Review
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Med Genet. Aug 27, 2014; 4(3): 69-76
Published online Aug 27, 2014. doi: 10.5496/wjmg.v4.i3.69
Genome engineering using the CRISPR/Cas system
Takuro Horii, Izuho Hatada
Takuro Horii, Izuho Hatada, Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
Author contributions: Horii T and Hatada I contributed to this paper.
Supported by The Grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Ministry of Health, Labour and Welfare of Japan; the National Institute of Biomedical Innovation; the Asahi Glass Foundation; the Ichiro Kanehara Foundation; and the Program for Cultivating Global Leaders in Heavy Ion Therapeutics and Engineering
Correspondence to: Izuho Hatada, PhD, Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan. hatada@gunma-u.ac.jp
Telephone: +81-27-2208057 Fax: +81-27-2208110
Received: December 28, 2013
Revised: May 13, 2014
Accepted: May 16, 2014
Published online: August 27, 2014
Abstract

Recently, an epoch-making genome engineering technology using clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR associated (Cas) nucleases, was developed. Previous technologies for genome manipulation require the time-consuming design and construction of genome-engineered nucleases for each target and have, therefore, not been widely used in mouse research where standard techniques based on homologous recombination are commonly used. The CRISPR/Cas system only requires the design of sequences complementary to a target locus, making this technology fast and straightforward. In addition, CRISPR/Cas can be used to generate mice carrying mutations in multiple genes in a single step, an achievement not possible using other methods. Here, we review the uses of this technology in genetic analysis and manipulation, including achievements made possible to date and the prospects for future therapeutic applications.

Keywords: Clustered regularly at interspaced short palindromic repeats, Clustered regularly at interspaced short palindromic repeats associated 9, Genome engineering, Double-strand breaks, Non-homologous end joining, Homology-directed repair

Core tip: This review introduces the latest information about the genome manipulation technology of the clustered regularly at interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) system to readers. We focus particularly on the application of CRISPR/Cas in mammalian cultured cells and mice. The problems of off-target effects and the prospects for therapeutic applications of CRISPR/Cas in the future are also discussed.