1
|
Alsaidan OA, Elkomy MH, Zaki RM, Tulbah AS, Yusif RM, Eid HM. Brain targeting of venlafaxine via intranasal transbilosomes thermogel for improved management of depressive disorder. J Pharm Sci 2024; 113:3304-3314. [PMID: 39216538 DOI: 10.1016/j.xphs.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The current research aimed to design and optimize hyaluronic acid-coated transbilosomes containing venlafaxine (VLF-HA-TBLs) for nose-to-brain delivery for improved management of depressive disorder. Venlafaxine-loaded transbilosomes (VLF-TBLs) were developed according to the film hydration procedure, optimized for maximum efficiency using the quality by design-based Box-Behnken design (BBD), and then coated with hyaluronic acid (HA). The optimized VLF-HA-TBLs were subjected to in vitro characterization, integrated into a thermolabile gel, and then exposed to in vivo evaluation studies. The results revealed that the VLF-HA-TBLs formulation exhibited acceptable size (185.6 ± 4.9 nm), surface charge (-39.8 ± 1.7 mV), and entrapment efficiency (69.6 ± 2.6 %). The morphological study revealed that nanovesicles were spherical and displayed a consistent size distribution without particle aggregation. It also showed improved ex vivo nasal diffusion and a prolonged release profile. In addition, the formulated VLF-HA-TBLs were stable under the studied conditions and tolerable when applied intranasally. Compared to the intranasal administration of VLF solution (VLF-SOL), the biodistribution analysis showed that VLF-HA-TBLs delivered intranasally had a relative bioavailability of 441 % in the brain and 288 % in plasma. Moreover, the intranasal delivery of VLF-HA-TBLs demonstrated much higher bioavailability (512 %) in the brain compared to VLF-SOL administered intravenously. Collectively, it could be possible to infer that HA-TBLs might be an effective nanocarrier to administer VLF to the brain via the nasal route.
Collapse
Affiliation(s)
- Omar A Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72341, Saudi Arabia.
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72341, Saudi Arabia.
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Alaa S Tulbah
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm al Qura University, Makkah 21955, Saudi Arabia.
| | - Rehab Mohammad Yusif
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Hussein M Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
2
|
Rodrigues P, Guimarães L, Carvalho AP, Oliva-Teles L. Carbamazepine, venlafaxine, tramadol, and their main metabolites: Toxicological effects on zebrafish embryos and larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130909. [PMID: 36860067 DOI: 10.1016/j.jhazmat.2023.130909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical compounds and their metabolites are found in natural and wastewater. However, investigation of their toxic effects on aquatic animals has been neglected, especially for metabolites. This work investigated the effects of the main metabolites of carbamazepine, venlafaxine and tramadol. Zebrafish embryos were exposed (0.1-100 µg/L) for 168hpf exposures to each metabolite (carbamazepine-10,11-epoxide, 10,11-dihydrocarbamazepine, O-desmethylvenlafaxine, N-desmethylvenlafaxine, O-desmethyltramadol, N-desmethyltramadol) or the parental compound. A concentration-response relationship was found for the effects of some embryonic malformations. Carbamazepine-10,11-epoxide, O-desmethylvenlafaxine and tramadol elicited the highest malformation rates. All compounds significantly decreased larvae responses on a sensorimotor assay compared to controls. Altered expression was found for most of the 32 tested genes. In particular, abcc1, abcc2, abcg2a, nrf2, pparg and raraa were found to be affected by all three drug groups. For each group, the modelled expression patterns showed differences in expression between parental compounds and metabolites. Potential biomarkers of exposure were identified for the venlafaxine and carbamazepine groups. These results are worrying, indicating that such contamination in aquatic systems may put natural populations at significant risk. Furthermore, metabolites represent a real risk that needs more scrutinising by the scientific community.
Collapse
Affiliation(s)
- P Rodrigues
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - L Guimarães
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal.
| | - A P Carvalho
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal
| | - L Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research - CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculty of Sciences - Biology Department, Rua do Campo Alegre s/n, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Wang Z, Li L, Huang S, Wang X, Liu S, Li X, Kong W, Ni X, Zhang M, Huang S, Tan Y, Wen Y, Shang D. Joint population pharmacokinetic modeling of venlafaxine and O-desmethyl venlafaxine in healthy volunteers and patients to evaluate the impact of morbidity and concomitant medication. Front Pharmacol 2022; 13:978202. [PMID: 36569310 PMCID: PMC9772442 DOI: 10.3389/fphar.2022.978202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Venlafaxine (VEN) is a widely used dual selective serotonin/noradrenaline reuptake inhibitor indicated for depression and anxiety. It undergoes first-pass metabolism to its active metabolite, O-desmethyl venlafaxine (ODV). The aim of the present study was to develop a joint population pharmacokinetic (PPK) model to characterize their pharmacokinetic characters simultaneously. Methods: Plasma concentrations with demographic and clinical data were derived from a bioequivalence study in 24 healthy subjects and a naturalistic TDM setting containing 127 psychiatric patients. A parent-metabolite PPK modeling was performed with NONMEM software using a non-linear mixed effect modeling approach. Goodness of fit plots and normalized prediction distribution error method were used for model validation. Results and conclusion: Concentrations of VEN and ODV were well described with a one-compartment model incorporating first-pass metabolism. The first-pass metabolism was modeled as a first-order conversion. The morbid state and concomitant amisulpride were identified as two significant covariates affecting the clearance of VEN and ODV, which may account for some of the variations in exposure. This model may contribute to the precision medication in clinical practice and may inspire other drugs with pre-system metabolism.
Collapse
Affiliation(s)
- Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Xipei Wang
- Medical Research Center, Guangdong Province People’s Hospital, Guangdong Academy of Medical Sciences, Cardiovascular Institute, Guangzhou, China
| | - Shujing Liu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Xiaolin Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Wan Kong
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shanshan Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,*Correspondence: Dewei Shang, ; Yuguan Wen,
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,*Correspondence: Dewei Shang, ; Yuguan Wen,
| |
Collapse
|
4
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Couderc S, Mory C, Darnaud L, Saint-Marcoux F. [Therapeutic drug monitoring of antidepressants: Why venlafaxine is the most monitored drug? A review of literature]. Therapie 2021; 76:725-733. [PMID: 33551091 DOI: 10.1016/j.therap.2021.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Venlafaxine is the third most frequently prescribed antidepressant in France the last decade, with about 400,000 daily doses. Therapeutic drug monitoring (TDM) of this medication, by measuring the active moiety venlafaxine (V) and O-desmethylvenlafaxine (ODV), is recommended (level of recommendation 2). However, this antidepressant seems to be the one for which clinicians most often use TDM, much more frequently than escitalopram, which is more prescribed and for which TDM is also recommended. The main goal of this review is to provide an update on the TDM of venlafaxine: its therapeutic interval, its level of recommendation and the origin of its "success". From the literature does not enable to define a therapeutic interval for the active moiety V+ODV, that is to say a steady-state trough concentration allowing a clinical response without toxicity. Nevertheless, a target concentration from 100 to 400μg/L is certainly relevant for the majority of patients without any pharmacodynamic resistance ; though a greater concentration could result in an earlier response or could be required for a clinical response in a minority of patients. A patient with no clinical response despite a concentration greater than 1000μg/L should be proposed another antidepressant. Measurement of the ODV/V ratio is also a useful tool, values below 0.3 usually reflecting a slow metabolizer phenotype for cytochrome P-450 2D6, which is more at risk of adverse effects. Research for this phenotype probably explains many prescriptions for TDM.
Collapse
Affiliation(s)
- Sylvain Couderc
- Service de pharmacologie toxicologie et pharmacovigilance, CHU de Limoges, 87000 Limoges, France.
| | - Celine Mory
- Service de pharmacologie toxicologie et pharmacovigilance, CHU de Limoges, 87000 Limoges, France
| | - Léa Darnaud
- Service de pharmacologie toxicologie et pharmacovigilance, CHU de Limoges, 87000 Limoges, France
| | - Franck Saint-Marcoux
- Service de pharmacologie toxicologie et pharmacovigilance, CHU de Limoges, 87000 Limoges, France
| |
Collapse
|
6
|
Tozatto E, Benzi JRDL, Rocha A, Coelho EB, Lanchote VL. Nifedipine Does Not Alter the Pharmacokinetics of Venlafaxine Enantiomers in Healthy Subjects Phenotyped for CYP2D6, CYP2C19, and CYP3A. J Clin Pharmacol 2020; 61:319-327. [PMID: 32974907 DOI: 10.1002/jcph.1745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/24/2020] [Indexed: 01/16/2023]
Abstract
Venlafaxine (VEN) is a P-glycoprotein (P-gp) substrate, and nifedipine has been described by in vitro and experimental studies as a P-gp inhibitor. The present study aimed to investigate whether nifedipine alters the kinetic disposition of VEN enantiomers and their metabolites in healthy subjects. A crossover study was conducted in 10 healthy subjects phenotyped as extensive metabolizers for cytochrome P450 (CYP) 2D6, CYP2C19, and CYP3A. In phase 1, the subjects received a single oral dose of 150 mg racemic VEN, and in phase 2, a single oral dose of 40 mg nifedipine was administered with the VEN treatment. Plasma concentrations of VEN enantiomers and their metabolites O-desmethylvenlafaxine and N, O- didesmethylvenlafaxine (ODV and DDV, respectively) were evaluated by liquid chromatography with tandem mass spectrometry up to 72 hours after drug administration. Phase 2 was compared with phase 1 using the 90% confidence interval (CI) of the ratio of geometric means for Cmax and area under the curve (AUC). AUC enantiomeric ratios S-(+)/R-(-) were evaluated within each and between phases using the Wilcoxon test (P ≤ .05). The kinetic disposition of VEN was enantioselective (phase 1) with VEN S-(+)/R-(-) AUC ratio median of 2.83 (AUC0-∞ , 526 vs 195 ng·h/mL). However, AUC median did not differ between enantiomers for the metabolites ODV (1971 vs 2226 ng·h/mL) and DDV (199 vs 151 ng·h/mL). The 90%CI of the ratio of geometric means showed that the phases are bioequivalent. A single oral dose of 40 mg nifedipine did not alter VEN enantiomer pharmacokinetics in healthy subjects.
Collapse
Affiliation(s)
- Eduardo Tozatto
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jhohann Richard de Lima Benzi
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adriana Rocha
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Vera Lucia Lanchote
- Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Villanueva S, Zhang W, Zecchinati F, Mottino A, Vore M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr Med Chem 2019; 26:1155-1184. [PMID: 29589524 DOI: 10.2174/0929867325666180327092639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.
Collapse
Affiliation(s)
- Silvina Villanueva
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Wei Zhang
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| | - Felipe Zecchinati
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Aldo Mottino
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Mary Vore
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| |
Collapse
|
8
|
Kibathi LW, Bae S, Penzak SR, Kumar P. Potential Influence of Centrally Acting Herbal Drugs on Transporters at the Blood-Cerebrospinal Fluid Barrier and Blood-Brain Barrier. Eur J Drug Metab Pharmacokinet 2019; 43:619-635. [PMID: 29858835 DOI: 10.1007/s13318-018-0486-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Complementary and alternative medications (CAM) with known or suspected pharmacologic activity in the central nervous system (CNS) are common. These herbal preparations may cause clinically significant drug-drug interactions (DDIs) when coadministered with medications that act in the CNS. This can result in negative outcomes such as toxicity or loss of efficacy. Most drug interaction reports with CAM focus on cytochrome P450 (CYP) modulation. However, drug interactions between CAM and conventional medications may occur via mechanisms other than CYP inhibition or induction; in particular, modulation of drug transport proteins represents an important mechanism by which such interactions may occur. This article provides an updated review of transporter-mediated mechanisms by which herbal products may theoretically interact with centrally acting medications at the blood-brain barrier and blood-cerebrospinal fluid (CSF) barrier. Further research is required before the true clinical impact of interactions involving modulation of centrally located membrane transporters can be fully understood.
Collapse
Affiliation(s)
- Lilian W Kibathi
- Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department, National Institutes of Health (NIH), Bethesda, MD, USA
| | - SoHyun Bae
- University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - Scott R Penzak
- Department of Pharmacotherapy, University of North Texas System, College of Pharmacy, 3500 Camp Bowie Blvd-RES 302B, Fort Worth, TX, 76107, USA.
| | - Parag Kumar
- Clinical Pharmacokinetics Research Unit, Clinical Center Pharmacy Department, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
9
|
Abstract
P-glycoprotein (P-gp), the gene product of ABCB1, is a drug transporter at the blood–brain barrier and could be a limiting factor for entrance of antidepressants into the brain, the target site of antidepressant action. Animal studies showed that brain concentrations of many antidepressants depend on P-gp. In humans, ABCB1 genotyping in the treatment of depression rests on the assumption that genetic variations in ABCB1 explain individual differences in antidepressant response via their effects on P-gp expression at the blood–brain barrier. High P-gp expression is hypothesized to lead to lower and often insufficient brain concentrations of P-gp substrate antidepressants. In this review, we summarize 32 studies investigating the question of whether ABCB1 polymorphisms predict clinical efficacy and/or tolerability of antidepressants in humans and evaluate the clinical application status of ABCB1 genotyping in depression treatment.
Collapse
Affiliation(s)
- Tanja Maria Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| | - Manfred Uhr
- Clinical Laboratory, Max Planck Institute of Psychiatry, Kraepelinstr. 2–10, 80804 Munich, Germany
| |
Collapse
|
10
|
Caroleo B, Staltari O, Gallelli L, Perticone F. Reactivation of chronic hepatitis B during treatment with tenofovir disoproxil fumarate: drug interactions or low adherence? BMJ Case Rep 2015; 2015:bcr-2015-209586. [PMID: 26123461 DOI: 10.1136/bcr-2015-209586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a case of a 61-year-old man with chronic hepatitis B, hepatitis B e antibody (HBeAb) positive, treated with tenofovir disoproxil fumarate (TDF), who developed virological and biochemical viremic reactivation with an increase in transaminase plasma levels. The patient's history revealed that he had discontinued TDF about 5 days before admission and, from December 2013, had been taking venlafaxine, paroxetine and zolpidem for some episodes of depression. Clinical evaluation and laboratory findings excluded the presence of systemic diseases that might have been able to explain the drug inefficacy, while pharmacological evaluation suggested a possible drug-drug interaction. In order to assess the possible occurrence of resistance, mutational analysis of hepatitis B virus (HBV) was performed and excluded the presence of resistance for TDF. TDF was prescribed, and venlafaxine, paroxetine and zolpidem were discontinued. The follow-up at 3, 6 and 12 months documented a good response to TDF with a time-related decrease of HBV-DNA and alanine aminotransferase.
Collapse
|
11
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2015; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Ahmadzai H, Tee LBG, Crowe A. Pharmacological role of efflux transporters: Clinical implications for medication use during breastfeeding. World J Pharmacol 2014; 3:153-161. [DOI: 10.5497/wjp.v3.i4.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
The World Health Organisation recommends exclusive breastfeeding for the first six months of an infant’s life and in combination with solid food thereafter. This recommendation was introduced based on research showing numerous health benefits of breastfeeding for both the mother and the infant. However, there is always concern regarding the transfer of medications from mother to their breastfed baby via milk. Pharmacokinetic properties of a drug are usually used to predict its transferability into breast milk. Although most drugs are compatible with breastfeeding, cases of toxic drug exposure have been reported. This is thought to be due to active transport mechanisms whereby efflux transporter proteins expressed in the epithelial cells of the mammary gland actively secrete drugs into milk. An example of such efflux transporters including the breast cancer resistance protein which is strongly induced during lactation and this could result in contamination of milk with the substrates of this transporter which may place the suckling infant at risk of toxicity. Furthermore, there is little known about the substrate specificity of most efflux transporters as we have highlighted in this review. There also exists some degree of contradiction between in vivo and in vitro studies which makes it difficult to conclusively predict outcomes and drug-drug interactions.
Collapse
|
13
|
Wang J, Qiao J, Zhang Y, Wang H, Zhu S, Zhang H, Hartle K, Guo H, Guo W, He J, Kong J, Huang Q, Li XM. Desvenlafaxine prevents white matter injury and improves the decreased phosphorylation of the rate-limiting enzyme of cholesterol synthesis in a chronic mouse model of depression. J Neurochem 2014; 131:229-38. [PMID: 24934403 DOI: 10.1111/jnc.12792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023]
Abstract
Serotonin/norepinephrine reuptake inhibitors antidepressants exert their effects by increasing serotonin and norepinephrine in the synaptic cleft. Studies show it takes 2-3 weeks for the mood-enhancing effects, which indicate other mechanisms may underlie their treatment effects. Here, we investigated the role of white matter in treatment and pathogenesis of depression using an unpredictable chronic mild stress (UCMS) mouse model. Desvenlafaxine (DVS) was orally administrated to UCMS mice at the dose of 10 mg/kg/day 1 week before they went through a 7-week stress procedure and lasted for over 8 weeks before the mice were killed. No significant changes were found for protein markers of neurons and astrocytes in UCMS mice. However, myelin and oligodendrocyte-related proteins were significantly reduced in UCMS mice. DVS prevented the stress-induced injury to white matter and the decrease of phosphorylated 5'-AMP-activated protein kinase and 3-hydroxy-3-methyl-glutaryl-CoA reductase protein expression. DVS increased open arm entries in an elevated plus-maze test, sucrose consumption in the sucrose preference test and decreased immobility in tail suspension and forced swimming tests. These findings suggest that stress induces depression-like behaviors and white matter deficits in UCMS mice. DVS may ameliorate the oligodendrocyte dysfunction by affecting cholesterol synthesis, alleviating the depression-like phenotypes in these mice. We examined the possible role of oligodendrocyte and myelin in the pathological changes of depression with an unpredictable chronic mild stress (UCMS) mouse model. Oligodendrocyte-related proteins in the mouse brain were specifically changed during the stress period. The depressive-like behaviors and oligodendrocyte deficits could be prevented by the administration of desvenlafaxine. Oligodendrocyte and myelin may be an essential target of desvenlafaxine for the treatment of depression.
Collapse
Affiliation(s)
- Junhui Wang
- Mental Health Center, Shantou University, Shantou, Guangdong, China.,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jinping Qiao
- Mental Health Center, Shantou University, Shantou, Guangdong, China.,Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanbo Zhang
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hongxing Wang
- Department of Clinical Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Shenghua Zhu
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Handi Zhang
- Mental Health Center, Shantou University, Shantou, Guangdong, China
| | - Kelly Hartle
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Huining Guo
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Guo
- Department of Clinical Psychiatry, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jue He
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingjun Huang
- Mental Health Center, Shantou University, Shantou, Guangdong, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Kornstein SG, McIntyre RS, Thase ME, Boucher M. Desvenlafaxine for the treatment of major depressive disorder. Expert Opin Pharmacother 2014; 15:1449-63. [DOI: 10.1517/14656566.2014.923403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Asokan A, Ball AR, Laird CD, Hermer L, Ormerod BK. Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats. PLoS One 2014; 9:e98530. [PMID: 24896246 PMCID: PMC4045676 DOI: 10.1371/journal.pone.0098530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/02/2014] [Indexed: 01/16/2023] Open
Abstract
Adult hippocampal neurogenesis has been linked to the effects of anti-depressant drugs on behavior in rodent models of depression. To explore this link further, we tested whether the serotonin-norepinephrine reuptake inhibitor (SNRI) venlafaxine impacted adult hippocampal neurogenesis differently than its primary active SNRI metabolite desvenlafaxine. Adult male Long Evans rats (n = 5-6 per group) were fed vehicle, venlafaxine (0.5 or 5 mg) or desvenlafaxine (0.5 or 5 mg) twice daily for 16 days. Beginning the third day of drug treatment, the rats were given a daily bromodeoxyuridine (BrdU; 50 mg/kg) injection for 5 days to label dividing cells and then perfused 2 weeks after the first BrdU injection to confirm total new hippocampal cell numbers and their phenotypes. The high desvenlafaxine dose increased total new BrdU+ cell number and appeared to accelerate neuronal maturation because fewer BrdU+ cells expressed maturing neuronal phenotypes and more expressed mature neuronal phenotypes in the dentate gyri of these versus vehicle-treated rats. While net neurogenesis was not increased in the dentate gyri of rats treated with the high desvenlafaxine dose, significantly more mature neurons were detected. Our data expand the body of literature showing that antidepressants impact adult neurogenesis by stimulating NPC proliferation and perhaps the survival of neuronal progeny and by showing that a high dose of the SNRI antidepressant desvenlafaxine, but neither a high nor low venlafaxine dose, may also accelerate neuronal maturation in the adult rat hippocampus. These data support the hypothesis that hippocampal neurogenesis may indeed serve as a biomarker of depression and the effects of antidepressant treatment, and may be informative for developing novel fast-acting antidepressant strategies.
Collapse
Affiliation(s)
- Aditya Asokan
- J. Crayton Pruitt Family Department of Biomedical Engineering and Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Alan R. Ball
- J. Crayton Pruitt Family Department of Biomedical Engineering and Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Psychology and Behavioral Neuroscience Program, University of Florida, Gainesville, Florida, United States of America
| | - Christina D. Laird
- J. Crayton Pruitt Family Department of Biomedical Engineering and Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Psychology and Behavioral Neuroscience Program, University of Florida, Gainesville, Florida, United States of America
| | - Linda Hermer
- Department of Psychology and Behavioral Neuroscience Program, University of Florida, Gainesville, Florida, United States of America
| | - Brandi K. Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering and Evelyn F. & William L. McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
16
|
Kobori T, Harada S, Nakamoto K, Tokuyama S. Mechanisms of P-Glycoprotein Alteration During Anticancer Treatment: Role in the Pharmacokinetic and Pharmacological Effects of Various Substrate Drugs. J Pharmacol Sci 2014; 125:242-54. [DOI: 10.1254/jphs.14r01cr] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Yang C, Zhang T, Li Z, Xu L, Liu F, Ruan J, Liu K, Zhang Z. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies. Toxicol Appl Pharmacol 2013; 273:561-8. [DOI: 10.1016/j.taap.2013.09.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/18/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023]
|