164 metabolites (92.6%) at 5% false discovery rate. Exercise-induced metabolite changes were variably related to the amount of exercise performed (peak workload), sex, and body mass index. There was attenuation of favorable excursions in some metabolites in individuals with higher body mass index and greater excursions in select cardioprotective metabolites in women despite less exercise performed. Distinct preexercise metabolite levels were associated with different physiologic dimensions of fitness (eg, ventilatory efficiency, exercise blood pressure, peak Vo2). We identified 4 metabolite signatures of exercise response patterns that were then analyzed in a separate cohort (Framingham Offspring Study; n=2045, age 55±10 years, 51% women), 2 of which were associated with overall mortality over median follow-up of 23.1 years (P≤0.003 for both). CONCLUSIONS In a large sample of community-dwelling individuals, acute exercise elicits widespread changes in the circulating metabolome. Metabolic changes identify pathways central to cardiometabolic health, cardiovascular disease, and long-term outcome. These findings provide a detailed map of the metabolic response to acute exercise in humans and identify potential mechanisms responsible for the beneficial cardiometabolic effects of exercise for future study.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ravi V. Shah
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Patricia E. Miller
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jasmine B. Blodgett
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Melissa Tanguay
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA
| | - Venkatesh L. Murthy
- Division of Cardiovascular Medicine, Department of Medicine, University of Michigan, Ann Arbor
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor
| | - Rajeev Malhotra
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Nicholas E. Houstis
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Lucas Dailey
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Raghava S. Velagaleti
- Cardiology Section, Department of Medicine, Boston VA Healthcare System, West Roxbury, MA
| | - Stephanie A. Moore
- Cardiology Section, Department of Medicine, Boston VA Healthcare System, West Roxbury, MA
| | - Jennifer E. Ho
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Aaron L. Baggish
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
| | - Ramachandran S. Vasan
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA
- Sections of Preventive Medicine and Epidemiology, and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Gregory D. Lewis
- Cardiology Division and the Simches Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Pulmonary Critical Care Unit, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
28
|
Pintus R, Bongiovanni T, Corbu S, Francavilla VC, DessÌ A, Noto A, Corsello G, Finco G, Fanos V, Cesare Marincola F. Sportomics in professional soccer players: metabolomics results during preseason. J Sports Med Phys Fitness 2020; 61:324-330. [PMID: 32936572 DOI: 10.23736/s0022-4707.20.11200-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sportomics is the application of metabolomics to study the metabolism shifts of individuals that practice sports or do physical exercise. This aim was reached by the analysis of low molecular weight metabolites (<1.5 kDa) present in biological fluids such as blood, saliva or urine. METHODS In this study, authors performed a 1H-NMR analysis of urine from 21 professional soccer players collected at 3 different time points during the preseason preparation period before the beginning of Serie A Championship (first division) in Italy. RESULTS Urine profile changed during the observational period. In particular, significant variations were observed for trimethylamine-N-oxide, dimethylamine, hippuric acid, hypoxanthine, guanidoacetic acid, 3-hydroxybutyric acid, citric acid and creatine. These modifications could be related to the diet, training and microbiota. For instance, trimethylamine-N-oxide and hippuric acid are both of dietary origins but are also related to the microbiota, while 3-hydroxy-butyric acid is associated with the type of physical exercise. CONCLUSIONS This is the first sportomics study ever performed on professional soccer players, according to authors' knowledge. In the future, sportomics could be applied in a tailored way to choose the best diet and training program in the single individual to obtain the best possible performances and to prevent injuries of athletes.
Collapse
Affiliation(s)
- Roberta Pintus
- Neonatal Intensive Care Unit, University Hospital of Cagliari, University of Cagliari, Monserrato, Cagliari, Italy
| | - Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy -
| | - Sara Corbu
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vincenzo C Francavilla
- School of Engineering, Architecture and Motor Sciences, Kore University of Enna, Enna, Italy
| | - Angelica DessÌ
- Neonatal Intensive Care Unit, University Hospital of Cagliari, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Science and Public Health, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Corsello
- Neonatal Intensive Care Unit, Department of Sciences for Health Promotion and Mother and Child Care, P. Giaccone University Hospital, University of Palermo, Palermo, Italy
| | - Gabriele Finco
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, University Hospital of Cagliari, University of Cagliari, Monserrato, Cagliari, Italy
| | | |
Collapse
|
29
|
Khoramipour K, Gaeini AA, Shirzad E, Gilany K, Chashniam S, Sandbakk Ø. Metabolic load comparison between the quarters of a game in elite male basketball players using sport metabolomics. Eur J Sport Sci 2020; 21:1022-1034. [PMID: 32746753 DOI: 10.1080/17461391.2020.1805515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: A basketball match is characterized by intermittent high-intensity activities, thereby relying extensively on both aerobic and anaerobic metabolic pathways. Here, we aimed to compare the metabolic fluctuations between the four 10-min quarters of high-level basketball games using metabolomics analyses. Methods: 70 male basketball players with at least 3 years of experience in the Iran national top-league participated. Before and after each quarter, saliva samples were taken for subsequent untargeted metabolomics analyses, where Principal component analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA) were employed for statistical analysis. Results: Quarters 1 and 3 showed similar metabolic profiles, with increased levels of ATP turnover (higher Lactate, Pyruvate, Succinic Acid, Citric Cid, Glucose and Hypoxanthine), indicating more reliance on anaerobic energy systems than quarters 2 and 4. In comparison, quarters 2 and 4 showed a reduction in Valine and Lucien and an increase in Alanine, Glycerol, AcetoAcetic Acid, Acetone, Succinic Acid, Citric Acid, Acetate and Taurine that was not present in quarters 1 and 3, indicating greater reliance of aerobic energy contribution, fat metabolism and gluconeogenesis. Conclusion: Our data demonstrate that the higher intensity of movements in the first quarter, where players are more rested, induce an increase in anaerobic energy contribution. This seems to be the case also for the third quarter that follows 15 min of rest, whereas the accumulated fatigue and reduction of high-intensity movements in the second and fourth quarters also reduces the speed of energy production and players thereby utilize more aerobic energy.
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Department of Physiology and Pharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Abbas Ali Gaeini
- Department of exercise physiology, University of Tehran, Tehran, Iran
| | - Elham Shirzad
- Department of Health and Sports Medicine, University of Tehran, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center Avicenna Research Institute, ACECR, Tehran, Iran.,Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
30
|
Kelly RS, Kelly MP, Kelly P. Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165936. [PMID: 32827647 DOI: 10.1016/j.bbadis.2020.165936] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023]
Abstract
Physical activity (PA) and exercise are among the most important determinants of health. However, PA is a complex and heterogeneous behavior and the biological mechanisms through which it impacts individuals and populations in different ways are not well understood. Genetics and environment likely play pivotal roles but further work is needed to understand their relative contributions and how they may be mediated. Metabolomics offers a promising approach to explore these relationships. In this review, we provide a comprehensive appraisal of the PA-metabolomics literature to date. This overwhelmingly supports the hypothesis of a metabolomic response to PA, which can differ between groups and individuals. It also suggests a biological gradient in this response based on PA intensity, with some evidence for global longer-term changes in the metabolome of highly active individuals. However, many questions remain and we conclude by highlighting future critical research avenues to help elucidate the role of PA in the maintenance of health and the development of disease.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael P Kelly
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Forvie Site, Cambridge CB2 0SR. UK.
| | - Paul Kelly
- Physical Activity for Health Research Center (PAHRC), University of Edinburgh, St Leonard's Land, Edinburgh EH8 8AQ, UK.
| |
Collapse
|
31
|
Kistner S, Rist MJ, Döring M, Dörr C, Neumann R, Härtel S, Bub A. An NMR-Based Approach to Identify Urinary Metabolites Associated with Acute Physical Exercise and Cardiorespiratory Fitness in Healthy Humans-Results of the KarMeN Study. Metabolites 2020; 10:metabo10050212. [PMID: 32455749 PMCID: PMC7281079 DOI: 10.3390/metabo10050212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Knowledge on metabolites distinguishing the metabolic response to acute physical exercise between fit and less fit individuals could clarify mechanisms and metabolic pathways contributing to the beneficial adaptations to exercise. By analyzing data from the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study, we characterized the acute effects of a standardized exercise tolerance test on urinary metabolites of 255 healthy women and men. In a second step, we aimed to detect a urinary metabolite pattern associated with the cardiorespiratory fitness (CRF), which was determined by measuring the peak oxygen uptake (VO2peak) during incremental exercise. Spot urine samples were collected pre- and post-exercise and 47 urinary metabolites were identified by nuclear magnetic resonance (NMR) spectroscopy. While the univariate analysis of pre-to-post-exercise differences revealed significant alterations in 37 urinary metabolites, principal component analysis (PCA) did not show a clear separation of the pre- and post-exercise urine samples. Moreover, both bivariate correlation and multiple linear regression analyses revealed only weak relationships between the VO2peak and single urinary metabolites or urinary metabolic pattern, when adjusting for covariates like age, sex, menopausal status, and lean body mass (LBM). Taken as a whole, our results show that several urinary metabolites (e.g., lactate, pyruvate, alanine, and acetate) reflect acute exercise-induced alterations in the human metabolism. However, as neither pre- and post-exercise levels nor the fold changes of urinary metabolites substantially accounted for the variation of the covariate-adjusted VO2peak, our results furthermore indicate that the urinary metabolites identified in this study do not allow to draw conclusions on the individual's physical fitness status. Studies investigating the relationship between the human metabolome and functional variables like the CRF should adjust for confounders like age, sex, menopausal status, and LBM.
Collapse
Affiliation(s)
- Sina Kistner
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
- Correspondence: ; Tel.: +49-721-608-46981
| | - Manuela J. Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| | - Claudia Dörr
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| | - Rainer Neumann
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
| | - Sascha Härtel
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
| | - Achim Bub
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (R.N.); (S.H.); (A.B.)
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany; (M.J.R.); (M.D.); (C.D.)
| |
Collapse
|
32
|
Sedentariness and Urinary Metabolite Profile in Type 2 Diabetic Patients, a Cross-Sectional Study. Metabolites 2020; 10:metabo10050205. [PMID: 32443532 PMCID: PMC7281751 DOI: 10.3390/metabo10050205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Recent findings indicate a significant association between sedentary (SED)-time and type 2 diabetes mellitus (T2DM). The aim of this study was to investigate whether different levels of SED-time could impact on biochemical and physiological processes occurring in sedentary and physically inactive T2DM patients. In particular, patients from the “Italian Diabetes and Exercise Study (IDES)_2 trial belonging to the first and fourth quartile of SED-time were compared. Urine samples were analyzed by comprehensive two-dimensional gas chromatography (GC × GC) with parallel detection by mass spectrometry and flame ionization detection (GC × 2GC-MS/FID). This platform enables accurate profiling and fingerprinting of urinary metabolites while maximizing the overall information capacity, quantitation reliability, and response linearity. Moreover, using advanced pattern recognition, the fingerprinting process was extended to untargeted and targeted features, revealing diagnostic urinary fingerprints between groups. Quantitative metabolomics was then applied to analytes of relevance for robust comparisons. Increased levels of glycine, L-valine, L-threonine, L-phenylalanine, L-leucine, L-alanine, succinic acid, 2-ketoglutaric acid, xylitol, and ribitol were revealed in samples from less sedentary women. In conclusion, SED-time is associated with changes in urine metabolome signatures. These preliminary results suggest that reducing SED-time could be a strategy to improve the health status of a large proportion of diabetic patients.
Collapse
|
33
|
First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites 2020; 10:metabo10040157. [PMID: 32316507 PMCID: PMC7240958 DOI: 10.3390/metabo10040157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
The urine from 35 giraffes was studied by untargeted 1H-NMR, with the purpose of obtaining, for the first time, a fingerprint of its metabolome. The metabolome, as downstream of the transcriptome and proteome, has been considered as the most representative approach to monitor the relationships between animal physiological features and environment. Thirty-nine molecules were unambiguously quantified, able to give information about diet, proteins digestion, energy generation, and gut-microbial co-metabolism. The samples collected allowed study of the effects of age and sex on the giraffe urinary metabolome. In addition, preliminary information about how sampling procedure and pregnancy could affect a giraffe’s urinary metabolome was obtained. Such work could trigger the setting up of methods to non-invasively study the health status of giraffes, which is utterly needed, considering that anesthetic-related complications make their immobilization a very risky practice.
Collapse
|
34
|
Koay YC, Stanton K, Kienzle V, Li M, Yang J, Celermajer DS, O'Sullivan JF. Effect of chronic exercise in healthy young male adults: a metabolomic analysis. Cardiovasc Res 2020; 117:613-622. [PMID: 32239128 DOI: 10.1093/cvr/cvaa051] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/05/2020] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS To examine the metabolic adaptation to an 80-day exercise intervention in healthy young male adults where lifestyle factors such as diet, sleep, and physical activities are controlled. METHODS AND RESULTS This study involved cross-sectional analysis before and after an 80-day aerobic and strength exercise intervention in 52 young, adult, male, newly enlisted soldiers in 2015. Plasma metabolomic analyses were performed using liquid chromatography, tandem mass spectrometry. Data analyses were performed between March and August 2019. We analysed changes in metabolomic profiles at the end of an 80-day exercise intervention compared to baseline, and the association of metabolite changes with changes in clinical parameters. Global metabolism was dramatically shifted after the exercise training programme. Fatty acids and ketone body substrates, key fuels used by exercising muscle, were dramatically decreased in plasma in response to increased aerobic fitness. There were highly significant changes across many classes of metabolic substrates including lipids, ketone bodies, arginine metabolites, endocannabinoids, nucleotides, markers of proteolysis, products of fatty acid oxidation, microbiome-derived metabolites, markers of redox stress, and substrates of coagulation. For statistical analyses, a paired t-test was used and Bonferroni-adjusted P-value of <0.0004 was considered to be statistically significant. The metabolite dimethylguanidino valeric acid (DMGV) (recently shown to predict lack of metabolic response to exercise) tracked maladaptive metabolic changes to exercise; those with increases in DMGV levels had increases in several cardiovascular risk factors; changes in DMGV levels were significantly positively correlated with increases in body fat (P = 0.049), total and LDL cholesterol (P = 0.003 and P = 0.007), and systolic blood pressure (P = 0.006). This study was approved by the Departments of Defence and Veterans' Affairs Human Research Ethics Committee and written informed consent was obtained from each subject. CONCLUSION For the first time, the true magnitude and extent of metabolic adaptation to chronic exercise training are revealed in this carefully designed study, which can be leveraged for novel therapeutic strategies in cardiometabolic disease. Extending the recent report of DMGV's predictive utility in sedentary, overweight individuals, we found that it is also a useful marker of poor metabolic response to exercise in young, healthy, fit males.
Collapse
Affiliation(s)
- Yen Chin Koay
- Heart Research Institute, Sydney, NSW, Australia
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Kelly Stanton
- Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Mengbo Li
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW, Australia
| | - Jean Yang
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- The University of Sydney, School of Mathematics and Statistics, Sydney, NSW, Australia
| | - David S Celermajer
- Heart Research Institute, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - John F O'Sullivan
- Heart Research Institute, Sydney, NSW, Australia
- The University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
35
|
Signature Mapping (SigMa): An efficient approach for processing complex human urine 1H NMR metabolomics data. Anal Chim Acta 2020; 1108:142-151. [DOI: 10.1016/j.aca.2020.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
36
|
Quintas G, Reche X, Sanjuan-Herráez JD, Martínez H, Herrero M, Valle X, Masa M, Rodas G. Urine metabolomic analysis for monitoring internal load in professional football players. Metabolomics 2020; 16:45. [PMID: 32222832 DOI: 10.1007/s11306-020-01668-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The design of training programs for football players is not straightforward due to intra- and inter-individual variability that leads to different physiological responses under similar training loads. OBJECTIVE To study the association between the external load, defined by variables obtained using electronic performance tracking systems (EPTS), and the urinary metabolome as a surrogate of the metabolic adaptation to training. METHODS Urine metabolic and EPTS data from 80 professional football players collected in an observational longitudinal study were analyzed by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry and assessed by partial least squares (PLS) regression. RESULTS PLS models identified steroid hormone metabolites, hypoxanthine metabolites, acetylated amino acids, intermediates in phenylalanine metabolism, tyrosine, tryptophan metabolites, and riboflavin among the most relevant variables associated with external load. Metabolic network analysis identified enriched pathways including steroid hormone biosynthesis and metabolism of tyrosine and tryptophan. The ratio of players showing a deviation from the PLS model of adaptation to exercise was higher among those who suffered a muscular lesion compared to those who did not. CONCLUSIONS There was a significant association between the external load and the urinary metabolic profile, with alteration of biochemical pathways associated with long-term adaptation to training. Future studies should focus on the validation of these findings and the development of metabolic models to identify professional football players at risk of developing muscular injuries.
Collapse
Affiliation(s)
- Guillermo Quintas
- Health & Biomedicine Unit, Leitat Technological Center, Terrassa, Spain.
| | - Xavier Reche
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain
| | | | | | | | - Xavier Valle
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain
| | - Marc Masa
- Health & Biomedicine Unit, Leitat Technological Center, Terrassa, Spain
| | - Gil Rodas
- Medical and Performance Department, Futbol Club Barcelona, Barcelona, Spain.
- Barça Innovation Hub, Barcelona, Spain.
| |
Collapse
|
37
|
Changes of Differential Urinary Metabolites after High-Intensive Training in Teenage Football Players. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2073803. [PMID: 32258106 PMCID: PMC7109581 DOI: 10.1155/2020/2073803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Objective The mechanism underlying the fatigue of football players is closely related to the energy depletion and accumulation of metabolites; the present study tries to explore the metabolic mechanism in teenage football players during exercise-induced fatigue. Methods 12 teenage football players were subjected to three groups of combined training by using a cycle ergometer, with the subjective Rating of Perceived Exertion (RPE) as a fatigue criterion. The following indicators were measured in each group after training: maximum oxygen uptake (VO2max), anaerobic power, and average anaerobic power. Urine samples were collected before and after the training. Gas chromatography-mass spectrometry (GC-MS) was performed for the metabonomics analysis of the samples. The metabolism data was analyzed by using principal component analysis (PCA) and orthogonal partial least squares analysis (OPLS-DA), through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to confirm the potential differences between metabolites, and the MetPA database was used to analyze the related metabolic pathways. Results There was no significant difference between the maximal oxygen uptakes among the three groups. Compared with group 1, the maximum and average anaerobic power in group 3 significantly decreased (p < 0.05) at the end of training. GC-MS detected 635 metabolites in the urine samples. Through PCA, OPLS-DA analysis, and KEGG matching, 25 different metabolites (3↑22↓) that met the conditions were finally selected. These different metabolites belonged to 5 metabolic pathways: glycine-serine-threonine metabolism, citrate cycle, tyrosine metabolism, nitrogen metabolism, and glycerophospholipid metabolism. Conclusions During the combined exercise of aerobic and anaerobic metabolism, teenage football players show a significant decrease in anaerobic capacity after fatigue. The metabolic mechanism of exercise fatigue was related to disorders in amino acid and energy metabolism.
Collapse
|
38
|
Zhao J, Wang Y, Zhao D, Zhang L, Chen P, Xu X. Integration of metabolomics and proteomics to reveal the metabolic characteristics of high-intensity interval training. Analyst 2020; 145:6500-6510. [DOI: 10.1039/d0an01287d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolomics and proteomics were integrated to research the molecular characterization of high-intensity interval training, revealing changes in biological pathways.
Collapse
Affiliation(s)
- Jingjing Zhao
- Shanghai anti-doping laboratory
- Shanghai University of Sport
- Shanghai
- China
| | - Yang Wang
- Shanghai anti-doping laboratory
- Shanghai University of Sport
- Shanghai
- China
| | - Dan Zhao
- Shanghai anti-doping laboratory
- Shanghai University of Sport
- Shanghai
- China
| | - Lizhen Zhang
- Shanghai anti-doping laboratory
- Shanghai University of Sport
- Shanghai
- China
| | - Peijie Chen
- Shanghai anti-doping laboratory
- Shanghai University of Sport
- Shanghai
- China
| | - Xin Xu
- Shanghai anti-doping laboratory
- Shanghai University of Sport
- Shanghai
- China
| |
Collapse
|
39
|
Characterization and Validation of an "Acute Aerobic Exercise Load" as a Tool to Assess Antioxidative and Anti-inflammatory Nutrition in Healthy Subjects Using a Statistically Integrated Approach in a Comprehensive Clinical Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9526725. [PMID: 31612079 PMCID: PMC6755301 DOI: 10.1155/2019/9526725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/09/2019] [Indexed: 11/17/2022]
Abstract
The homeostatic challenge may provide unique opportunities for quantitative assessment of the health-promoting effects of nutritional interventions in healthy individuals. Objective. The present study is aimed at characterizing and validating the use of acute aerobic exercise (AAE) on a treadmill at 60% of VO2max for 30 min, in assessing the antioxidative and anti-inflammatory effects of a nutritional intervention. In a controlled, randomized, parallel trial of Korean black raspberry (KBR) (n = 24/group), fasting blood and urine samples collected before and following the AAE load at either baseline or 4-week follow-up were analyzed for biochemical markers, 1H-NMR metabolomics, and transcriptomics. The AAE was characterized using the placebo data only, and either the placebo or the treatment data were used in the validation. The AAE load generated a total of 50 correlations of 44 selected markers, based on Pearson's correlation coefficient analysis of 105 differential markers. Subsequent mapping of selected markers onto the KEGG pathway dataset showed 127 pathways relevant to the AAE load. Of these, 54 pathways involving 18 key targets were annotated to be related to oxidative stress and inflammation. The biochemical responses were amplified with the AAE load as compared to those with no load, whereas, the metabolomic and transcriptomic responses were downgraded. Furthermore, target-pathway network analysis revealed that the AAE load provided more explanations on how KBR exerted antioxidant effects in healthy subjects (29 pathways involving 12 key targets with AAE vs. 12 pathways involving 2 key targets without AAE). This study provides considerable insight into the molecular changes incurred by AAE and furthers our understanding that AAE-induced homeostatic perturbation could magnify oxidative and inflammatory responses, thereby providing a unique opportunity to test functional foods for antioxidant and anti-inflammatory purposes in clinical settings with healthy subjects.
Collapse
|
40
|
Sakaguchi CA, Nieman DC, Signini EF, Abreu RM, Catai AM. Metabolomics-Based Studies Assessing Exercise-Induced Alterations of the Human Metabolome: A Systematic Review. Metabolites 2019; 9:metabo9080164. [PMID: 31405020 PMCID: PMC6724094 DOI: 10.3390/metabo9080164] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review provides a qualitative appraisal of 24 high-quality metabolomics-based studies published over the past decade exploring exercise-induced alterations of the human metabolome. Of these papers, 63% focused on acute metabolite changes following intense and prolonged exercise. The best studies utilized liquid chromatography mass spectrometry (LC-MS/MS) analytical platforms with large chemical standard libraries and strong, multivariate bioinformatics support. These studies reported large-fold changes in diverse lipid-related metabolites, with more than 100 increasing two-fold or greater within a few hours post-exercise. Metabolite shifts, even after strenuous exercise, typically return to near pre-exercise levels after one day of recovery. Few studies investigated metabolite changes following acute exercise bouts of shorter durations (< 60 min) and workload volumes. Plasma metabolite shifts in these types of studies are modest in comparison. More cross-sectional and exercise training studies are needed to improve scientific understanding of the human system’s response to varying, chronic exercise workloads. The findings derived from this review provide direction for future investigations focused on the body’s metabolome response to exercise.
Collapse
Affiliation(s)
- Camila A Sakaguchi
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | - David C Nieman
- North Carolina Research Campus, Appalachian State University, Kannapolis, NC 28081, USA
| | - Etore F Signini
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Raphael M Abreu
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Aparecida M Catai
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
41
|
The effect of sampling procedures and day-to-day variations in metabolomics studies of biofluids. Anal Chim Acta 2019; 1081:93-102. [PMID: 31446969 DOI: 10.1016/j.aca.2019.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/26/2022]
Abstract
Metabolomics analysis of biofluids is a feasible tool for disease characterization and monitoring due to its minimally invasive nature. To reduce unwanted variation in biobanks and clinical studies, it is important to determine the effect of external factors on metabolic profiles of biofluids. In this study we examined the effect of sample collection and sample processing procedures on NMR measured serum lipoproteins and small-molecule metabolites in serum and urine, using a cohort of men diagnosed with either prostate cancer or benign prostatic hyperplasia. We determined day-to-day reliability of metabolites by systematic sample collection at two different days, in both fasting and non-fasting conditions. Study participants received prostate massage the first day to assess the differences between urine with and without prostate secretions. Further, metabolic differences between first-void and mid-stream urine samples, and the effect of centrifugation of urine samples before storage were assessed. Our results show that day-to-day reliability is highly variable between metabolites in both serum and urine, while lipoprotein subfractions possess high reliability. Further, fasting status clearly influenced the metabolite concentrations, demonstrating the importance of keeping this condition constant within a study cohort. Day-to-day reliabilities were however comparable in fasting and non-fasting samples. Urine sampling procedures such as sampling of first-void or mid-stream urine, and centrifugation or not before sample storage, were shown to only have minimal effect on the overall metabolic profile, and is thus unlikely to constitute a confounder in clinical studies utilizing NMR derived metabolomics.
Collapse
|
42
|
Jing L, Chengji W. GC/MS-based metabolomics strategy to analyze the effect of exercise intervention in diabetic rats. Endocr Connect 2019; 8:654-660. [PMID: 31042671 PMCID: PMC6528492 DOI: 10.1530/ec-19-0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Metabolomics was used to explore the effect of exercise intervention on type 2 diabetes. The rat model of type 2 diabetes was induced by an injection of streptozocin (30 mg/kg), after fed with 8-week high-fat diet. The rats were divided into three groups: the control group, the diabetic model group (DM) and the diabetes + exercise group (DME). After exercise for 10 weeks, blood samples were collected to test biomedical indexes, and 24-h urine samples were collected for the metabolomics experiment. In the DME group, fasting blood glucose (FBG), both total cholesterol (TC) and total plasma triglycerides (TG), were decreased significantly, compared with those in the DM group. Based on gas chromatography-mass spectrometry (GC/MS), a urinary metabolomics method was used to study the mechanism of exercise intervention on diabetes mellitus. Based on the principal component analysis (PCA), it was found that the DM group and control group were separated into two different clusters. The DME group was located between the DM group and the control group, closer to the control group. Twelve significantly changed metabolites of diabetes mellitus were detected and identified, including glycolate, 4-methyl phenol, benzoic acid, 1H-indole, arabinitol, threitol, ribonic acid, malic acid, 2,3-dihydroxy-butanoic, aminomalonic acid, l-ascorbic acid and 3-hydroxy hexanedioic acid. After exercise, seven metabolites were significantly changed, compared with the control group, the relative contents of benzoic acid, aminomalonic acid, tetrabutyl alcohol and ribonucleic acid in the diabetic exercise group decreased significantly. The relative contents of 2,3-dihydroxybutyric acid, l-ascorbic acid and 3-hydroxy adipic acid increased significantly. l-ascorbic acid and aminomalonic acid which related with the oxidative stress were significantly regulated to normal. The results showed that exercise could display anti-hyperglycemic and anti-hyperlipidemic effects. The exercise had antioxidation function in preventing the occurrence of complications with diabetes mellitus to some extent. The work illustrates that the metabolomics method is a useful tool to study the mechanism of exercise treatment.
Collapse
Affiliation(s)
- Li Jing
- College of Physical Education, Chaohu University, Anhui Province, China
- Correspondence should be addressed to L Jing:
| | - Wang Chengji
- College of Physical Education, Chaohu University, Anhui Province, China
| |
Collapse
|
43
|
Brennan AM, Benson M, Morningstar J, Herzig M, Robbins J, Gerszten RE, Ross R. Plasma Metabolite Profiles in Response to Chronic Exercise. Med Sci Sports Exerc 2019; 50:1480-1486. [PMID: 29509640 DOI: 10.1249/mss.0000000000001594] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE High-throughput profiling of metabolic status (metabolomics) allows for the assessment of small-molecule metabolites that may participate in exercise-induced biochemical pathways and corresponding cardiometabolic risk modification. We sought to describe the changes in a diverse set of plasma metabolite profiles in patients undergoing chronic exercise training and assess the relationship between metabolites and cardiometabolic response to exercise. METHODS A secondary analysis was performed in 216 middle-age abdominally obese men and women (mean ± SD, 52.4 ± 8.0 yr) randomized into one of four groups varying in exercise amount and intensity for 6-month duration: high amount high intensity, high amount low intensity, low amount low intensity, and control. One hundred forty-seven metabolites were profiled by liquid chromatography-tandem mass spectrometry. RESULTS No significant differences in metabolite changes between specific exercise groups were observed; therefore, subsequent analyses were collapsed across exercise groups. There were no significant differences in metabolite changes between the exercise and control groups after 24 wk at a Bonferroni-adjusted statistical significance (P < 3.0 × 10). Seven metabolites changed in the exercise group compared with the control group at P < 0.05. Changes in several metabolites from distinct metabolic pathways were associated with change in cardiometabolic risk traits, and three baseline metabolite levels predicted changes in cardiometabolic risk traits. CONCLUSIONS Metabolomic profiling revealed no significant plasma metabolite changes between exercise and control after 24 wk at Bonferroni significance. However, we identified circulating biomarkers that were predictive or reflective of improvements in cardiometabolic traits in the exercise group.
Collapse
Affiliation(s)
- Andrea M Brennan
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA
| | - Mark Benson
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jordan Morningstar
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Matthew Herzig
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeremy Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Robert Ross
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA
| |
Collapse
|
44
|
Davison G, Vinaixa M, McGovern R, Beltran A, Novials A, Correig X, McClean C. Metabolomic Response to Acute Hypoxic Exercise and Recovery in Adult Males. Front Physiol 2018; 9:1682. [PMID: 30534085 PMCID: PMC6275205 DOI: 10.3389/fphys.2018.01682] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022] Open
Abstract
Metabolomics is a relatively new “omics” approach used to characterize metabolites in a biological system at baseline and following a diversity of stimuli. However, the metabolomic response to exercise in hypoxia currently remains unknown. To examine this, 24 male participants completed 1 h of exercise at a workload corresponding to 75% of pre-determined O2max in hypoxia (Fio2 = 0.16%), and repeated in normoxia (Fio2 = 0.21%), while pre- and post-exercise and 3 h post-exercise metabolites were analyzed using a LC ESI-qTOF-MS untargeted metabolomics approach in serum samples. Exercise in hypoxia and in normoxia independently increased metabolism as shown by a change in a combination of twenty-two metabolites associated with lipid metabolism (p < 0.05, pre vs. post-exercise), though hypoxia per se did not induce a greater metabolic change when compared with normoxia (p > 0.05). Recovery from exercise in hypoxia independently decreased seventeen metabolites associated with lipid metabolism (p < 0.05, post vs. 3 h post-exercise), compared with twenty-two metabolites in normoxia (p < 0.05, post vs. 3 h post-exercise). Twenty-six metabolites were identified as responders to exercise and recovery (pooled hypoxia and normoxia pre vs. recovery, p < 0.05), including metabolites associated with purine metabolism (adenine, adenosine and hypoxanthine), the amino acid phenylalanine, and several acylcarnitine molecules. Our novel data provides preliminary evidence of subtle metabolic differences to exercise and recovery in hypoxia and normoxia. Specifically, exercise in hypoxia activates metabolic pathways aligned to purine and lipid metabolism, but this effect is not selectively different from exercise in normoxia. We also show that exercise per se can activate pathways associated with lipid, protein and purine nucleotide metabolism.
Collapse
Affiliation(s)
- Gareth Davison
- Sport and Exercise Science Research Institute, Ulster University, Antrim, United Kingdom
| | - Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, IISPV - Rovira i Virgili University, Tarragona, Spain
| | - Rose McGovern
- Sport and Exercise Science Research Institute, Ulster University, Antrim, United Kingdom
| | - Antoni Beltran
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, IISPV - Rovira i Virgili University, Tarragona, Spain
| | - Anna Novials
- Department of Endocrinology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, IISPV - Rovira i Virgili University, Tarragona, Spain
| | - Conor McClean
- Sport and Exercise Science Research Institute, Ulster University, Antrim, United Kingdom
| |
Collapse
|
45
|
Moreira LP, Silveira L, Pacheco MTT, da Silva AG, Rocco DDFM. Detecting urine metabolites related to training performance in swimming athletes by means of Raman spectroscopy and principal component analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:223-234. [DOI: 10.1016/j.jphotobiol.2018.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022]
|
46
|
Siopi A, Mougios V. Metabolomics in Human Acute-Exercise Trials: Study Design and Preparation. Methods Mol Biol 2018; 1738:279-287. [PMID: 29654597 DOI: 10.1007/978-1-4939-7643-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolomics can be of great value in the study of exercise metabolism. However, because of the high intraindividual and interindividual biological variability of the human metabolome, special considerations should be taken into account when designing an acute-exercise metabolomic study. To study different exercise parameters, e.g., different exercise modes, intensities, etc., a crossover study design, where each participant acts as their own control, is preferable to a parallel design, one involving different groups of participants. Moreover, the study should include a no exercise, control trial. Before each trial, participants should follow carefully designed preparatory steps to control for possible confounding factors, i.e., maintain repeatable and constant conditions for all individual trials of the study to minimize variation due to factors other than the one(s) being studied. This chapter focuses on the design of human metabolomic studies, where the intervention is an acute metabolic challenge, such as an exercise bout or a test meal, and presents some basic steps for screening potential participants, performing preliminary tests, preparing for the trial day, and performing the trial.
Collapse
Affiliation(s)
- Aikaterina Siopi
- School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,Department of Physical Education and Sport Science at Thermi, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Vassilis Mougios
- School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
47
|
Cartlidge CR, U MRA, Alkhatib AMA, Taylor-Robinson SD. The utility of biomarkers in hepatocellular carcinoma: review of urine-based 1H-NMR studies - what the clinician needs to know. Int J Gen Med 2017; 10:431-442. [PMID: 29225478 PMCID: PMC5708191 DOI: 10.2147/ijgm.s150312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy, the third most common cause of cancer death, and the most common primary liver cancer. Overall, there is a need for more reliable biomarkers for HCC, as those currently available lack sensitivity and specificity. For example, the current gold-standard biomarker, serum alpha-fetoprotein, has a sensitivity of roughly only 70%. Cancer cells have different characteristic metabolic signatures in biofluids, compared to healthy cells; therefore, metabolite analysis in blood or urine should lead to the detection of suitable candidates for the detection of HCC. With the advent of metabonomics, this has increased the potential for new biomarker discovery. In this article, we look at approaches used to identify biomarkers of HCC using proton nuclear magnetic resonance (1H-NMR) spectroscopy of urine samples. The various multivariate statistical analysis techniques used are explained, and the process of biomarker identification is discussed, with a view to simplifying the knowledge base for the average clinician.
Collapse
Affiliation(s)
| | - M R Abellona U
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Alzhraa M A Alkhatib
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
48
|
Nikolaidis S, Kosmidis I, Sougioultzis M, Kabasakalis A, Mougios V. Diurnal variation and reliability of the urine lactate concentration after maximal exercise. Chronobiol Int 2017; 35:24-34. [DOI: 10.1080/07420528.2017.1380037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefanos Nikolaidis
- School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Kleanthis Vikelidis Swimming Pool, Thessaloniki, Greece
| | - Ioannis Kosmidis
- School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Athanasios Kabasakalis
- School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilis Mougios
- School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
49
|
Suárez M, Caimari A, del Bas JM, Arola L. Metabolomics: An emerging tool to evaluate the impact of nutritional and physiological challenges. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Moreira LP, Silveira L, da Silva AG, Fernandes AB, Pacheco MTT, Rocco DDFM. Raman spectroscopy applied to identify metabolites in urine of physically active subjects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:92-99. [DOI: 10.1016/j.jphotobiol.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/04/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|