1
|
Melo de Assis BL, Viana Vieira R, Rudenco Gomes Palma IT, Bertolini Coutinho M, de Moura J, Peiter GC, Teixeira KN. Three-dimensional models of antigens with serodiagnostic potential for leprosy: An in silico study. World J Clin Infect Dis 2023; 13:1-10. [DOI: 10.5495/wjcid.v13.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Leprosy is a disease caused by Mycobacterium leprae (M. leprae), an intracellular pathogen that has tropism and affects skin and nervous system cells. The disease has two forms of presentation: Paucibacillary and multibacillary, with different clinical and immunological manifestations. Unlike what occurs in the multibacillary form , the diagnostic tests for the paucibacillary form are nonspecific and not very sensitive, allowing the existence of infected individuals without treatment, which contributes to the spread of the pathogen in the population. To mitigate this contamination, more sensitive diagnostic tests capable of detecting paucibacillary patients are needed.
AIM To predict the three-dimensional structure models of M. leprae antigens with serodiagnostic potential for leprosy.
METHODS In this in silico study, satisfactory templates were selected in the Protein Data Bank (PDB) using Basic Local Alignment Search Tool to predict the structural templates of ML2038, ML0286, ML0050, and 85B antigens by comparative modeling. The templates were selected according to general criteria such as sequence identity, coverage, X-ray resolution, Global Model Quality Estimate value and phylogenetic relationship; Clustal X 2.1 software was used in this analysis. Molecular modeling was completed using the software Modeller 9v13. Visualization of the models was made using ViewerLite 4.2 and PyMol software, and analysis of the quality of the predicted models was performed using the QMEAN score and Z-score. Finally, the three-dimensional moels were validated using the MolProbity and Verify 3D platforms.
RESULTS The three-dimensional structure models of ML2038, ML0286, ML0050, and 85B antigens of M. leprae were predicted using the templates PDB: 3UOI (90.51% identity), PDB: 3EKL (87.46% identity), PDB: 3FAV (40.00% identity), and PDB: 1F0N (85.21% identity), respectively. The QMEAN and Z-score values indicated the good quality of the structure models. These data refer to the monomeric units of antigens, since some of these antigens have quaternary structure. The validation of the models was performed with the final three-dimensional structure - monomer (ML0050 and 85B antigens) and quaternary structures (ML2038 and ML0286). The majority of amino acid residues were observed in favorable and allowed regions in the Ramachandran plot, indicating correct positioning of the side chain and absence of steric impediment. The MolProbity score value and Verify 3D results of all models indicated a satisfactory prediction.
CONCLUSION The polarized immune response against M. leprae creates a problem in leprosy detection. The selection of immunodominant epitopes is essential for the development of more sensitive serodiagnostic tests, for this it is important to know the three-dimensional structure of the antigens, which can be predicted with bioinformatics tools.
Collapse
Affiliation(s)
| | - Rafaela Viana Vieira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
| | | | | | - Juliana de Moura
- Departamento de Patologia Básica, Universidade Federal do Paraná - Setor de Ciências Biológicas, Curitiba 81.531-980, Paraná, Brazil
| | - Gabrielle Caroline Peiter
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
2
|
Molecular signatures for gene expression in Mycobacterium leprae: A bioinformatic analysis. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
4
|
Ojo O, Williams DL, Adams LB, Lahiri R. Mycobacterium leprae Transcriptome During In Vivo Growth and Ex Vivo Stationary Phases. Front Cell Infect Microbiol 2022; 11:817221. [PMID: 35096659 PMCID: PMC8790229 DOI: 10.3389/fcimb.2021.817221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an obligate intracellular pathogen primarily residing within host macrophages and Schwann cells. Whole genome sequencing predicts a highly degraded genome with approximately one third of the coding capacity resulting in the loss of many catabolic pathways. Therefore, it can be assumed that M. leprae obtains many of the necessary metabolites for intracellular survival and growth from the host cells. In this study, global transcriptomic analyses were done on freshly harvested M. leprae growing in athymic mouse footpads for five months (MFP5) and compared to those held in axenic medium for 48 (ML48) and 96 (ML96) hours. Results show that all of the genes and pseudogenes were transcribed under both in vivo and in vitro conditions. 24% and 33% of gene transcript levels were significantly altered in ML48 and ML96 respectively, compared to MFP5. Approximately 45% (39/86) of lipid metabolism genes were significantly downregulated in ML96 compared to MFP5, majority of which are in the β-oxidation pathway. Cholesterol oxidase, acyl-CoA dehydrogenase, and coenzyme F420-dependent oxidoreductase, were significantly upregulated in both ML48 and ML96 compared to MFP5. 30% of cell wall and cell processes functional category genes had altered gene transcription at 96hr compared to MFP5. 40% of 57 genes associated with mycobacterial virulence showed significantly altered transcript levels with 52% significantly downregulated in ML96, including most of the Pro-Glu/Pro-Pro-Glu genes. All 111 hypothetical protein genes with unknown function were expressed. Adenosine triphosphate (ATP) synthesis in M. leprae appears to be significantly downregulated under ex vivo conditions. This is the first study comparing M. leprae global gene expression during in vivo growth and ex vivo stationery phase in axenic medium confirming that during the growth phase in the footpads of experimentally infected mice, M. leprae is metabolically active and its primary source of energy production is probably lipids.
Collapse
Affiliation(s)
- Olabisi Ojo
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Diana L Williams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| |
Collapse
|
5
|
Tanigawa K, Hayashi Y, Hama K, Yamashita A, Yokoyama K, Luo Y, Kawashima A, Maeda Y, Nakamura Y, Harada A, Kiriya M, Karasawa K, Suzuki K. Mycobacterium leprae promotes triacylglycerol de novo synthesis through induction of GPAT3 expression in human premonocytic THP-1 cells. PLoS One 2021; 16:e0249184. [PMID: 33770127 PMCID: PMC7997041 DOI: 10.1371/journal.pone.0249184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium leprae (M. leprae) is the etiological agent of leprosy, and the skin lesions of lepromatous leprosy are filled with numerous foamy or xanthomatous histiocytes that are parasitized by M. leprae. Lipids are an important nutrient for the intracellular survival of M. leprae. In this study, we attempted to determine the intracellular lipid composition and underlying mechanisms for changes in host cell lipid metabolism induced by M. leprae infection. Using high-performance thin-layer chromatography (HPTLC), we demonstrated specific induction of triacylglycerol (TAG) production in human macrophage THP-1 cells following M. leprae infection. We then used [14C] stearic acid tracing to show incorporation of this newly synthesized host cell TAG into M. leprae. In parallel with TAG accumulation, expression of host glycerol-3-phosphate acyltransferase 3 (GPAT3), a key enzyme in de novo TAG synthesis, was significantly increased in M. leprae-infected cells. CRISPR/Cas9 genome editing of GPAT3 in THP-1 cells (GPAT3 KO) dramatically reduced accumulation of TAG following M. leprae infection, intracellular mycobacterial load, and bacteria viability. These results together suggest that M. leprae induces host GPAT3 expression to facilitate TAG accumulation within macrophages to maintain a suitable environment that is crucial for intracellular survival of these bacilli.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Yasuhiro Hayashi
- Department of Biological Chemistry, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Kotaro Hama
- Department of Physical Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Atsushi Yamashita
- Department of Biological Chemistry, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Physical Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Yumi Maeda
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama-shi, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ayako Harada
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ken Karasawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama-shi, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.
Collapse
Affiliation(s)
- Gurkamaljit Kaur
- Research Scholar, Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
PCR-based techniques for leprosy diagnosis: from the laboratory to the clinic. PLoS Negl Trop Dis 2014; 8:e2655. [PMID: 24722358 PMCID: PMC3983108 DOI: 10.1371/journal.pntd.0002655] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/07/2013] [Indexed: 12/16/2022] Open
Abstract
In leprosy, classic diagnostic tools based on bacillary counts and histopathology have been facing hurdles, especially in distinguishing latent infection from active disease and diagnosing paucibacillary clinical forms. Serological tests and IFN-gamma releasing assays (IGRA) that employ humoral and cellular immune parameters, respectively, are also being used, but recent results indicate that quantitative PCR (qPCR) is a key technique due to its higher sensitivity and specificity. In fact, advances concerning the structure and function of the Mycobacterium leprae genome led to the development of specific PCR-based gene amplification assays for leprosy diagnosis and monitoring of household contacts. Also, based on the validation of point-of-care technologies for M. tuberculosis DNA detection, it is clear that the same advantages of rapid DNA detection could be observed in respect to leprosy. So far, PCR has proven useful in the determination of transmission routes, M. leprae viability, and drug resistance in leprosy. However, PCR has been ascertained to be especially valuable in diagnosing difficult cases like pure neural leprosy (PNL), paucibacillary (PB), and patients with atypical clinical presentation and histopathological features compatible with leprosy. Also, the detection of M. leprae DNA in different samples of the household contacts of leprosy patients is very promising. Although a positive PCR result is not sufficient to establish a causal relationship with disease outcome, quantitation provided by qPCR is clearly capable of indicating increased risk of developing the disease and could alert clinicians to follow these contacts more closely or even define rules for chemoprophylaxis.
Collapse
|
8
|
Akama T, Nakamura K, Tanoue A, Suzuki K. Design of tiling arrays and their application to bacterial transcriptome analysis. Methods Mol Biol 2013; 1067:23-34. [PMID: 23975783 DOI: 10.1007/978-1-62703-607-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Whole-genome sequencing and annotation have clarified total gene number and structure in a variety of organisms. Microarrays have facilitated transcriptome analysis through the use of probes that target a large number of genes based on genomic information. However, microarrays are limited in that they can only examine known or predicted genes; non-annotated genes and noncoding regions cannot be accounted for.Recent advances in technology have led to the design of tiling arrays, which contain a vastly increased number of spotted probes, and at higher density. Tiling arrays cover the entire genome of a prokaryotic species in an unbiased fashion by designing a large number of probes. Upon hybridization of total RNA, all the transcribed regions of the genome, irrespective of gene annotation, can be detected. As opposed to next-generation sequencing, tiling arrays are cost-effective, easy to analyze, and have been used for experiments as diverse as transcriptome analysis, ChIP-chip, and DNA sequence variation detection. In this chapter, the methods for bacterial tiling array slide design, RNA sample preparation, hybridization, and data analysis are described.
Collapse
Affiliation(s)
- Takeshi Akama
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Degang Y, Akama T, Hara T, Tanigawa K, Ishido Y, Gidoh M, Makino M, Ishii N, Suzuki K. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages. PLoS Negl Trop Dis 2012; 6:e1936. [PMID: 23236531 PMCID: PMC3516583 DOI: 10.1371/journal.pntd.0001936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/20/2012] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine. Leprosy, caused by Mycobacterium leprae (M. leprae), is an ancient infectious disease that remains the leading infectious cause of disability. After infection, M. leprae lives inside host macrophages that contain a large amount of lipids, which is thought to be an essential microenvironment for M. leprae to survive in host cells. M. leprae infection increases lipid accumulation in macrophages and decreases the metabolic breakdown of lipids (catabolism). In addition, the treatment of leprosy with multidrug therapy (MDT) reverses the effect of infection on the modulation of lipid metabolism. We therefore aimed to use cultured human macrophage cells to determine which of the three MDT drugs (clofazimine, dapsone, or rifampicin) is responsible for this effect. We found that only clofazimine affects lipid accumulation and catabolism in M. leprae-infected cells in vitro. The amounts of lipids accumulated in the cells decreased when clofazimine was added to the cell culture medium. Clofazimine also activated immune responses in M. leprae-infected cells. These results suggest that the effectiveness of clofazimine against leprosy is due to the modulation of lipid metabolism and activation of immune reactions in M. leprae-infected host cells.
Collapse
Affiliation(s)
- Yang Degang
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lipid Droplets and Mycobacterium leprae Infection. J Pathog 2012; 2012:361374. [PMID: 23209912 PMCID: PMC3503283 DOI: 10.1155/2012/361374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/12/2012] [Indexed: 12/16/2022] Open
Abstract
Leprosy is a chronic infectious disease and is a major source of morbidity in developing countries. Leprosy is caused by the obligate intracellular bacterium Mycobacterium leprae, which infects as primary target Schwann cells. Lepromatous leprosy exhibits multiple lesions of the skin, eyes, nerves, and lymph nodes. The sites of infection are characterized by the presence of foamy macrophages, fully packed with lipid droplets (LDs), which are induced by M. leprae. In the last years, it has become evident that M. tuberculosis imports lipids from foamy macrophages and is dependent on fatty acids for growth in infected macrophages. M. leprae seems to have similar mechanisms for scavenging lipids from the host. But due to the inability to culture M. leprae on laboratory media, research progresses only slowly. However, in the last years, substantial progress has been made in the field of lipid metabolism in M. leprae. Herein, we will present and summarize the lipid droplets formation and the metabolism of lipids during M. leprae infection.
Collapse
|
11
|
Tanigawa K, Degang Y, Kawashima A, Akama T, Yoshihara A, Ishido Y, Makino M, Ishii N, Suzuki K. Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages. Microb Pathog 2012; 52:285-91. [PMID: 22553833 DOI: 10.1016/j.micpath.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mycobacterium leprae (M. leprae), the causative agent of leprosy, parasitizes within the foamy or enlarged phagosome of macrophages where rich lipids accumulate. Although the mechanisms for lipid accumulation in the phagosome have been clarified, it is still unclear how such large amounts of lipids escape degradation. To further explore underlying mechanisms involved in lipid catabolism in M. leprae-infected host cells, we examined the expression of hormone-sensitive lipase (HSL), a key enzyme in fatty acid mobilization and lipolysis, in human macrophage THP-1 cells. We found that infection by live M. leprae significantly suppressed HSL expression levels. This suppression was not observed with dead M. leprae or latex beads. Macrophage activation by peptidoglycan (PGN), the ligand for toll-like receptor 2 (TLR2), increased HSL expression; however, live M. leprae suppressed this increase. HSL expression was abolished in the slit-skin smear specimens from patients with lepromatous and borderline leprosy. In addition, the recovery of HSL expression was observed in patients who experienced a lepra reaction, which is a cell-mediated, delayed-type hypersensitivity immune response, or in patients who were successfully treated with multi-drug therapy. These results suggest that M. leprae suppresses lipid degradation through inhibition of HSL expression, and that the monitoring of HSL mRNA levels in slit-skin smear specimens may be a useful indicator of patient prognosis.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suzuki K, Tanigawa K, Kawashima A, Miyamura T, Ishii N. Chimpanzees used for medical research shed light on the pathoetiology of leprosy. Future Microbiol 2011; 6:1151-7. [PMID: 22004034 DOI: 10.2217/fmb.11.97] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Leprosy is a chronic infectious disorder caused by Mycobacterium leprae, which mainly affects skin and peripheral nerves. It is classified as either paucibacillary or multibacillary based upon clinical manifestations and slit-skin smear results. It is speculated that leprosy develops after a long latency period following M. leprae infection. However, the actual time of infection and the duration of latency have never been proven in human patients. To date, four cases of spontaneous leprosy have been reported in chimpanzees who were caught in West Africa in infancy and used for medical research in the USA and Japan. One of these chimpanzees was extensively studied in Japan, and single-nucleotide polymorphism analysis for the M. leprae genome was conducted. This analysis revealed that the chimpanzee was infected with M. leprae during infancy in West Africa and the pathognomonic signs of leprosy appeared after at least 30 years of incubation. Analysis of leprosy in chimpanzees can contribute not only to medical research but also to the understanding of the pathoetiology of leprosy.
Collapse
Affiliation(s)
- Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002, Japan.
| | | | | | | | | |
Collapse
|
13
|
Suzuki K, Akama T, Kawashima A, Yoshihara A, Yotsu RR, Ishii N. Current status of leprosy: epidemiology, basic science and clinical perspectives. J Dermatol 2011; 39:121-9. [PMID: 21973237 DOI: 10.1111/j.1346-8138.2011.01370.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leprosy has affected humans for millennia and remains an important health problem worldwide, as evidenced by nearly 250 000 new cases detected every year. It is a chronic infectious disorder, caused by Mycobacterium leprae, that primarily affects the skin and peripheral nerves. Recent advances in basic science have improved our knowledge of the disease. Variation in the cellular immune response is the basis of a range of clinical manifestations. The introduction of multidrug therapy has significantly contributed to a decrease in the prevalence of the disease. However, leprosy control activities, including monitoring and prevention programs, must be maintained.
Collapse
Affiliation(s)
- Koichi Suzuki
- Leprosy Research Center, National Institute of Infectious Diseases Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|