1
|
Yano J, Kawamoto K, Shimotsuma Y, Matsunaga K, Abe J, Fukunaga S, Osimitz TG, Lake BG, Asano H. Mode of action analysis for rat thyroid gland follicular cell tumor formation by MGK-264 and human relevance. Regul Toxicol Pharmacol 2025; 160:105834. [PMID: 40315979 DOI: 10.1016/j.yrtph.2025.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
MGK-264 (N-(2-ethylhexyl)-5-norborene-2.3-dicarboximide or N-octyl bicycloheptene dicarboximide), an insecticidal synergist, produced thyroid gland follicular cell (TFC) tumors in male Sprague-Dawley (SD) rats in a carcinogenicity study. The purpose of this study was to evaluate the possible mode of action (MoA) for TFC tumor induction by MGK-264 and its relevance to humans. In short-term in vivo studies, the treatment of male SD rats with MGK-264 resulted in induction of hepatic UDPglucuronosyltransferase (UGT) activity towards thyroxine (T4) as substrate (UGT activity), a decrease in serum T4 levels, an increase in serum thyroid stimulating hormone levels, and TFC hypertrophy at MGK-264 dose levels where TFC tumors were noted in the carcinogenicity study. Other possible MoAs such as genotoxicity, thyroperoxidase inhibition, and sodium/iodide symporter inhibition were excluded. Therefore, it is reasonable to conclude that MGK-264 has mitogenic activity on TFCs via induction of hepatic UGT activity followed by perturbation of the hypothalamus-pituitary-thyroid axis, similar to other hepatic xenobiotic enzyme inducers like phenobarbital. Literature data demonstrates that there are marked species differences between rats and humans in the effects of hepatic xenobiotic enzyme inducers on thyroid hormones and the thyroid gland. Overall, the proposed MoA for MGK-264-induced rat TFC tumor formation is considered quantitatively not plausible for humans.
Collapse
Affiliation(s)
- Junji Yano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan.
| | - Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Yukako Shimotsuma
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Kohei Matsunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Jun Abe
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | | | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| |
Collapse
|
2
|
Schopfer CR, Grözinger F, Birk B, Hewitt NJ, Weltje L, Habekost M. Cross-taxa extrapolation: Is there a role for thyroid hormone conjugating liver enzymes during amphibian metamorphosis? Regul Toxicol Pharmacol 2025; 159:105810. [PMID: 40107341 DOI: 10.1016/j.yrtph.2025.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Chemical safety assessment includes evaluating the potential to disrupt the endocrine system in humans and wildlife. The thyroid hormone system shows high complexity which is conserved across vertebrates, allowing biological read-across between regulatory important taxa, namely mammals and amphibians. Potential thyroid disruption in aquatic vertebrates is typically investigated by activity assays (Amphibian Metamorphosis Assay (AMA), Xenopus Eleutheroembryo Thyroid Assay). Since neither assay is designed to provide detailed mechanistic information, mode of action analyses often rely on mammalian data, assuming overall cross-vertebrate conservation. This manuscript elaborates on the imperative that, despite overall conservation, the T-modality in metamorphosing amphibians needs to be understood in detail to justify biological read-across between mammals and amphibians. To this end, we revisit the AMA regarding amphibian developmental physiology, and the T-modality regarding mechanistic cross-vertebrate conservation. The importance of a mechanistic understanding for read-across is showcased based on the AMA's apparent insensitivity to at least one category of prototypical liver enzyme inducers. From a regulatory perspective, deeper mechanistic understanding is needed, not only to strengthen the scientific basis for designing testing strategies and interpreting study results, but also to allow the identification of data gaps and thus development of New Approach Methodologies (NAMs) to minimize vertebrate testing.
Collapse
Affiliation(s)
| | | | - Barbara Birk
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany
| | - Nicola J Hewitt
- Scientific Writing Services, Wingertstrasse 25, Erzhausen, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany; Georg-August University, Agricultural Faculty, Göttingen, Germany
| | - Maike Habekost
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany
| |
Collapse
|
3
|
Jia JL, Han JH, Pang R, Bi W, Liu B, Yang K. Predictors of poor prognosis in long-term survivors of differentiated thyroid cancer with psychiatric disorders. World J Psychiatry 2025; 15:103628. [DOI: 10.5498/wjp.v15.i5.103628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Thyroid malignancies, while accounting for a small proportion of cancer diagnoses globally, have demonstrated a consistent upward trend in occurrence across diverse populations, with gender-specific analyses revealing a disproportionate burden among women. Despite the characteristically indolent nature of most thyroid carcinomas and their associated high survival rates, emerging evidence points to significant unmet needs regarding psychosocial adaptation and neuropsychiatric sequelae in this growing survivor population. The spectrum of mental health conditions, ranging from affective and anxiety disorders to cognitive impairments, presents substantial barriers to functional recovery and may potentially influence disease trajectories through complex psychoneuroimmunological pathways. Clinical observations consistently report elevated rates of mood disturbances and executive function deficits persisting throughout the cancer continuum, from active treatment into extended follow-up periods. These findings highlight a critical knowledge gap in understanding the dynamic interplay between thyroid cancer biology, its therapeutic interventions, and the development of treatment-resistant psychiatric manifestations that complicate long-term patient care.
AIM To analyse the factors influencing the poor prognosis of patients surviving long-term differentiated thyroid cancer with psychiatric disorders and to construct a prediction model.
METHODS Forty-eight patients with mental disorders combined with differentiated thyroid cancer who were treated in our hospital during the period of March 2018 to March 2023 were retrospectively selected as the study subjects (thyroid cancer group), and 30 cases each of patients with mental disorders combined with benign thyroid nodules (benign nodules group) and patients with mental disorders alone (mental disorders group), who were treated during the same time period, were selected as controls. The patients with differentiated thyroid cancer were further divided into a poor prognosis group (10 cases) and a good prognosis group (38 cases). The study outcome was poor prognosis as shown by whole body bone imaging within 2 years after thyroid cancer surgery. Factors influencing poor prognosis in survivors of differentiated thyroid cancer were analyzed by univariate and multivariate logistic regression analyses, receiver operating characteristic (ROC) curve analysis was used to assess the predictive efficacy of these factors for poor prognosis, and the DeLong test was used to determine whether there was a statistically significant difference in the area under the curve (AUC) of the model.
RESULTS One-way logistic regression analysis showed that tumour diameter [odds ratio (OR) = 19.190, P = 0.002], T-stage (OR = 7.692, P = 0.018), extra-glandular infiltration (OR = 37.000, P = 0.003), degree of differentiation (OR = 24.667, P = 0.008), serum free T3 (OR = 22.348, P = 0.025), serum free T4 (FT4) (OR = 1.158, P = 0.002), total bilirubin (TBil) (OR = 1.792, P = 0.004), albumin (OR = 0.675, P = 0.003), cortisol (OR = 1.180, P = 0.003), norepinephrine (OR = 1.047, P = 0.002), angiotensin II (OR = 1.975, P = 0.002), and superoxide dismutase (OR = 0.515, P = 0.005) all increased the risk of poor prognosis in patients with psychiatric disorders and long-term differentiated thyroid cancer. Multifactorial logistic regression analysis showed that tumour diameter (OR = 16.570, P = 0.021), extra-glandular infiltration (OR = 53.145, P = 0.010), FT4 (OR = 1.186, P = 0.007), and TBil (OR = 2.823, P = 0.048) were independent risk factors for poor prognosis of patients with psychiatric disorders with long-term differentiated thyroid cancer, and the regression equation was: Y = 2.808 × tumour diameter + 3.973 × extra-glandular infiltration + 0.171 × FT4 + 1.038 × TBil - 88.138. ROC analysis showed that the predictive power of the overall model (AUC = 0.992, P = 0.000) was significantly higher than that of independent risk factors (DeLong test P < 0.05).
CONCLUSION Tumour diameter, extra-glandular infiltration, FT4, and TBil are independent risk factors for poor prognosis in patients with psychiatric disorders with long-term differentiated thyroid cancer, and the combination of these factors is of higher value in predicting the prognosis of patients. These risk factors can be used as a basis to develop a reasonable prognostic management plan in clinical practice for patients with long-term differentiated thyroid cancer with mental disorders, so as to improve the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Jin-Liang Jia
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Ji-Hua Han
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Rui Pang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Wen Bi
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Bo Liu
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Kun Yang
- Department of Anesthesiology, Harbin Medical University Affiliated Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
4
|
Melching-Kollmuss S, Sauer UG, Gatto V, Stinchcombe S, Tinwell H. A proposal of criteria to support the EU classification on endocrine disruption for the thyroid modality and their application to four data-rich case studies. Arch Toxicol 2025:10.1007/s00204-025-04037-9. [PMID: 40347277 DOI: 10.1007/s00204-025-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/19/2025] [Indexed: 05/12/2025]
Abstract
Recently, the European Commission has implemented hazard categories to classify substances as endocrine disruptors for human health, i.e. ED HH 1 or ED HH 2, depending on the weight-of-evidence. However, specific guidance on how to differentiate between the two is unavailable. This article presents the CropLife Europe (CLE) proposal for a structured approach to support the ED HH classification for the thyroid modality. Further, the Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS) has been modified in view of the new classification. Application of the CLE proposal and the modified Thyroid-NDT-TAS is illustrated in four case studies covering active substances in plant protection products that showed thyroid- and liver-related effects in laboratory animal studies (pyrimethanil, boscalid, metribuzin, ethiprole). For all four substances, there is strong and consistent evidence that the thyroid-related endocrine activity in rats is liver enzyme induction-mediated, a mode-of-action that is of questionable relevance to humans. In vitro species comparisons (unavailable for pyrimethanil) further confirm non-relevance to humans. However, pyrimethanil (and boscalid) did not elicit developmental neurotoxicity in rats. For pyrimethanil, boscalid and ethiprole, the overall weight-of-evidence determination yields the conclusion "no ED HH via the thyroid modality". For metribuzin, category ED HH 2 may be triggered due to uncertainties related to its database. The case studies underline that expert judgement is required to assess overall effect patterns, to balance the available evidence and to conclude on classification as ED HH 1, ED HH 2 or no ED HH via the thyroid modality.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy, Animal Welfare, Neubiberg, Germany
| | - Valeria Gatto
- Regulation Agrochemicals, BASF SE, APD/ET. Li 444, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | - Stefan Stinchcombe
- Regulation Agrochemicals, BASF SE, APD/ET. Li 444, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | | |
Collapse
|
5
|
Naylor SW, McInnes EF, Alibhai J, Burgess S, Baily J. Development of a Deep Learning Tool to Support the Assessment of Thyroid Follicular Cell Hypertrophy in the Rat. Toxicol Pathol 2025; 53:240-250. [PMID: 39825517 DOI: 10.1177/01926233241309328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy. This research project developed a deep learning image analysis solution that provides a quantitative score based on the morphological measurements of individual follicles that can be integrated into the standard pathology workflow. To achieve this, a U-Net convolutional deep learning neural network was used that not just identifies the various tissue components but also delineates individual follicles. Further steps to process the raw individual follicle data were developed using empirical models optimized to produce thyroid activity scores that were shown to be superior to the mean epithelial area approach when compared with pathologists' scores. These scores can be used for pathologist decision support using appropriate statistical methods to assess the presence or absence of low-grade thyroid hypertrophy at the group level.
Collapse
|
6
|
Wancket LM, Bolon B, Funk KA, Schuh JCL. Toxicologic Pathology Forum*: Opinion on Assessing and Communicating Adversity for Implantable Medical Devices. Toxicol Pathol 2025; 53:278-286. [PMID: 39604393 DOI: 10.1177/01926233241300313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Medical devices are a product class encompassing many materials and intended uses. While adversity determination is a key part of nonclinical safety assessments, relatively little has been published about the unique challenges encountered when determining adversity for implantable medical devices. The current paper uses the Society of Toxicologic Pathology (STP)'s "Scientific and Regulatory Policy Committee Recommended ('Best') Practices for Determining, Communicating, and Using Adverse Effect Data from Nonclinical Studies," which were crafted for conventional bio/pharmaceutical products (small and large molecules, cell and gene therapies, etc), as a framework for making adversity decisions for medical devices. Some best principles are directly translatable to medical devices: (1) adversity indicates harm to the animal; (2) effects should be assessed on their merits without speculation regarding future or unmeasured implications; (3) adversity decisions apply only to the test species under the specific conditions of the nonclinical study; and (4) adversity decisions and supporting evidence should be clearly stated in reports. However, unique considerations also apply for evaluating implanted medical devices, including testing of multiple articles in the same animal and the unavoidable tissue trauma during device implantation. This opinion piece offers suggestions for applying previously published STP best practice recommendations for assigning adversity to implantable medical devices.
Collapse
Affiliation(s)
- L M Wancket
- Charles River Laboratories, Mattawan, Michigan, USA
| | - B Bolon
- GEMpath, Inc., Longmont, Colorado, USA
| | - K A Funk
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | - J C L Schuh
- Retired Consultant, Bainbridge Island, Washington, USA
| |
Collapse
|
7
|
Baze A, Ory B, Horbal L, Tinwell H, Richert L. Marked differences in thyroxine (T4) metabolism following in vitro exposure of Wistar rat and human hepatocytes to several reference CAR/PXR nuclear receptor activators. Toxicol In Vitro 2025; 104:106016. [PMID: 39909212 DOI: 10.1016/j.tiv.2025.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Our study builds upon previous findings (Baze et al., 2024) by investigating species differences in thyroxine (T4) metabolism regulation by CAR/PXR activators using cryopreserved primary Wistar rat hepatocytes (PRH) and human hepatocytes (PHH) in 2D-sandwich over a 7-day treatment period. Daily exposure of PRH to phenobarbital, 5-Pregnen-3β-ol-20-one-16α‑carbonitrile (PCN) or dexamethasone increased T4 clearance over the last 24 h exposure (up to 60 %, 79 % and 67 % over control, respectively) and secretion of T4-glucuronide (T4-G; up to 463, 661 and 545 pmol/106 cells over control, respectively). Effects were concentration-dependent for phenobarbital and PCN and highest at the lowest concentration for dexamethasone, while rifampicin barely affected T4 clearance and T4-G secretion. None of the compounds, at any tested concentration, affected these parameters in PHH. Additionally, mRNA expression data were consistent with the species-specific and concentration-dependent regulation of phase I Cyp/CYP, phase II Ugt/UGT and phase III Mrp2/MRP2 pathways occurring in rat and human liver following CAR/PXR activation. T4-UGT relative activity increased in PRH only, specifically by PCN, dexamethasone and phenobarbital. The comparison of PRH and PHH responses to compounds represents an important step towards using in vitro methods to reduce animal testing. We recommend using relative T4-UGT activity thresholds observed in PRH as benchmarks for defining compound-related effects across species, helping determine the human relevance of thyroid effects in rodents.
Collapse
|
8
|
Akane H, Toyoda T, Matsushita K, Uneyama M, Morikawa T, Kosaka T, Tajima H, Aoyama H, Ogawa K. Comparisons of the Sensitivity of Histopathological and Immunohistochemical Analyses With Blood Hormone Levels for Early Detection of Antithyroid Effects in Rats Treated With Promoters of Thyroid Hormone Metabolism. Toxicol Pathol 2025; 53:251-266. [PMID: 40079414 DOI: 10.1177/01926233251316880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Although blood triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) levels are useful for detecting antithyroid compounds in rodent toxicity studies, there are challenges with high variability due to sampling conditions. Here, we compared histopathological and immunohistochemical findings with blood hormone levels in rats treated with promoters of thyroid hormone metabolism to explore useful markers for hypothyroidism. Six-week-old male and female Sprague-Dawley rats (5/group) were administered phenobarbital sodium salt (NaPB) or nicardipine hydrochloride (NCD) by gavage for 28 days. Decreased serum T4 and increased TSH levels were detected at 100 mg/kg NaPB and 150 mg/kg NCD, whereas follicular cell hypertrophy occurred at lower doses of ≥ 30 mg/kg NaPB and ≥ 50 mg/kg NCD. There was no obvious change in T3 or T4 immunostaining in the thyroid unlike thyroid peroxidase (TPO) inhibitors, and uridine diphosphate-glucuronosyltransferase 1A6-positive area in the liver increased at doses lower than those affecting the serum T4 levels and generally the same as those at which hepatocellular hypertrophy and follicular cell hypertrophy were observed, indicating its usefulness in detecting thyroid hormone metabolism promoters. These results indicate that histopathology is useful for sensitive detection of hormone metabolism promoters and can be distinguished from TPO inhibitors by immunohistochemistry.
Collapse
Affiliation(s)
- Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Mizuho Uneyama
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tadashi Kosaka
- Toxicology Division, Institute of Environmental Toxicology, Joso, Japan
| | - Hitoshi Tajima
- Toxicology Division, Institute of Environmental Toxicology, Joso, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Joso, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
9
|
Canzler S, Schubert K, Rolle-Kampczyk UE, Wang Z, Schreiber S, Seitz H, Mockly S, Kamp H, Haake V, Huisinga M, Bergen MV, Buesen R, Hackermüller J. Evaluating the performance of multi-omics integration: a thyroid toxicity case study. Arch Toxicol 2025; 99:309-332. [PMID: 39441382 PMCID: PMC11742338 DOI: 10.1007/s00204-024-03876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Multi-omics data integration has been repeatedly discussed as the way forward to more comprehensively cover the molecular responses of cells or organisms to chemical exposure in systems toxicology and regulatory risk assessment. In Canzler et al. (Arch Toxicol 94(2):371-388. https://doi.org/10.1007/s00204-020-02656-y ), we reviewed the state of the art in applying multi-omics approaches in toxicological research and chemical risk assessment. We developed best practices for the experimental design of multi-omics studies, omics data acquisition, and subsequent omics data integration. We found that multi-omics data sets for toxicological research questions were generally rare, with no data sets comprising more than two omics layers adhering to these best practices. Due to these limitations, we could not fully assess the benefits of different data integration approaches or quantitatively evaluate the contribution of various omics layers for toxicological research questions. Here, we report on a multi-omics study on thyroid toxicity that we conducted in compliance with these best practices. We induced direct and indirect thyroid toxicity through Propylthiouracil (PTU) and Phenytoin, respectively, in a 28-day plus 14-day recovery oral rat toxicity study. We collected clinical and histopathological data and six omics layers, including the long and short transcriptome, proteome, phosphoproteome, and metabolome from plasma, thyroid, and liver. We demonstrate that the multi-omics approach is superior to single-omics in detecting responses at the regulatory pathway level. We also show how combining omics data with clinical and histopathological parameters facilitates the interpretation of the data. Furthermore, we illustrate how multi-omics integration can hint at the involvement of non-coding RNAs in post-transcriptional regulation. Also, we show that multi-omics facilitates grouping, and we assess how much information individual and combinations of omics layers contribute to this approach.
Collapse
Affiliation(s)
- Sebastian Canzler
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| | - Kristin Schubert
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | | | - Zhipeng Wang
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Stephan Schreiber
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Hervé Seitz
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Sophie Mockly
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Maike Huisinga
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
10
|
Yamada T. [Chemical-induced perinatal thyroid hormone disruption and brain developmental adversity: status of efforts aimed at developing new evaluation methods]. Nihon Yakurigaku Zasshi 2025; 160:108-114. [PMID: 40024696 DOI: 10.1254/fpj.24058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Fetal thyroid hormones (THs), essential for brain development, largely depend on maternal supply. Clinical studies have shown that TH alterations in pregnant mothers can lead to permanent neurodevelopmental effects in their children, suggesting that chemicals causing maternal TH disruption may require regulation. However, the quantitative relationship between chemical-induced maternal TH reductions and fetal brain TH disruption, as well as fetal brain developmental abnormalities, is not fully understood. Thus, there is a need for methods that can precisely, rapidly, and quantitatively evaluate TH-disrupting effects of test chemicals that may cause brain abnormalities. Currently, multiple molecular initiating events (MIEs) in the adverse outcome pathways (AOPs) of TH disruption are known, and tests using New Approach Methodologies are being developed to investigate the effects of chemicals on these MIEs. Additionally, the Comparative Thyroid Assay (CTA) is expected to be utilized to comparatively evaluate the decrease in blood TH concentrations, commonly observed as a result of actions on multiple MIEs, in maternal rats along with their offspring. Recently, due to the increasing need for more precise and efficient evaluations and the reduction of animal testing, we have worked on improving the CTA. We proposed a modified CTA that adds new test items: brain TH concentrations and heterotopia (a histological marker of brain TH deficiency), while reducing the number of animals used by 50%. Feasibility studies confirmed that it can detect approximately 20-30% TH disruption in the offspring brain. This review outlines the current efforts to develop new evaluation methods for perinatal TH disruption effects.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd
| |
Collapse
|
11
|
Morris-Schaffer K, Higgins L, Kocabas NA, Faulhammer F, Cordova A, Freeman E, Kamp H, Nahar M, Richmond E, Rooseboom M. A weight of evidence review on the mode of action, adversity, and the human relevance of xylene's observed thyroid effects in rats. Crit Rev Toxicol 2025; 55:1-26. [PMID: 39785829 DOI: 10.1080/10408444.2024.2422890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/12/2025]
Abstract
Xylene substances have wide industrial and consumer uses and are currently undergoing dossier and substance evaluation under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) for further toxicological testing including consideration of an additional neurotoxicological testing cohort to an extended one-generation reproduction toxicity (EOGRT) study. New repeated dose study data on xylenes identify the thyroid as a potential target tissue, and therefore a weight of evidence review is provided to investigate whether or not xylene-mediated changes on the hypothalamus-pituitary-thyroid (HPT) axis are secondary to liver enzymatic induction and are of a magnitude that is relevant for neurological human health concerns. Multiple published studies confirm xylene-mediated increases in liver weight, hepatocellular hypertrophy, and liver enzymatic induction via the oral or inhalation routes, including an increase in uridine 5'-diphospho-glucuronosyltransferase (UDP-GT) activity, the key step in thyroid hormone metabolism in rodents. Only minimal to slight increases in thyroid follicular cell hypertrophy have been observed in some xylene repeated dose studies, with no associated robust or consistent perturbance of thyroid hormone changes across the studies or carried through to offspring indicating adaptive homeostatic maintenance of the HPT axis. Also importantly, in vitro human cell line data from the United States Environmental Protection Agency (US EPA) Toxicity Forecasting (ToxCast) provides supporting evidence of xylene's inability to directly perturb thyroidal functionality. A further supplemental in-depth metabolomics analysis (MetaMap®Tox) of xylene showed a tentative match to compounds that also demonstrate extra-thyroidal effects on the HPT axis as a consequence of liver enzyme induction. Lastly, the slight HPT axis changes mediated by xylene were well-below the published literature thresholds for developmental neurotoxicological outcomes established for thyroidal changes in animals and humans. In summary, the data and various lines of scientific evidence presented herein individually and collectively demonstrate that xylene's mediated changes in the HPT axis, via a secondary extra-thyroidal MOA (i.e. liver enzyme induction), do not raise a human health concern with regards to developmental neurotoxicity. As such, the available toxicological data do not support the classification of xylene as a known or suspected endocrine disruptor, specifically through the thyroid modality, per Regulations Commission Delegated Regulation (EU) 2023/707 of 19 December 2022 amending Regulation (EC) No 1272/2008 and do not support the need for a neurotoxicological cohort evaluation in any subsequent EOGRTS.
Collapse
Affiliation(s)
| | - Larry Higgins
- Scientific Services, Penman Consulting bvba, Brussels, Belgium
| | | | - Frank Faulhammer
- Global Toxicology & Ecotoxicology, BASF SE, Ludwigshafen, Germany
| | - Alexandra Cordova
- Environmental & Earth Sciences, Exponent Incorporated, Austin, TX, USA
| | - Elaine Freeman
- Exponent Incorporated, Chemical Regulation and Food Safety, Washington, D.C., USA
| | | | - Muna Nahar
- Exponent Incorporated, Chemical Regulation and Food Safety, Washington, D.C., USA
| | - Emily Richmond
- Chemical Regulation and Food Safety, Exponent International, UK
| | - Martijn Rooseboom
- Product Stewardship, Science & Regulatory, Shell Global Solutions International B.V. The Hague, the Netherlands
| |
Collapse
|
12
|
Bennekou SH, Allende A, Bearth A, Casacuberta J, Castle L, Coja T, Crépet A, Halldorsson T, Hoogenboom L(R, Knutsen H, Koutsoumanis K, Lambré C, Nielsen S, Turck D, Civera AV, Villa R, Zorn H, Bampidis V, Castenmiller J, Chagnon M, Cottrill B, Darney K, Gropp J, Puente SL, Rose M, Vinceti M, Bastaki M, Gergelová P, Greco L, Innocenti ML, Janossy J, Lanzoni A, Terron A, Benford D. Risks to human and animal health from the presence of bromide in food and feed. EFSA J 2025; 23:e9121. [PMID: 39877303 PMCID: PMC11773346 DOI: 10.2903/j.efsa.2025.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The European Commission mandated EFSA to assess the toxicity of bromide, the existing maximum residue levels (MRLs), and possible transfer from feed into food of animal origin. The critical effects of bromide in experimental animals are on the thyroid and central nervous system. Changes in thyroid hormone homeostasis could result in neurodevelopmental toxicity, among other adverse effects. Changes in thyroid hormone concentrations and neurophysiological parameters have also been observed in experimental human studies, but the evidence was limited. Dose-response modelling of decreased blood thyroxine concentrations in rats resulted in a reference point of 40 mg/kg body weight (bw) per day. The Scientific Committee established a tolerable daily intake (TDI) of 0.4 mg/kg bw per day and an acute reference dose (ARfD) of 0.4 mg/kg bw per day to protect against adverse neurodevelopmental effects. The TDI value is supported by the results of experimental human studies with a NOAEL of 4 mg/kg bw per day and 10-fold interindividual variability. The TDI and ARfD are considered as conservative with 90% certainty. Insufficient evidence related to the toxicological effects of bromide was available for animals, with the exception of dogs. Therefore, the reference point of 40 mg/kg bw per day was extrapolated to maximum safe concentrations of bromide in complete feed for other animal species. Bromide can transfer from feed to food of animal origin, but, from the limited data, it was not possible to quantify the transfer rate. Monitoring data exceeded the current MRLs for some food commodities, generally with a low frequency. A conservative safety screening of the MRLs indicated that the TDI and ARfD are exceeded for some EU diets. Dietary exposure assessment for animals was not feasible due to insufficient data. The Scientific Committee recommends data be generated to allow robust dietary exposure assessments in the future, and data that support the risk assessment.
Collapse
|
13
|
Wada K, Yamaguchi T, Tanaka H, Fujisawa T. Hepatic enzyme induction and its potential effect on thyroid hormone metabolism in the metamorphosing tadpole of Xenopus laevis (African clawed frog). J Appl Toxicol 2024; 44:1773-1783. [PMID: 39039701 DOI: 10.1002/jat.4672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Hepatic enzyme induction, an inherent defense system against xenobiotics, is known to simultaneously affect endocrine system functions in mammals under specific conditions, particularly thyroid hormone (TH) regulation. While this phenomenon has been studied extensively, the pathway leading to this indirect thyroid effect in mammals has unclear applicability to amphibians, despite the importance of amphibian species in assessing thyroid-disruptive chemicals. Here, we investigated the effects of three well-known mammalian enzyme inducers-β-naphthoflavone (BNF), pregnenolone carbonitrile (PCN), and sodium phenobarbital (NaPB)-on the gene expression of phase-I and phase-II metabolizing enzymes in Xenopus laevis tadpoles. Waterborne exposure to BNF and PCN significantly induced the expression of both phase-I (cytochrome P450, CYP) and phase-II enzymes (UDP-glucuronosyltransferase, UGT and sulfotransferase, SULT), but in different patterns, while NaPB exposure induced CYP2B expression without affecting phase-II enzymes in tadpoles, in contrast to mammals. Furthermore, an ex vivo hepatic enzyme activity assay confirmed that BNF treatment significantly increased phase-II metabolic activity (glucuronidation and sulfation) toward TH. These results suggest the potential for certain mammalian enzyme inducers to influence TH clearance in X. laevis tadpoles. Our findings provide insights into the profiles of xenosensing activity and enzyme induction in amphibians, which can facilitate a better understanding of the mechanisms of indirect effects on the thyroid system via hepatic enzyme induction in nonmammalian species.
Collapse
Affiliation(s)
- Kohei Wada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Takafumi Yamaguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Hitoshi Tanaka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Japan
| |
Collapse
|
14
|
Guo X, Tang S, Li Y, Mu C, Zhang H, Jiang Q, Jiang M, Han W, Zheng Y, Piao J. Mechanism underlying the role of integrin α3β1 in adhesive dysfunction between thyroid cells induced by diesel engine exhaust particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174535. [PMID: 38972403 DOI: 10.1016/j.scitotenv.2024.174535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The role and mechanisms of DEP exposure on thyroid injury are not yet clear. This study explores thyroid damage induced by in vivo DEP exposure using a mouse model. This study has observed alterations in thyroid follicular architecture, including rupture, colloid overflow, and the formation of voids. Additionally, there was a significant decrease in the expression levels of proteins involved in thyroid hormone synthesis, such as thyroid peroxidase and thyroglobulin, their trend of change is consistent with the damage to the thyroid structure. Serum levels of triiodothyronine and tetraiodothyronine were raise. However, the decrease in TSH expression suggests that the function of the HPT axis is unaffected. To delve deeper into the intrinsic mechanisms of thyroid injury, we performed KEGG pathway enrichment analysis, which revealed notable alterations in the cell adhesion signaling pathway. Our immunofluorescence results show that DEP exposure impairs thyroid adhesion, and integrin α3β1 plays an important role. CD151 binds to α3β1, promoting multimolecular complex formation and activating adhesion-dependent small GTPases. Our in vitro model has confirmed the pivotal role of integrin α3β1 in thyroid cell adhesion, which may be mediated by the CD151/α3β1/Rac1 pathway. In summary, exposure to DEP disrupts the structure and function of the thyroid, a process that likely involves the regulation of cell adhesion through the CD151/α3β1/Rac1 pathway, leading to glandular damage.
Collapse
Affiliation(s)
- Xiaoyin Guo
- School of Public Health, Qingdao University, Qingdao, China
| | - Siying Tang
- Chengyang City Centre for Disease Control and Prevention, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Chaohui Mu
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Hongna Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Akane H, Toyoda T, Matsushita K, Morikawa T, Kosaka T, Tajima H, Aoyama H, Ogawa K. Comparison of the sensitivity of histopathological and immunohistochemical analyses and blood hormone levels for early detection of antithyroid effects in rats treated with thyroid peroxidase inhibitors. J Appl Toxicol 2024; 44:1084-1103. [PMID: 38563354 DOI: 10.1002/jat.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Although measurements of blood triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) levels in rodent toxicity studies are useful for detection of antithyroid substances, assays for these measurements are expensive and can show high variability depending on blood sampling conditions. To develop more efficient methods for detecting thyroid disruptors, we compared histopathological and immunohistochemical findings in the thyroid and pituitary glands with blood hormone levels. Six-week-old male and female Sprague-Dawley rats (five rats per group) were treated with multiple doses of the thyroid peroxidase inhibitors propylthiouracil (PTU) and methimazole by gavage for 28 days. Significant decreases in serum T3 and T4 and increases in TSH were observed in the ≥1 mg/kg PTU and ≥3 mg/kg methimazole groups. An increase in TSH was also detected in male rats in the 0.3 mg/kg PTU group. Histopathological and immunohistochemical analyses revealed that follicular cell hypertrophy and decreased T4 and T3 expressions in the thyroid gland were induced at doses lower than doses at which significant changes in serum hormone levels were observed, suggesting that these findings may be more sensitive than blood hormone levels. Significant increases in thyroid weights, Ki67-positive thyroid follicular cell counts, and TSH-positive areas in the pituitary gland were detected at doses comparable with those at which changes in serum T4 and TSH levels were observed, indicating that these parameters may also be useful for evaluation of antithyroid effects. Combining these parameters may be effective for detecting antithyroid substances without relying on hormone measurements.
Collapse
Affiliation(s)
- Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tadashi Kosaka
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Hitoshi Tajima
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
16
|
Minami K, Sato A, Tomiyama N, Ogata K, Kosaka T, Hojo H, Takahashi N, Suto H, Aoyama H, Yamada T. Prenatal test cohort of a modified rat comparative thyroid assay adding brain thyroid hormone measurements and histology but lowering group size appears able to detect disruption by sodium phenobarbital. Curr Res Toxicol 2024; 6:100168. [PMID: 38693933 PMCID: PMC11061706 DOI: 10.1016/j.crtox.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
The Comparative Thyroid Assay (CTA, USEPA) is a screening test for thyroid hormone (TH) disruption in peripheral blood of dams and offspring. Recently, we began investigating feasible improvements to the CTA by adding examination of offspring brain TH concentrations and brain histopathology. In addition, we hypothesize that the number of animals required could be reduced by 50 % while still maintaining sensitivity to characterize treatment related changes in THs. Previously, we showed that the prenatal test cohort of the modified CTA could detect 1000 ppm sodium phenobarbital (NaPB)-induced suppression of brain T3 (by 9 %) and T4 (by 33 %) with no significant changes in serum T3 and T4 (less than 8 %). In the current study we expanded the dose response in a prenatal test cohort. Pregnant SD rats (N = 10/group) were exposed to 0, 1000 or 1500 ppm NaPB in the diet from gestational days (GD) 6 to GD20. Serum THs concentrations in GD20 dams together with serum/brain THs concentrations and brain histopathology in the GD20 fetuses were examined. NaPB dose-dependently suppressed serum T3 (up to -26 %) and T4 (up to -44 %) in dams, with suppression of T3 in serum (up to -26 %) and brain (up to -18 %) and T4 in serum (up to -26 %) and brain (up to -29 %) of fetuses but without clear dose dependency. There were no remarkable findings that deviated significantly from controls in GD20 fetal brain by qualitative histopathology. Overall, the present study suggests that the prenatal test cohort of this modified CTA is able to detect the expected fetal TH disruptions by prenatal exposure to NaPB, while also reducing the number of animals used by 50 %, consistent with the results of our previous study. These findings add to the suggestion that lowering group sizes and adding endpoints may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Akira Sato
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroaki Aoyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
17
|
Baze A, Wiss L, Horbal L, Biemel K, Asselin L, Richert L. Comparison of in vitro thyroxine (T4) metabolism between Wistar rat and human hepatocyte cultures. Toxicol In Vitro 2024; 96:105763. [PMID: 38142784 DOI: 10.1016/j.tiv.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
In vitro assays remain relatively new in exploring human relevance of liver, in particular nuclear receptor-mediated perturbations of the hypothalamus-pituitary-thyroid axis seen in rodents, mainly in the rat. Consistent with in vivo data, we confirm that thyroid hormone thyroxine metabolism was 9 times higher in primary rat hepatocytes (PRH) than in primary human hepatocytes (PHH) cultured in a 2D sandwich (2Dsw) configuration. In addition, thyroxine glucuronide (T4-G) was by far the major metabolite formed in both species (99.1% in PRH and 69.7% in PHH) followed by thyroxine sulfate (T4-S, 0.7% in PRH and 18.1% in PHH) and triiodothyronine/reverse triiodothyronine (T3/rT3, 0.2% in PRH and 12.2% in PHH). After a 7-day daily exposure to orphan receptor-mediated liver inducers, T4 metabolism was strongly increased in PRH, almost exclusively through increased T4-G formation. These results were consistent with the inductions of glucuronosyltransferase Ugt2b1 and canalicular transporter Mrp2. PHH also responded to activation of the three nuclear receptors, with mainly induction of glucuronosyltransferase UGT1A1 and canalicular transporter MRP2. Despite this, T4 disappearance rate and secreted T4 metabolites were only slightly increased in PHH. Overall, our data highlight that cryopreserved hepatocytes in 2Dsw culture allowing long-term exposure and species comparison are of major interest in improving liver-mediated human safety assessment.
Collapse
Affiliation(s)
- Audrey Baze
- KaLy-Cell SAS, 20A rue du Général Leclerc, 67115 Plobsheim, France
| | - Lucille Wiss
- KaLy-Cell SAS, 20A rue du Général Leclerc, 67115 Plobsheim, France
| | - Liliia Horbal
- Pharmacelsus GmbH, Science Park 2, 66123 Saarbrüken, Germany
| | - Klaus Biemel
- Pharmacelsus GmbH, Science Park 2, 66123 Saarbrüken, Germany
| | - Laure Asselin
- KaLy-Cell SAS, 20A rue du Général Leclerc, 67115 Plobsheim, France
| | - Lysiane Richert
- KaLy-Cell SAS, 20A rue du Général Leclerc, 67115 Plobsheim, France; Zylan SAS, 8 rue de la Haute Corniche, 67210 Obernai, France.
| |
Collapse
|
18
|
Stokar-Regenscheit N, Bell L, Berridge B, Rudmann D, Tagle D, Hargrove-Grimes P, Schaudien D, Hahn K, Kühnlenz J, Ashton RS, Tseng M, Reichelt M, Laing ST, Kiyota T, Chamanza R, Sura R, Tomlinson L. Complex In Vitro Model Characterization for Context of Use in Toxicologic Pathology: Use Cases by Collaborative Teams of Biologists, Bioengineers, and Pathologists. Toxicol Pathol 2024; 52:123-137. [PMID: 38888280 DOI: 10.1177/01926233241253811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Complex in vitro models (CIVMs) offer the potential to increase the clinical relevance of preclinical efficacy and toxicity assessments and reduce the reliance on animals in drug development. The European Society of Toxicologic Pathology (ESTP) and Society for Toxicologic Pathology (STP) are collaborating to highlight the role of pathologists in the development and use of CIVM. Pathologists are trained in comparative animal medicine which enhances their understanding of mechanisms of human and animal diseases, thus allowing them to bridge between animal models and humans. This skill set is important for CIVM development, validation, and data interpretation. Ideally, diverse teams of scientists, including engineers, biologists, pathologists, and others, should collaboratively develop and characterize novel CIVM, and collectively assess their precise use cases (context of use). Implementing a morphological CIVM evaluation should be essential in this process. This requires robust histological technique workflows, image analysis techniques, and needs correlation with translational biomarkers. In this review, we demonstrate how such tissue technologies and analytics support the development and use of CIVM for drug efficacy and safety evaluations. We encourage the scientific community to explore similar options for their projects and to engage with health authorities on the use of CIVM in benefit-risk assessment.
Collapse
Affiliation(s)
- Nadine Stokar-Regenscheit
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Luisa Bell
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Danilo Tagle
- National Center for Advancing Translational Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | - Passley Hargrove-Grimes
- National Center for Advancing Translational Sciences/National Institutes of Health, Bethesda, Maryland, USA
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Kerstin Hahn
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Julia Kühnlenz
- Bayer SAS, CropScience, Pathology & Mechanistic Toxicology, Sophia Antipolis, France
| | - Randolph S Ashton
- University of Wisconsin-Madison, Madison, Wisconsin, USA
- Neurosetta LLC, Madison, Wisconsin, USA
| | - Min Tseng
- Genentech, South San Francisco, California, USA
| | | | | | | | | | | | - Lindsay Tomlinson
- Pfizer Inc., Drug Safety Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Suto H, Ogata K, Minami K, Sato A, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Perinatal maternal exposure to high-dose sodium phenobarbital in the modified Comparative Thyroid Assay: no significant reduction in thyroid hormones in pups despite notable effects in dams. J Toxicol Sci 2024; 49:509-529. [PMID: 39496387 DOI: 10.2131/jts.49.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We propose a modified Comparative Thyroid Assay (CTA, USEPA) utilizing a smaller number of Sprague-Dawley rats (N=10/group) that assesses brain thyroid hormone (TH) concentrations and periventricular heterotopia while maintaining assay sensitivity. Our recent findings demonstrated that a prenatal test cohort of the modified CTA detected a dose-dependent decrease in maternal serum T3 (up to -26%) and T4 (up to -44%) with sodium phenobarbital (NaPB) exposure at 1000 ppm and 1500 ppm, equivalent to intakes of 60 and 84 mg/kg/day, respectively. On gestation day (GD) 20, fetuses exhibited reduced serum (-26%) and brain (-29%) TH concentrations, although these reductions were not dose dependent. The present study expanded the treatment in a postnatal test cohort, with maternal exposure to NaPB (81-93 mg/kg/day) from GD6 to lactation day (LD) 21. We assessed serum and brain TH concentrations, and periventricular heterotopia in pups on postnatal days (PND) 4, 21, and 28. While LD21 dams showed significant reductions in serum T3 (up to -34%) and T4 (up to -54%), the pups did not exhibit significant TH suppression or periventricular heterotopia at any test point. Instead, a compensatory increase in T4 was observed in serum and brain of PND21 pups. The present study confirmed that perinatal maternal exposure to high doses of NaPB leads to a moderate decrease in maternal TH concentrations; however, the exposure of maternal rats to a similar dose of NaPB did not significantly reduce serum or brain TH concentrations in their postnatal offspring.
Collapse
Affiliation(s)
- Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
- Current address: Registration & Regulatory Affairs Dept. AgroSolutions Division - International, Sumitomo Chemical Company, Ltd
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Akira Sato
- The Institute of Environmental Toxicology
| | | | | | | | | | | | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| |
Collapse
|
20
|
Bolton TA, Panciera DL. Influence of medications on thyroid function in dogs: An update. J Vet Intern Med 2023; 37:1626-1640. [PMID: 37498128 PMCID: PMC10473007 DOI: 10.1111/jvim.16823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Erroneous thyroid function test results can occur because of drugs that alter thyroid hormone physiology in one or more aspects, including synthesis, secretion, distribution, and metabolism. Research since publication of the last review in the Journal of Veterinary Internal Medicine (JVIM) 20 years ago has evaluated the effects of amiodarone, zonisamide, inhalant anesthetics, clomipramine, trilostane, and toceranib on thyroid function tests in the dog. In addition, recent work on the effects of glucocorticoids, sulfonamides, phenobarbital, and nonsteroidal anti-inflammatory drugs will be reviewed. Awareness of these effects is necessary to avoid misdiagnosis of hypothyroidism and unnecessary treatment.
Collapse
Affiliation(s)
- Timothy A. Bolton
- Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - David L. Panciera
- Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| |
Collapse
|
21
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
22
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Miranda RA, de Moura EG, Lisboa PC. Adverse perinatal conditions and the developmental origins of thyroid dysfunction-Lessons from Animal Models. Endocrine 2023; 79:223-234. [PMID: 36036880 DOI: 10.1007/s12020-022-03177-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/17/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Nutritional, hormonal, and environmental status during development can predispose the individual to obesity and endocrine diseases later in life, an association known as metabolic programming. In general, weight loss or gain are seen in thyroid disorders, and thyroid function can be affected by body adiposity. In addition, hyper- and hypothyroidism can be related to metabolic programming. Our aim was to gather evidence that regardless of the type or critical window of metabolic imprinting, offspring exposed to certain adverse perinatal conditions have a higher risk of developing thyroid dysfunction. METHODS We reviewed literature data that relate insults occurring during pregnancy and/or lactation to short- and long-term offspring thyroid dysfunction in animal models. RESULTS Few studies have addressed the hypothalamic-pituitary-thyroid axis and thyroid dysfunction related to metabolic programming. The literature shows that under- and overnutrition, exposure to endocrine disruptors, early weaning, maternal thyroid disease and maternal high-fat diet can induce alterations in offspring thyroid function in a sex-dependent manner. CONCLUSION Based on the few available data, mainly in rodent models, we can conclude that diet, hormones, and environmental contaminants are related to the developmental origins of later thyroid dysfunction by interrupting the normal maturation of the thyroid gland.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Proença S, van Sabben N, Legler J, Kamstra JH, Kramer NI. The effects of hexabromocyclododecane on the transcriptome and hepatic enzyme activity in three human HepaRG-based models. Toxicology 2023; 485:153411. [PMID: 36572169 DOI: 10.1016/j.tox.2022.153411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The disruption of thyroid hormone homeostasis by hexabromocyclododecane (HBCD) in rodents is hypothesized to be due to HBCD increasing the hepatic clearance of thyroxine (T4). The extent to which these effects are relevant to humans is unclear. To evaluate HBCD effects on humans, the activation of key hepatic nuclear receptors and the consequent disruption of thyroid hormone homeostasis were studied in different human hepatic cell models. The hepatoma cell line, HepaRG, cultured as two-dimensional (2D), sandwich (SW) and spheroid (3D) cultures, and primary human hepatocytes (PHH) cultured as sandwich were exposed to 1 and 10 µM HBCD and characterized for their transcriptome changes. Pathway enrichment analysis showed that 3D models, followed by SW, had a stronger transcriptome response to HBCD, which is explained by the higher expression of hepatic nuclear receptors but also greater accumulation of HBCD measured inside cells in these models. The Pregnane X receptor pathway is one of the pathways most upregulated across the three hepatic models, followed by the constitutive androstane receptor and general hepatic nuclear receptors pathways. Lipid metabolism pathways had a downregulation tendency in all exposures and in both PHH and the three cultivation modes of HepaRG. The activity of enzymes related to PXR/CAR induction and T4 metabolism were evaluated in the three different types of HepaRG cultures exposed to HBCD for 48 h. Reference inducers, rifampicin and PCB-153 did affect 2D and SW HepaRG cultures' enzymatic activity but not 3D. HBCD did not induce the activity of any of the studied enzymes in any of the cell models and culture methods. This study illustrates that for nuclear receptor-mediated T4 disruption, transcriptome changes might not be indicative of an actual adverse effect. Clarification of the reasons for the lack of translation is essential to evaluate new chemicals' potential to be thyroid hormone disruptors by altering thyroid hormone metabolism.
Collapse
Affiliation(s)
- Susana Proença
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands.
| | - Nick van Sabben
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jorke H Kamstra
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Nynke I Kramer
- Department of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Toxicology Division, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
25
|
Kruger E, Toraih EA, Hussein MH, Shehata SA, Waheed A, Fawzy MS, Kandil E. Thyroid Carcinoma: A Review for 25 Years of Environmental Risk Factors Studies. Cancers (Basel) 2022; 14:6172. [PMID: 36551665 PMCID: PMC9777404 DOI: 10.3390/cancers14246172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmental factors are established contributors to thyroid carcinomas. Due to their known ability to cause cancer, exposure to several organic and inorganic chemical toxicants and radiation from nuclear weapons, fallout, or medical radiation poses a threat to global public health. Halogenated substances like organochlorines and pesticides can interfere with thyroid function. Like phthalates and bisphenolates, polychlorinated biphenyls and their metabolites, along with polybrominated diethyl ethers, impact thyroid hormones biosynthesis, transport, binding to target organs, and impair thyroid function. A deeper understanding of environmental exposure is crucial for managing and preventing thyroid cancer. This review aims to investigate the relationship between environmental factors and the development of thyroid cancer.
Collapse
Affiliation(s)
- Eva Kruger
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amani Waheed
- Department of Community Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Colnot T, Dekant W. Commentary: cumulative risk assessment of perfluoroalkyl carboxylic acids and perfluoralkyl sulfonic acids: what is the scientific support for deriving tolerable exposures by assembling 27 PFAS into 1 common assessment group? Arch Toxicol 2022; 96:3127-3139. [PMID: 35976416 DOI: 10.1007/s00204-022-03336-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
This commentary proposes an approach to risk assessment of mixtures of per- and polyfluorinated alkyl substances (PFAS) as EFSA was tasked to derive a tolerable intake for a group of 27 PFAS. The 27 PFAS to be considered contain different functional groups and have widely variable physicochemical (PC) properties and toxicokinetics and thus should not treated as one group based on regulatory guidance for risk assessment of mixtures. The proposed approach to grouping is to split the 27 PFAS into two groups, perfluoroalkyl carboxylates and perfluoroalkyl sulfonates, and apply a relative potency factor approach (as proposed by RIVM) to obtain two separate group TDIs based on liver toxicity in rodents since liver toxicity is a sensitive response of rodents to PFAS. Short chain PFAS and other PFAS structures should not be included in the groups due to their low potency and rapid elimination. This approach is in better agreement with scientific and regulatory guidance for mixture risk assessment.
Collapse
Affiliation(s)
| | - Wolfgang Dekant
- Department of Toxicology, Institut für Toxikologie, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.
| |
Collapse
|
27
|
Corton JC, Mitchell CA, Auerbach S, Bushel P, Ellinger-Ziegelbauer H, Escobar PA, Froetschl R, Harrill AH, Johnson K, Klaunig JE, Pandiri AR, Podtelezhnikov AA, Rager JE, Tanis KQ, van der Laan JW, Vespa A, Yauk CL, Pettit SD, Sistare FD. A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicol Sci 2022; 188:4-16. [PMID: 35404422 PMCID: PMC9238304 DOI: 10.1093/toxsci/kfac041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Constance A Mitchell
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Scott Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Pierre Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | - Patricia A Escobar
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Roland Froetschl
- BfArM-Bundesinstitut für Arzneimittel und Medizinprodukte, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Alison H Harrill
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Arun R Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Julia E Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keith Q Tanis
- Safety Assessment and Laboratory Animal Resources, Merck Sharp & Dohme Corp, West Point, Pennsylvania, USA
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht, The Netherlands
| | - Alisa Vespa
- Therapeutic Products Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Syril D Pettit
- Health and Environmental Sciences Institute, Washington, District of Columbia, USA
| | - Frank D Sistare
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Derkach KV, Fokina EA, Bakhtyukov AA, Sorokoumov VN, Stepochkina AM, Zakharova IO, Shpakov AO. The Study of Biological Activity of a New Thieno[2,3-D]-Pyrimidine-Based Neutral Antagonist of Thyrotropin Receptor. Bull Exp Biol Med 2022; 172:713-717. [PMID: 35501650 DOI: 10.1007/s10517-022-05462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 10/18/2022]
Abstract
The development of low-molecular-weight antagonists of thyroid-stimulating hormone (TSH) receptor is a promising trend in the treatment of autoimmune hyperthyroidism. We studied the effect of thieno[2,3-d]-pyrimidine derivative TPY1 on TSH-stimulated synthesis of thyroid hormones in the culture of FRTL-5 thyrocytes and on thyroliberin-stimulated production of thyroid hormones in rat blood. Preincubation of FRTL-5 cells with TPY1 suppressed the stimulatory effect of TSH on the synthesis of thyroxine and triiodothyronine. Intraperitoneal injection of TPY1 in a dose of 25 mg/kg reduced thyroliberin-stimulated levels of thyroid hormones in the blood and inhibited the expression of genes encoding thyroid peroxidase, thyroglobulin, and Na+/I- cotransporter responsible for thyroxine synthesis. In the absence of thyroliberin stimulation, TPY1 did not affect the levels of thyroid hormones and expression of thyroidogenesis genes. Thus, a new TPY1 antagonist of TSH receptor can be a prototype of a drug for the treatment of autoimmune hyperthyroidism.
Collapse
Affiliation(s)
- K V Derkach
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Fokina
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A A Bakhtyukov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - V N Sorokoumov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A M Stepochkina
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I O Zakharova
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A O Shpakov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Se-chenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
29
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [PMID: 35046065 DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 02/13/2025] Open
Abstract
Increased disposition of thyroid hormones is a way that xenobiotics may alter thyroid homeostasis and, in rats, produce thyroid follicular adenoma/carcinoma. This capacity is historically attributed to induction of thyroxine (T4) glucuronidation by UDP-glycosyltransferase (UGT) enzymes, and cytochrome P450 induction is often a surrogate. However, gaps exist in correlating the effectiveness of certain chemical inducers at increasing T4 glucuronidation with decreases in systemic T4 and resulting increases in thyroid-stimulating hormone. With the identification of other key inducible drug processing genes and proteins involved in hepatic disposition of thyroid hormones, including uptake (e.g., organic anion transporter polypeptides) and efflux (e.g., multidrug resistance proteins) transporters, data exist that support transporters as additional target sites of induction. These data are reviewed herein and indicate an increase in hepatic uptake of thyroid hormones, as well as increased biliary excretion of iodothyronine conjugates, represent critical activities that differentiate inducer effectiveness in disrupting thyroid hormones in rats. Increased membrane transport of thyroid hormones, likely in conjunction with induced glucuronidation of thyroid hormone (triiodothyronine more relevant than T4), provide a better indication of thyroid disrupting potential than consideration of UGT induction alone. Because coordinate regulation of these targets is inconsistent among inducers belonging to various classes and among species, and there are disparities between in vitro assays and in vivo responses, further work is required to identify specific and relevant inducible thyroid hormone uptake transporters. Data from Mrp2-null animals have contributed key information, yet the contributions of efflux transport (canalicular and basolateral) to the mechanism of individual, effective inducers also require further study. SIGNIFICANCE STATEMENT: Key advances in understanding the target sites for altered disposition of thyroid hormones have occurred in the last 2 decades to better inform potential sites of action of inducing chemicals. Ultimately, the knowledge of inducible thyroid hormone transport into and out of liver, beyond induction of glucuronidation, should be considered and applied to screening and risk assessment paradigms when assessing an inducer's potential to alter thyroid homeostasis in nonclinical species and humans.
Collapse
|
30
|
Isoflucypram: Combining in vivo and NAMs data in a weight of evidence approach to demonstrate the human non-relevance of the mode of action leading to the subtle thyroid effects observed in the rat. Regul Toxicol Pharmacol 2022; 131:105154. [PMID: 35276315 DOI: 10.1016/j.yrtph.2022.105154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
Isoflucypram (ISY) is a new cereal fungicide with an overall favorable toxicity profile. As the thyroid was identified as a target organ only in the rat, following repeat dosing; short term in vivo (rat) and in vitro mechanistic studies were conducted to substantiate the thyroid changes as being secondary to liver enzyme induction via PXR/CAR activation and to determine the human non-relevance of the thyroid effects. The in vivo studies established ISY as a weak prototypical hepatic PXR/CAR enzyme inducer (P450 and T4-UDP-glucuronosyltransferase (T4-UDPGT) activities), with the induction being associated with increased liver weight/hepatocellular hypertrophy/proliferation. Thyroid effects (minimal follicular cell hypertrophy/proliferation, slight, statistically significantly increased thyroid stimulating hormone) occurred at doses where liver stimulation was already established. Direct thyroid effects (in vitro thyroid peroxidase and sodium iodide symporter inhibition) were excluded. Marked quantitative species differences were identified when comparing rat and human hepatic enzyme activities in vitro, particularly for T4-UDPGT. Specifically, basal T4-UDPGT was 4-fold lower in human compared to rat hepatocytes. In addition, T4-UDPGT was induced in vitro in rat but not in human hepatocytes following ISY treatment. Overall, the weight of evidence supports a liver mediated mode of action for the isoflucypram-induced slight rat thyroid changes as well as the human non-relevance of these findings.
Collapse
|
31
|
Parmentier C, Baze A, Untrau M, Kampkoetter A, Lasserre D, Richert L. Evaluation of human relevance of Nicofluprole-induced rat thyroid disruption. Toxicol Appl Pharmacol 2021; 435:115831. [PMID: 34922950 DOI: 10.1016/j.taap.2021.115831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Nicofluprole is a novel insecticide of the phenylpyrazole class conferring selective antagonistic activity on insect GABA receptors. After repeated daily dietary administration to Wistar rats for 28/90 days, Nicofluprole induced increases in thyroid (and liver) weight, associated with histopathology changes. Nicofluprole did not inhibit thyroid peroxydase nor sodium/iodide symporter, two key players in the biosynthesis of thyroid hormones, indicating the absence of a direct thyroid effect. The results seen in rats suggested a mode of action of Nicofluprole driven by the molecular initiating event of CAR/PXR nuclear receptor activation in livers, with key events of increases in liver weight and hypertrophy, decreasing circulatory thyroid hormones, a compensatory increase in TSH release and follicular cell hypertrophy. To explore the relevance of these changes to humans, well established in vitro rat and human sandwich-cultured hepatocytes were exposed to Nicofluprole up to 7 days. A concentration-dependent CYP3A induction (PXR-activation), an increase in T4-glucuronoconjugation accompanied by UGT1A/2B inductions was observed in rat but not in human hepatocytes. The inductions seen with Nicofluprole in rat (in vivo and in vitro in hepatocytes) that were absent in human hepatocytes represent another example of species-selectivity of nuclear CAR/PXR receptor activators. Importantly, the different pattern observed in rat and human models demonstrate that Nicofluprole-related thyroid effects observed in the rat are with no human relevance.
Collapse
Affiliation(s)
- Céline Parmentier
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| | - Audrey Baze
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| | - Meiggie Untrau
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France
| | - Andreas Kampkoetter
- Bayer Animal Health GmbH, An Elanco Animal Health Company, 50 Alfred-Nobel-Strasse, 40789 Monheim, Germany.
| | - Dominique Lasserre
- Bayer S.A.S. Bayer CropScience, 355 rue Dostoïevski, F-06560 Sophia Antipolis, France.
| | - Lysiane Richert
- KaLy-Cell S.A.S, 20A rue du Général Leclerc, 67115 Plobsheim, France.
| |
Collapse
|
32
|
Jaimes-Hoy L, Pérez-Maldonado A, Narváez Bahena E, de la Cruz Guarneros N, Rodríguez-Rodríguez A, Charli JL, Soberón X, Joseph-Bravo P. Sex Dimorphic Changes in Trh Gene Methylation and Thyroid-Axis Response to Energy Demands in Maternally Separated Rats. Endocrinology 2021; 162:bqab110. [PMID: 34043769 DOI: 10.1210/endocr/bqab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis regulates energy balance through the pleiotropic action of thyroid hormones. HPT basal activity and stimulation by cold or voluntary exercise are repressed by previous chronic stress in adults. Maternal separation (MS) modifies HPT basal activity; we thus studied the response of the axis to energy demands and analyzed possible epigenetic changes on Trh promoter. Nonhandled (NH) or MS male Wistar rats were cold exposed 1 h at adulthood; Trh expression in the hypothalamic paraventricular nucleus (PVN) and serum thyrotropin (TSH) concentration were increased only in NH rats. Two weeks of voluntary exercise decreased fat mass and increased Trh expression, and thyroid hormones concentration changed proportionally to running distance in NH male rats and MS male rats. Although NH females ran more than MS and much more than males, exercise decreased body weight and fat mass only in NH rats with no change on any parameter of the HPT axis but increased Pomc expression in arcuate-nucleus of NH and Npy in MS females. Overall, the methylation pattern of PVN Trh gene promoter was similar in NH males and females; MS modified methylation of specific CpG sites, a thyroid hormone receptor (THR)-binding site present after the initiation site was hypomethylated in MS males; in MS females, the THR binding site of the proximal promoter (site 4) and 2 sites in the first intron were hypermethylated. Our studies showed that, in a sex-dimorphic manner, MS blunted the responses of HPT axis to energy demands in adult animals and caused methylation changes on Trh promoter that could alter T3 feedback.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adrián Pérez-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Elian Narváez Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Natalia de la Cruz Guarneros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| |
Collapse
|
33
|
Hu MJ, Zhu JL, Zhang Q, He JL, Yang WJ, Zhu ZY, Hao JH, Huang F. Thyroid hormones in relation to polybrominated diphenyl ether and metals exposure among rural adult residents along the Yangtze River, China. Int J Hyg Environ Health 2021; 236:113800. [PMID: 34229161 DOI: 10.1016/j.ijheh.2021.113800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022]
Abstract
Although several studies indicate that exposure to polybrominated diphenyl ethers (PBDEs) and metals may influence thyroid function, the evidence is limited and inconsistent in general population. The current study was conducted to determine the levels of plasma PBDEs and urinary metals and evaluate the associations of co-exposure to both with thyroid hormones (THs) among rural adult residents along the Yangtze River, China. A total of 329 subjects were included in current analyses, and 8 PBDEs congeners and 14 urinary metals were measured to reflect the levels of environmental exposure. Multiple linear regression models were used to evaluate the association between PBDEs, metals and THs levels. Bayesian Kernel Machine Regression (BKMR) was used to examine PBDEs and metals mixtures in relation to THs. The geometric mean (GM) and 95% confidence interval (CI) of total measured PBDEs was 65.10 (59.96, 70.68) ng/g lipid weights (lw). BDE-209 was the most abundant congener, with a GM (95% CI) of 47.91 (42.95, 53.26) ng/g lw, accounting for 73.6% of the total PBDEs. Free thyroxine (FT4) was significantly negatively associated with BDE-28, 47, 99, 100, 154, and 183, and urinary strontium [β (95% CI): -0.04 (-0.07, -0.02)], but positively associated with selenium [β (95% CI): 0.04 (0.02, 0.06)]. Free triiodothyronine (FT3) was negatively associated with BDE-28 [β (95% CI): -0.03 (-0.05, -0.01)] and urinary arsenic [β (95% CI): -0.01 (-0.02, -0.001)]. The current study did not observe a statistically significant association of thyroid-stimulating hormone (TSH) with PBDEs and urinary metals. BKMR analyses showed similar trends when these chemicals were taken into consideration simultaneously. We found no significant interaction in the association between individual chemical at the 25th versus 75th percentiles and THs estimates, comparing the results when other chemicals were set at their 10th, 50th, and 90th percentile levels. Further study is required to confirm these findings and determine potential mechanisms.
Collapse
Affiliation(s)
- Ming-Jun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jin-Liang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Qian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Jia-Liu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wan-Jun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Zhen-Yu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Laboratory for Environmental Toxicology, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|