1
|
Boopathy K, Palaniyandi T, Ravi M, Wahab MRA, Baskar G, Rab SO, Saeed M, Balaramnavar VM. Exploring the potential of stem cell therapy: Applications, types, and future directions. Acta Histochem 2025; 127:152237. [PMID: 40020616 DOI: 10.1016/j.acthis.2025.152237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
One of the most significant treatment approaches now accessible is stem cell therapy. Over the last few decades, a lot of study has been done in this field, and this fascinating feature of plasticity could have therapeutic uses. The potential of stem cells to restore function lost as a result of disease, trauma, congenital defects, and age has made stem cell research a key priority for scientific and medical organizations across the world. Stem cells are a crucial topic of study in regenerative medicine because of their capacity to replace, repair, or regenerate damaged cells, tissues, or organs. As a result, stem cell therapy is being used as a treatment strategy for a number of illnesses. Because stem cells may proliferate indefinitely and generate vast quantities of differentiated cells needed for transplantation, they hold enormous promise for regenerative medicine. Stem cells can be reprogrammed from adult cell types or originate from embryonic or fetal origins. Depending on their availability and place of origin, stem cells can be totipotent, pluripotent, multipotent, oligopotent, or unipotent. With stem cell treatment, many ailments, including diabetes, liver disease, infertility, wounds and traumas, neurological disorders, cardiovascular disease, and cancer, might be cured. Various types of stem cell treatment are described in this review along with their applications in different therapeutic fields, ethical considerations, and advantages and disadvantages.
Collapse
Affiliation(s)
- KeerthiShri Boopathy
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600 116, India
| | | | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Vishal M Balaramnavar
- School of Pharmacy and Research Centre, Sanskriti University, Chhata, Mathura, Uttar Pradesh 281401, India
| |
Collapse
|
2
|
Karmakar A, Augustine ABHR, Thummer RP. Genes as Genome Stabilizers in Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095244 DOI: 10.1007/5584_2025_853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
Collapse
Affiliation(s)
- Asmita Karmakar
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Allan Blessing Harison Raj Augustine
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
3
|
Kim MS, Yoon S, Choi J, Kim YJ, Lee G. Stem Cell-Based Approaches in Parkinson's Disease Research. Int J Stem Cells 2025; 18:21-36. [PMID: 38449089 PMCID: PMC11867902 DOI: 10.15283/ijsc23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of midbrain dopaminergic neurons, leading to motor symptoms. While current treatments provide limited relief, they don't alter disease progression. Stem cell technology, involving patient-specific stem cell-derived neurons, offers a promising avenue for research and personalized regenerative therapies. This article reviews the potential of stem cell-based research in PD, summarizing ongoing efforts, their limitations, and introducing innovative research models. The integration of stem cell technology and advanced models promises to enhance our understanding and treatment strategies for PD.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subeen Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Quaid K, Xing X, Chen YH, Miao Y, Neilson A, Selvamani V, Tran A, Cui X, Hu M, Wang T. iPSCs and iPSC-derived cells as a model of human genetic and epigenetic variation. Nat Commun 2025; 16:1750. [PMID: 39966349 PMCID: PMC11836351 DOI: 10.1038/s41467-025-56569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding the interaction between genetic and epigenetic variation remains a challenge due to confounding environmental factors. We propose that human induced Pluripotent Stem Cells (iPSCs) are an excellent model to study the relationship between genetic and epigenetic variation while controlling for environmental factors. In this study, we have created a comprehensive resource of high-quality genomic, epigenomic, and transcriptomic data from iPSC lines and three iPSC-derived cell types (neural stem cell (NSC), motor neuron, monocyte) from three healthy donors. We find that epigenetic variation is most strongly associated with genetic variation at the iPSC stage, and that relationship weakens as epigenetic variation increases in differentiated cells. Additionally, cell type is a stronger source of epigenetic variation than genetic variation. Further, we elucidate a utility of studying epigenetic variation in iPSCs and their derivatives for identifying important loci for GWAS studies and the cell types in which they may be acting.
Collapse
Affiliation(s)
- Kara Quaid
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaoyun Xing
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Yi-Hsien Chen
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yong Miao
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Vijayalingam Selvamani
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Aaron Tran
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center (GESC@MGI), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Ting Wang
- Center for Genome Sciences & Systems Biology, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
5
|
Castro VIB, Amorim S, Caballero D, Abreu CM, Kundu SC, Reis RL, Pashkuleva I, Pires RA. Patterned glycopeptide-based supramolecular hydrogel promotes the alignment and contractility of iPSC-derived cardiomyocytes. BIOMATERIALS ADVANCES 2025; 167:214091. [PMID: 39500148 DOI: 10.1016/j.bioadv.2024.214091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024]
Abstract
The functional restoration of a damaged cardiac tissue relies on a synchronized contractile capacity of exogenous and/or endogenous cardiomyocytes, which is challenging to achieve. Here, we explored the potential of the short glycopeptide diphenylalanine glucosamine-6-sulfate (FFGlcN6S) conjugated with an aromatic moiety, namely fluorenylmethoxycarbonyl (Fmoc), to enhance cardiac tissue regeneration. At physiological conditions, Fmoc-FFGlcN6S assembles into nanofibrous hydrated meshes, i.e., matrix mimicking hydrogels. These hydrogels can be further micropatterned allowing co-existence of hierarchical structures at different lenght. The patterned hydrogels support the culture of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and promote their alignment. The cultured iPSC-CMs exhibit anisotropic synchronized contractions, indicating maturation and electrical interconnectivity. Moreover, the cultures express specific cardiac markers including, connexin-43 and sarcomeric-α-actinin, confirming enhanced cell-cell crosstalk, spontaneous contractility, and efficient transmission of electrical signals. Our results showcase the potential of short amphiphilic glycopeptides to mimic physical and biochemical cues that are essential for cardiomyocytes functionality and thus, these conjugates can be used in cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Park JJ, Rim YA, Sohn Y, Nam Y, Ju JH. Prospects of induced pluripotent stem cells in treating advancing Alzheimer's disease: A review. Histol Histopathol 2025; 40:157-170. [PMID: 38847077 DOI: 10.14670/hh-18-766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The World Health Organization has identified Alzheimer's disease (AD), the leading cause of dementia globally, as a public health priority. However, the complex multifactorial pathology of AD means that its etiology remains incompletely understood. Despite being recognized a century ago, incomplete knowledge has hindered the development of effective treatments for AD. Recent scientific advancements, particularly in induced pluripotent stem cell (iPSC) technology, show great promise in elucidating the fundamental mechanisms of AD. iPSCs play a dual role in regenerating damaged cells for therapeutic purposes and creating disease models to understand AD pathology and aid in drug screening. Nevertheless, as an emerging field, iPSC technology requires further technological advancement to develop effective AD treatments in the future. Thus, this review summarizes recent advances in stem cell therapies, specifically iPSCs, aimed at understanding AD pathology and developing treatments.
Collapse
Affiliation(s)
- Juyoun Janis Park
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Yeri Alice Rim
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
7
|
Kumar R, Mahajan S, Gupta U, Madan J, Godugu C, Guru SK, Singh PK, Parvatikar P, Maji I. Stem cell therapy as a novel concept to combat CNS disorders. TARGETED THERAPY FOR THE CENTRAL NERVOUS SYSTEM 2025:175-206. [DOI: 10.1016/b978-0-443-23841-3.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Cell culture research in aging and Alzheimer's disease: The strategic use/reuse of untreated controls and savings people's tax dollars. J Alzheimers Dis Rep 2025; 9:25424823241310716. [PMID: 40034533 PMCID: PMC11864248 DOI: 10.1177/25424823241310716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/04/2024] [Indexed: 03/05/2025] Open
Abstract
Cell culture is an essential tool in both fundamental and translational research, particularly for understanding complex diseases like Alzheimer's disease (AD). The use of cell lines provides the advantage of genetic homogeneity, ensuring reproducible and consistent results. This article explores the application of mammalian cell cultures to model AD, focusing on the transfection of cells with key genes associated with the disease to replicate the cellular environment of AD. It explains various transfection methods and challenges related to the process. These models offer a robust platform for investigating cellular biology, molecular pathways, physiological processes, and drug discovery efforts. A range of assays, including RT-PCR, western blotting, ELISA, mitochondrial respiration, and reactive oxygen species analysis, are employed to assess the impact of genetic modifications on cellular functions and to screen potential AD therapies. Researchers often design experiments with multiple variables such as genetic modifications, chemical treatments, or time points, paired with positive and negative controls. By using a consistent control group across all conditions and under identical experimental conditions, researchers can minimize variability and enhance data reproducibility. This approach is particularly valuable in AD research, where small experimental differences can significantly influence outcomes. Using a shared control group ensures data comparability across experiments, saving time and resources by eliminating redundant control tests. This strategy not only streamlines the research process but also improves the reliability of results, making it a sensible, resource-efficient method that ultimately conserves public funding in the pursuit of AD treatments.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
9
|
Vo QD, Nakamura K, Saito Y, Iida T, Yoshida M, Amioka N, Akagi S, Miyoshi T, Yuasa S. iPSC-Derived Biological Pacemaker-From Bench to Bedside. Cells 2024; 13:2045. [PMID: 39768137 PMCID: PMC11674228 DOI: 10.3390/cells13242045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
- Center for Advanced Heart Failure, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Naofumi Amioka
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (Y.S.); (N.A.)
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (M.Y.); (S.A.); (T.M.); (S.Y.)
| |
Collapse
|
10
|
Zhang H, Wei Y, Wang Y, Liang J, Hou Y, Nie X, Hou J. Emerging Diabetes Therapies: Regenerating Pancreatic β Cells. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:644-656. [PMID: 39276101 DOI: 10.1089/ten.teb.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The incidence of diabetes mellitus (DM) is steadily increasing annually, with 537 million diabetic patients as of 2021. Restoring diminished β cell mass or impaired islet function is crucial in treating DM, particularly type 1 DM. However, the regenerative capacity of islet β cells, which primarily produce insulin, is severely limited, and natural regeneration is only observed in young rodents or children. Hence, there is an urgent need to develop advanced therapeutic approaches that can regenerate endogenous β cells or replace them with stem cell (SC)-derived or engineered β-like cells. Current strategies for treating insulin-dependent DM mainly include promoting the self-replication of endogenous β cells, inducing SC differentiation, reprogramming non-β cells into β-like cells, and generating pancreatic-like organoids through cell-based intervention. In this Review, we discuss the current state of the art in these approaches, describe associated challenges, propose potential solutions, and highlight ongoing efforts to optimize β cell or islet transplantation and related clinical trials. These effective cell-based therapies will generate a sustainable source of functional β cells for transplantation and lay strong foundations for future curative treatments for DM.
Collapse
Affiliation(s)
- Haojie Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yaxin Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yubo Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jialin Liang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yifan Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
- Department of Urinary Surgery, Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Urinary Surgery, Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Huaihe Hospital, Henan University, Kaifeng, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| |
Collapse
|
11
|
Morya VK, Shahid H, Lang J, Kwak MK, Park SH, Noh KC. Advancements in Therapeutic Approaches for Degenerative Tendinopathy: Evaluating Efficacy and Challenges. Int J Mol Sci 2024; 25:11846. [PMID: 39519397 PMCID: PMC11545934 DOI: 10.3390/ijms252111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Degenerative tendinopathy results from the accumulation of minor injuries following unsuccessful tendon repair during acute tendon injuries. The process of tendon repair is prolonged and varies between individuals, making it susceptible to reinjury. Moreover, treating chronic tendinopathy often requires expensive and extensive rehabilitation, along with a variety of combined therapies to facilitate recovery. This condition significantly affects the quality of life of affected individuals, underscoring the urgent need for more efficient and cost-effective treatment options. Although traditional treatments have improved significantly and are being used as substitutes for surgical interventions, the findings have been inconsistent and conflicting. This review aims to clarify these issues by exploring the strengths and limitations of current treatments as well as recent innovations in managing various forms of degenerative tendinopathy.
Collapse
Affiliation(s)
- Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hamzah Shahid
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Lang
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea; (V.K.M.); (J.L.)
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sin-Hye Park
- Department of Food Science & Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
12
|
Cotta GC, Teixeira dos Santos RC, Costa GMJ, Lacerda SMDSN. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. Int J Mol Sci 2024; 25:11009. [PMID: 39456792 PMCID: PMC11507014 DOI: 10.3390/ijms252011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Reporter alleles are essential for advancing research with human induced pluripotent stem cells (hiPSCs), notably in developmental biology and disease modeling. This study investigates the state-of-the-art gene-editing techniques tailored for generating reporter alleles in hiPSCs, emphasizing their effectiveness in investigating cellular dynamics and disease mechanisms. Various methodologies, including the application of CRISPR/Cas9 technology, are discussed for accurately integrating reporter genes into the specific genomic loci. The synthesis of findings from the studies utilizing these reporter alleles reveals insights into developmental processes, genetic disorder modeling, and therapeutic screening, consolidating the existing knowledge. These hiPSC-derived models demonstrate remarkable versatility in replicating human diseases and evaluating drug efficacy, thereby accelerating translational research. Furthermore, this review addresses challenges and future directions in refining the reporter allele design and application to bolster their reliability and relevance in biomedical research. Overall, this investigation offers a comprehensive perspective on the methodologies, applications, and implications of reporter alleles in hiPSC-based studies, underscoring their essential role in advancing both fundamental scientific understanding and clinical practice.
Collapse
Affiliation(s)
| | | | | | - Samyra Maria dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil; (G.C.C.); (R.C.T.d.S.); (G.M.J.C.)
| |
Collapse
|
13
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
14
|
Das P, Pal D, Roy S, Chaudhuri S, Kesh SS, Basak P, Nandi SK. Unveiling advanced strategies for therapeutic stem cell interventions in severe burn injuries: a comprehensive review. Int J Surg 2024; 110:6382-6401. [PMID: 38869979 PMCID: PMC11487052 DOI: 10.1097/js9.0000000000001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive review explores the complex terrain of stem cell therapies as a potential therapeutic frontier in the healing of complicated burn wounds. Serious tissue damage, impaired healing processes, and possible long-term consequences make burn wounds a complex problem. An in-depth review is required since, despite medical progress, existing methods for treating severe burn wounds have significant limitations. Burn wounds are difficult to heal because they cause extensive tissue damage. The challenges of burn injury-induced tissue regeneration and functional recovery are also the subject of this review. Although there is a lot of promise in current stem cell treatments, there are also some limitations with scalability, finding the best way to transport the cells, and finding consistent results across different types of patients. To shed light on how to improve stem cell interventions to heal severe burn wounds, this review covers various stem cell applications in burn wounds and examines these obstacles. To overcome these obstacles, one solution is to enhance methods of stem cell distribution, modify therapies according to the severity of the burn, and conduct more studies on how stem cell therapy affects individual patients. Novel solutions may also be possible through the combination of cutting-edge technologies like nanotechnology and biotechnology. This review seeks to increase stem cell interventions by analyzing present challenges and suggesting strategic improvements. The goal is to provide a more effective and tailored way to repair serious burn wounds.
Collapse
Affiliation(s)
- Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- School of Bioscience and Engineering, Jadavpur University
| | - Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Sudipta Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Shyam S. Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| |
Collapse
|
15
|
Lai Y, Ay M, Hospital CD, Miller GW, Sarkar S. Seminar: Functional Exposomics and Mechanisms of Toxicity-Insights from Model Systems and NAMs. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:94201. [PMID: 39230330 PMCID: PMC11373422 DOI: 10.1289/ehp13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Significant progress has been made over the past decade in measuring the chemical components of the exposome, providing transformative population-scale frameworks in probing the etiologic link between environmental factors and disease phenotypes. While the analytical technologies continue to evolve with reams of data being generated, there is an opportunity to complement exposome-wide association studies (ExWAS) with functional analyses to advance etiologic search at organismal, cellular, and molecular levels. OBJECTIVES Exposomics is a transdisciplinary field aimed at enabling discovery-based analysis of the nongenetic factors that contribute to disease, including numerous environmental chemical stressors. While advances in exposure assessment are enhancing population-based discovery of exposome-wide effects and chemical exposure agents, functional screening and elucidation of biological effects of exposures represent the next logical step toward precision environmental health and medicine. In this work, we focus on the use, strategies, and prospects of alternative approaches and model systems to enhance the current human exposomics framework in biomarker search and causal understanding, spanning from bench-based nonmammalian organisms and cell culture to computational new approach methods (NAMs). DISCUSSION We visit the definition of the functional exposome and exposomics and discuss a need to leverage alternative models as opposed to mammalian animals for delineating exposome-wide health effects. Under the "three Rs" principle of reduction, replacement, and refinement, model systems such as roundworms, fruit flies, zebrafish, and induced pluripotent stem cells (iPSCs) are advantageous over mammals (e.g., rodents or higher vertebrates). These models are cost-effective, and cell-specific genetic manipulations in these models are easier and faster, compared to mammalian models. Meanwhile, in silico NAMs enhance hazard identification and risk assessment in humans by bridging the translational gaps between toxicology data and etiologic inference, as represented by in vitro to in vivo extrapolation (IVIVE) and integrated approaches to testing and assessment (IATA) under the adverse outcome pathway (AOP) framework. Together, these alternatives offer a strong toolbox to support functional exposomics to study toxicity and causal mediators underpinning exposure-disease links. https://doi.org/10.1289/EHP13120.
Collapse
Affiliation(s)
- Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Muhammet Ay
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Souvarish Sarkar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
16
|
Zhao Y, Liu K, Wang Y, Ma Y, Guo W, Shi C. Human-mouse chimeric brain models constructed from iPSC-derived brain cells: Applications and challenges. Exp Neurol 2024; 379:114848. [PMID: 38857749 DOI: 10.1016/j.expneurol.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.
Collapse
Affiliation(s)
- Ya Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ke Liu
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Yinghua Wang
- Medical College of Yan'an University, Yan'an 716000, PR China
| | - Yifan Ma
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Wenwen Guo
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
17
|
Pushpan CK, Kumar SR. iPSC-Derived Cardiomyocytes as a Disease Model to Understand the Biology of Congenital Heart Defects. Cells 2024; 13:1430. [PMID: 39273002 PMCID: PMC11393881 DOI: 10.3390/cells13171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital heart defects (CHDs), enabling the customization of treatment strategies. The ability to understand the disease process specific to the individual patient of interest provides this technology with a significant advantage over generic animal models. However, its utility as a disease-in-a-dish model requires identifying effective and efficient differentiation protocols that accurately reproduce disease traits. Currently, iPSC-related research relies heavily on the quality of cells and the properties of the differentiation technique In this review, we discuss the utility of iPSCs in bench CHD research, the molecular pathways involved in the differentiation of cardiomyocytes, and their applications in CHD disease modeling, therapeutics, and drug application.
Collapse
Affiliation(s)
- Chithra K. Pushpan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
| | - Subramanyan Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
- Dr. C.C. and Mabel, L. Criss Heart Center, Children’s Nebraska, 8200 Dodge St, Omaha, NE 68114, USA
| |
Collapse
|
18
|
Atia GA, Rashed F, Taher ES, Cho SG, Dayem AA, Soliman MM, Shalaby HK, Mohammed NA, Taymour N, El-Sherbiny M, Ebrahim E, Ramadan MM, Abdelkader A, Abdo M, Aldarmahi AA, Atwa AM, Bafail DA, Abdeen A. Challenges of therapeutic applications and regenerative capacities of urine based stem cells in oral, and maxillofacial reconstruction. Biomed Pharmacother 2024; 177:117005. [PMID: 38945084 DOI: 10.1016/j.biopha.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Urine-derived stem cells (USCs) have gained the attention of researchers in the biomedical field in the past few years . Regarding the several varieties of cells that have been used for this purpose, USCs have demonstrated mesenchymal stem cell-like properties, such as differentiation and immunomodulation. Furthermore, they could be differentiated into several lineages. This is very interesting for regenerative techniques based on cell therapy. This review will embark on describing their separation, and profiling. We will specifically describe the USCs characteristics, in addition to their differentiation potential. Then, we will introduce and explore the primary uses of USCs. These involve thier utilization as a platform to produce stem cells, however, we shall concentrate on the utilization of USCs for therapeutic, and regenerative orofacial applications, providing an in-depth evaluation of this purpose. The final portion will address the limitations and challenges of their implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt.
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea
| | - Magdalen M Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez 43512, Egypt
| | - Nourelhuda A Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Mutah, Al-Karak 61710, Jordan
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21582, Saudi Arabia; National Guard, Health Affairs, King Abdullah International Medical Research Centre, Jeddah 21582, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Duaa A Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 11829, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
19
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
20
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
21
|
Sridharan D, Dougherty JA, Ahmed U, Sanghvi SK, Alvi SB, Park KH, Islam H, Knoblaugh SE, Singh H, Kirby ED, Khan M. Bioorthogonal non-canonical amino acid tagging to track transplanted human induced pluripotent stem cell-specific proteome. Stem Cell Res Ther 2024; 15:186. [PMID: 38926849 PMCID: PMC11210150 DOI: 10.1186/s13287-024-03792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) and their differentiated cell types have a great potential for tissue repair and regeneration. While the primary focus of using hiPSCs has historically been to regenerate damaged tissue, emerging studies have shown a more potent effect of hiPSC-derived paracrine factors on tissue regeneration. However, the precise contents of the transplanted hiPSC-derived cell secretome are ambiguous. This is mainly due to the lack of tools to distinguish cell-specific secretome from host-derived proteins in a complex tissue microenvironment in vivo. METHODS In this study, we present the generation and characterization of a novel hiPSC line, L274G-hiPSC, expressing the murine mutant methionyl-tRNA synthetase, L274GMmMetRS, which can be used for tracking the cell specific proteome via biorthogonal non-canonical amino acid tagging (BONCAT). We assessed the trilineage differentiation potential of the L274G-hiPSCs in vitro and in vivo. Furthermore, we assessed the cell-specific proteome labelling in the L274G-hiPSC derived cardiomyocytes (L274G-hiPSC-CMs) in vitro following co-culture with wild type human umbilical vein derived endothelial cells and in vivo post transplantation in murine hearts. RESULTS We demonstrated that the L274G-hiPSCs exhibit typical hiPSC characteristics and that we can efficiently track the cell-specific proteome in their differentiated progenies belonging to the three germ lineages, including L274G-hiPSC-CMs. Finally, we demonstrated cell-specific BONCAT in transplanted L274G-hiPSC-CMs. CONCLUSION The novel L274G-hiPSC line can be used to study the cell-specific proteome of hiPSCs in vitro and in vivo, to delineate mechanisms underlying hiPSC-based cell therapies for a variety of regenerative medicine applications.
Collapse
Affiliation(s)
- Divya Sridharan
- Division of Basic and Translational Sciences, Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Julie A Dougherty
- Division of Basic and Translational Sciences, Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Uzair Ahmed
- Division of Basic and Translational Sciences, Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Shridhar K Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Department of Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Syed Baseeruddin Alvi
- Division of Basic and Translational Sciences, Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Ki Ho Park
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Helena Islam
- Division of Basic and Translational Sciences, Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Sue E Knoblaugh
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Division of Basic and Translational Sciences, Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
23
|
Farabi B, Roster K, Hirani R, Tepper K, Atak MF, Safai B. The Efficacy of Stem Cells in Wound Healing: A Systematic Review. Int J Mol Sci 2024; 25:3006. [PMID: 38474251 PMCID: PMC10931571 DOI: 10.3390/ijms25053006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Wound healing is an intricate process involving coordinated interactions among inflammatory cells, skin fibroblasts, keratinocytes, and endothelial cells. Successful tissue repair hinges on controlled inflammation, angiogenesis, and remodeling facilitated by the exchange of cytokines and growth factors. Comorbid conditions can disrupt this process, leading to significant morbidity and mortality. Stem cell therapy has emerged as a promising strategy for enhancing wound healing, utilizing cells from diverse sources such as endothelial progenitor cells, bone marrow, adipose tissue, dermal, and inducible pluripotent stem cells. In this systematic review, we comprehensively investigated stem cell therapies in chronic wounds, summarizing the clinical, translational, and primary literature. A systematic search across PubMed, Embase, Web of Science, Google Scholar, and Cochrane Library yielded 22,454 articles, reduced to 44 studies after rigorous screening. Notably, adipose tissue-derived mesenchymal stem cells (AD-MSCs) emerged as an optimal choice due to their abundant supply, easy isolation, ex vivo proliferative capacities, and pro-angiogenic factor secretion. AD-MSCs have shown efficacy in various conditions, including peripheral arterial disease, diabetic wounds, hypertensive ulcers, bullous diabeticorum, venous ulcers, and post-Mohs micrographic surgery wounds. Delivery methods varied, encompassing topical application, scaffold incorporation, combination with plasma-rich proteins, and atelocollagen administration. Integration with local wound care practices resulted in reduced pain, shorter healing times, and improved cosmesis. Stem cell transplantation represents a potential therapeutic avenue, as transplanted stem cells not only differentiate into diverse skin cell types but also release essential cytokines and growth factors, fostering increased angiogenesis. This approach holds promise for intractable wounds, particularly chronic lower-leg wounds, and as a post-Mohs micrographic surgery intervention for healing defects through secondary intention. The potential reduction in healthcare costs and enhancement of patient quality of life further underscore the attractiveness of stem cell applications in wound care. This systematic review explores the clinical utilization of stem cells and stem cell products, providing valuable insights into their role as ancillary methods in treating chronic wounds.
Collapse
Affiliation(s)
- Banu Farabi
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA;
- Department of Dermatology, NYC H+Health Hospitals/Metropolitan Hospital Center, New York, NY 10029, USA
- Department of Dermatology, NYC H+Health Hospitals/South Brooklyn Health, Brooklyn, NY 11235, USA
| | - Katie Roster
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (K.R.); (R.H.)
| | - Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (K.R.); (R.H.)
| | - Katharine Tepper
- Phillip Capozzi, M.D. Library, New York Medical College, Valhalla, NY 10595, USA;
| | - Mehmet Fatih Atak
- Department of Internal Medicine, NYC H+Health Hospitals/Metropolitan Hospital Center, New York, NY 10029, USA;
| | - Bijan Safai
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA;
- Department of Dermatology, NYC H+Health Hospitals/Metropolitan Hospital Center, New York, NY 10029, USA
- Department of Dermatology, NYC H+Health Hospitals/South Brooklyn Health, Brooklyn, NY 11235, USA
| |
Collapse
|
24
|
Tseng HC, Hsu TF, Lin YY, Lai WY, Liu YH, Yang YP, Chen CF, Wang CY. Efficient induction of pluripotent stem cells differentiated into mesenchymal stem cell lineages. J Chin Med Assoc 2024; 87:267-272. [PMID: 38277620 DOI: 10.1097/jcma.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have garnered significant attention in the field of cell-based therapy owing to their remarkable capabilities for differentiation and self-renewal. However, primary tissue-derived MSCs are plagued by various limitations, including constrained tissue sources, arduous and invasive retrieval procedures, heterogeneous cell populations, diminished purity, cellular senescence, and a decline in self-renewal and proliferative capacities after extended expansion. Addressing these challenges, our study focuses on establishing a robust differentiation platform to generate mesenchymal stem cells derived from induced pluripotent stem cells (iMSCs). METHODS To achieve this, we used a comprehensive methodology involving the differentiation of induced pluripotent stem cells into MSCss. The process was meticulously designed to ensure the expression of key MSC positive markers (CD73, CD90, and CD105) at elevated levels, coupled with the minimal expression of negative markers (CD34, CD45, CD11b, CD19, and HLA-DR). Moreover, the stability of these characteristics was evaluated across 10th generations. RESULTS Our findings attest to the success of this endeavor. iMSCs exhibited robust expression of positive markers and limited expression of negative markers, confirming their MSC identity. Importantly, these characteristics remained stable even up to the 10th generation, signifying the potential for sustained use in therapeutic applications. Furthermore, our study demonstrated the successful differentiation of iMSCs into osteocytes, chondrocytes, and adipocytes, showcasing their multilineage potential. CONCLUSION In conclusion, the establishment of induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) presents a significant advancement in overcoming the limitations associated with primary tissue-derived MSCs. The remarkable stability and multilineage differentiation potential exhibited by iMSCs offer a strong foundation for their application in regenerative medicine and tissue engineering. This breakthrough paves the way for further research and development in harnessing the full therapeutic potential of iMSCs.
Collapse
Affiliation(s)
- Huan-Chin Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Teh-Fu Hsu
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Hao Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| |
Collapse
|
25
|
Pitrez PR, Monteiro LM, Borgogno O, Nissan X, Mertens J, Ferreira L. Cellular reprogramming as a tool to model human aging in a dish. Nat Commun 2024; 15:1816. [PMID: 38418829 PMCID: PMC10902382 DOI: 10.1038/s41467-024-46004-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The design of human model systems is highly relevant to unveil the underlying mechanisms of aging and to provide insights on potential interventions to extend human health and life span. In this perspective, we explore the potential of 2D or 3D culture models comprising human induced pluripotent stem cells and transdifferentiated cells obtained from aged or age-related disorder-affected donors to enhance our understanding of human aging and to catalyze the discovery of anti-aging interventions.
Collapse
Affiliation(s)
- Patricia R Pitrez
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luis M Monteiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
- IIIUC-institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Coimbra, 3030-789, Portugal
| | - Oliver Borgogno
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xavier Nissan
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic diseases, Evry cedex, France
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
26
|
Jiang Z, Cao C, Zhang Y, Yan M, Song Z, Shang G, Kou H, Liu H, Li Y, Chen S. Cell Reprogramming Strategies for Treating Osteoarthritis and Intervertebral Disc Degeneration. Aging Dis 2024; 16:AD.2023.1224. [PMID: 38377023 PMCID: PMC11745438 DOI: 10.14336/ad.2023.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/24/2023] [Indexed: 02/22/2024] Open
Abstract
Osteoarthritis (OA) and intervertebral disc degeneration (IVDD) are the most common degenerative bone and joint diseases, posing a major threat to patients' physical and mental health due to the occurrence of chronic pain and disability. Within this context, the absence of efficacious therapies has led to a growing interest in regenerative medicine. In particular, as a method that can erase the memory of differentiation and re-endow cells with pluripotency, cell reprogramming technologies have ushered in a new era of personalized therapy, which not only show great potential for the treatment of degenerative osteoarthropathies but also promise to achieve tissue regenerative and repair. However, compared to other areas of research, reprogramming technologies to treat OA and IVDD are still in the preliminary stages and require further investigation. This paper briefly introduces the characteristics of cell reprogramming; summarizes the pathological mechanisms of reprogramming to improves energy metabolism, aging, inflammation, oxidative stress, and immune imbalance in OA and IVDD under the background of microenvironment and immunity; highlights the significant advantages of reprogramming-derived cells compared to embryonic stem cells and mesenchymal stem cells, based on these advances, providing important strategies for its development and clinical application in OA and IVDD.
Collapse
Affiliation(s)
- Zhengfa Jiang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chen Cao
- Department of Orthopedics, Zhengzhou University People’s Hospital, Zhengzhou, China.
- Department of Orthopedics, Henan Provincial People’s Hospital, China.
| | - Yuhao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
28
|
Findlay MC, Kundu M, Nelson JR, Cole KL, Winterton C, Tenhoeve S, Lucke-Wold B. Emerging Treatments for Subarachnoid Hemorrhage. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1345-1356. [PMID: 38409689 DOI: 10.2174/0118715273279212240130065713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024]
Abstract
The current landscape of therapeutic strategies for subarachnoid hemorrhage (SAH), a significant adverse neurological event commonly resulting from the rupture of intracranial aneurysms, is rapidly evolving. Through an in-depth exploration of the natural history of SAH, historical treatment approaches, and emerging management modalities, the present work aims to provide a broad overview of the shifting paradigms in SAH care. By synthesizing the historical management protocols with contemporary therapeutic advancements, patient-specific treatment plans can be individualized and optimized to deliver outstanding care for the best possible SAH-related outcomes.
Collapse
Affiliation(s)
- Matthew C Findlay
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Jayson R Nelson
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kyril L Cole
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Candace Winterton
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Samuel Tenhoeve
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
30
|
Rose SC, Larsen M, Xie Y, Sharfstein ST. Salivary Gland Bioengineering. Bioengineering (Basel) 2023; 11:28. [PMID: 38247905 PMCID: PMC10813147 DOI: 10.3390/bioengineering11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Salivary gland dysfunction affects millions globally, and tissue engineering may provide a promising therapeutic avenue. This review delves into the current state of salivary gland tissue engineering research, starting with a study of normal salivary gland development and function. It discusses the impact of fibrosis and cellular senescence on salivary gland pathologies. A diverse range of cells suitable for tissue engineering including cell lines, primary salivary gland cells, and stem cells are examined. Moreover, the paper explores various supportive biomaterials and scaffold fabrication methodologies that enhance salivary gland cell survival, differentiation, and engraftment. Innovative engineering strategies for the improvement of vascularization, innervation, and engraftment of engineered salivary gland tissue, including bioprinting, microfluidic hydrogels, mesh electronics, and nanoparticles, are also evaluated. This review underscores the promising potential of this research field for the treatment of salivary gland dysfunction and suggests directions for future exploration.
Collapse
Affiliation(s)
- Stephen C. Rose
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA;
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, SUNY, 257 Fuller Road, Albany, NY 12203, USA (Y.X.)
| |
Collapse
|
31
|
Alowaysi M, Lehmann R, Al-Shehri M, Baadhaim M, Alzahrani H, Aboalola D, Zia A, Malibari D, Daghestani M, Alghamdi K, Haneef A, Jawdat D, Hakami F, Gomez-Cabrero D, Tegner J, Alsayegh K. HLA-based banking of induced pluripotent stem cells in Saudi Arabia. Stem Cell Res Ther 2023; 14:374. [PMID: 38111036 PMCID: PMC10729375 DOI: 10.1186/s13287-023-03612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Human iPSCs' derivation and use in clinical studies are transforming medicine. Yet, there is a high cost and long waiting time associated with autologous iPS-based cellular therapy, and the genetic engineering of hypo-immunogenic iPS cell lines is hampered with numerous hurdles. Therefore, it is increasingly interesting to create cell stocks based on HLA haplotype distribution in a given population. This study aimed to assess the potential of HLA-based iPS banking for the Saudi population. METHODS In this study, we interrogated the HLA database of the Saudi Stem Cell Donor Registry (SSCDR), containing high-resolution HLA genotype data from 64,315 registered Saudi donors at the time of analysis. This database was considered to be a representative sample of the Saudi population. The most frequent HLA haplotypes in the Saudi population were determined, and an in-house developed iterative algorithm was used to identify their HLA matching percentages in the SSCDR database and cumulative coverage. Subsequently, to develop a clinically relevant protocol for iPSCs generation, and to illustrate the applicability of the concept of HLA-based banking for cell therapy purposes, the first HLA-based iPS cell line in Saudi Arabia was generated. Clinically relevant methods were employed to generate the two iPS clones from a homozygous donor for the most prevalent HLA haplotype in the Saudi population. The generated lines were then assessed for pluripotency markers, and their ability to differentiate into all three germ layers, beating cardiomyocytes, and neural progenitors was examined. Additionally, the genetic stability of the HLA-iPS cell lines was verified by comparing the mutational burden in the clones and the original blood sample, using whole-genome sequencing. The standards set by the American College of Medical Genetics and Genomics (ACMG) were used to determine the clinical significance of identified variants. RESULTS The analysis revealed that the establishment of only 13 iPSC lines would match 30% of the Saudi population, 39 lines would attain 50% coverage, and 596 lines would be necessary for over 90% coverage. The proof-of-concept HLA-iPSCs, which cover 6.1% of the Saudi population, successfully demonstrated pluripotency and the ability to differentiate into various cell types including beating cardiomyocytes and neuronal progenitors. The comprehensive genetic analysis corroborated that all identified variants in the derived iPSCs were inherently present in the original donor sample and were classified as benign according to the standards set by the ACMG. CONCLUSIONS Our study sets a road map for introducing iPS-based cell therapy in the Kingdom of Saudi Arabia. It underscores the pragmatic approach of HLA-based iPSC banking which circumvents the limitations of autologous iPS-based cellular therapies. The successful generation and validation of iPSC lines based on the most prevalent HLA haplotype in the Saudi population signify a promising step toward broadening the accessibility and applicability of stem cell therapies and regenerative medicine in Saudi Arabia.
Collapse
Affiliation(s)
- Maryam Alowaysi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Robert Lehmann
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohammad Al-Shehri
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Moayad Baadhaim
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Hajar Alzahrani
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Asima Zia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dalal Malibari
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Mustafa Daghestani
- Molecular Medicine Section, Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - Khaled Alghamdi
- Forensic Laboratories, Criminal Evidence Department, Jeddah, Saudi Arabia
| | - Ali Haneef
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Dunia Jawdat
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia
| | - Fahad Hakami
- Molecular Medicine Section, Department of Pathology and Laboratory Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| | - David Gomez-Cabrero
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesper Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled Alsayegh
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Jeddah, Saudi Arabia.
| |
Collapse
|
32
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
33
|
朱 文, 潘 平, 黄 永, 陈 威, 韩 厦, 李 铮, 程 锦. [Droplet freeze-thawing system based on solid surface vitrification and laser rewarming]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:973-981. [PMID: 37879927 PMCID: PMC10600432 DOI: 10.7507/1001-5515.202305004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/24/2023] [Indexed: 10/27/2023]
Abstract
Ultra-rapid cooling and rewarming rate is a critical technical approach to achieve ice-free cells during the freezing and melting process. A set of ultra-rapid solid surface freeze-thaw visualization system was developed based on a sapphire flim, and experiments on droplet freeze-thaw were carried out under different cryoprotectant components, volumes and laser energies. The results showed that the cooling rate of 1 μL mixed cryoprotectant [1.5 mol/L propylene glycol (PG) + 1.5 mol/L ethylene glycol (EG) + 0.5 mol/L trehalose (TRE)] could be 9.2×10 3 °C/min. The volume range of 1-8 μL droplets could be vitrified. After comparing the proportions of multiple cryoprotectants, the combination of equal proportion mixed permeability protectant and trehalose had the best vitrification freezing effect and more uniform crystallization characteristics. During the rewarming operation, the heating curve of glassy droplets containing gold nanoparticles was measured for the first time under the action of 400-1 200 W laser power, and the rewarming rate was up to the order of 10 6 °C/min. According to the droplet images of different power rewarming processes, the laser power range for ice-free rewarming with micron-level resolution was clarified to be 1 400-1 600 W. The work of this paper simultaneously realizes the ultra-high-speed temperature ramp-up, transient visual observation and temperature measurement of droplets, providing technical means for judging the ice free droplets during the freeze-thaw process. It is conducive to promoting the development of ultra-rapid freeze-thaw technology for biological cells and tissues.
Collapse
Affiliation(s)
- 文欣 朱
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - 平安 潘
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - 永华 黄
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - 威 陈
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - 厦 韩
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - 铮 李
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - 锦生 程
- 上海交通大学 制冷与低温工程研究所(上海 200240)Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
34
|
Mokhria RK, Bhardwaj JK, Sanghi AK. History, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment of COVID-19: A review. World J Meta-Anal 2023; 11:266-276. [DOI: 10.13105/wjma.v11.i6.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
In December, 2019, pneumonia triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced in Wuhan, China. An acute respiratory illness named coronavirus disease 2019 (COVID-19) is caused by a new coronavirus designated as SARS-CoV-2. COVID-19 has surfaced as a major pandemic in the 21st century as yet. The entire world has been affected by this virus. World Health Organization proclaimed COVID-19 pandemic as a public health emergency of international concern on January 30, 2020. SARS-CoV-2 shares the same genome as coronavirus seen in bats. Therefore, bats might be its natural host of this virus. It primarily disseminates by means of the respiratory passage. Evidence revealed human-to-human transmission. Fever, cough, tiredness, and gastrointestinal illness are the manifestations in COVID-19-infected persons. Senior citizens are more vulnerable to infections which can lead to dangerous consequences. Various treatment strategies including antiviral therapies are accessible for the handling of this disease. In this review, we organized the most recent findings on COVID-19 history, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Rajesh Kumar Mokhria
- Department of School Education, Government Model Sanskriti Senior Secondary School, Chulkana, Panipat, 132101, Haryana, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Ashwani Kumar Sanghi
- School of Allied and Health Sciences, MVN University, Palwal 121102, Haryana, India
| |
Collapse
|
35
|
Singh PV, Singh PV, Anjankar A. Harnessing the Therapeutic Potential of Stem Cells in the Management of Chronic Obstructive Pulmonary Disease: A Comprehensive Review. Cureus 2023; 15:e44498. [PMID: 37711945 PMCID: PMC10497883 DOI: 10.7759/cureus.44498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition with limited treatment options. Stem cell therapy has emerged as a promising approach for COPD management due to its regenerative and immunomodulatory properties. This review article aims to comprehensively explore the therapeutic potential of stem cells in COPD management. The introduction provides background on COPD, highlighting its impact on health and the need for novel therapies. The different types of stem cells relevant to COPD, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, are described along with their properties and characteristics. The pathogenesis of COPD is discussed, emphasizing the key mechanisms involved in disease development and progression. Subsequently, the role of stem cells in tissue repair, regeneration, and immunomodulation is examined, highlighting their ability to address specific pathological processes in COPD. Mechanisms of action, such as paracrine signaling, immunomodulation, anti-inflammatory effects, and tissue regeneration, are explored. The interaction between stem cells and the host environment, which promotes lung repair, is also discussed. Challenges in stem cell therapy for COPD, including optimal cell sources, delivery methods, safety, and efficacy, are identified. Regulatory considerations and the importance of standardization are emphasized. Potential strategies for optimizing the therapeutic potential of stem cells in COPD management, such as combination therapies and preconditioning techniques, are outlined. Emerging trends and future directions are highlighted, including advanced cell engineering and patient-specific induced pluripotent stem cells. In conclusion, stem cell therapy holds significant promise for COPD management, addressing the limitations of current treatments. Continued research and development are necessary to overcome challenges, optimize therapies, and realize stem cells' full potential in improving the lives of patients with COPD.
Collapse
Affiliation(s)
- Parth V Singh
- Internal Medicine, Indira Gandhi Government Medical College, Nagpur, IND
| | - Prateesh V Singh
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
36
|
Yasmin IA, Dharmarajan A, Warrier S. iPSC-Derived Glioblastoma Cells Have Enhanced Stemness Wnt/β-Catenin Activity Which Is Negatively Regulated by Wnt Antagonist sFRP4. Cancers (Basel) 2023; 15:3622. [PMID: 37509281 PMCID: PMC10377620 DOI: 10.3390/cancers15143622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Growing evidence indicates that cancer stem cells (CSCs) endow the tumor with stem-like properties. Recently, induced pluripotent stem cells (iPSCs) have gained increased attention because of their easy derivation and availability and their potential to differentiate into any cell type. A CSC model derived from iPSCs of human origin would help understand the driving force of tumor initiation and early progression. We report the efficient generation of feeder-free SSEA4, TRA-1-60 and TRA-1-81 positive iPSCs from amniotic membrane-derived mesenchymal stem cells (AMMSCs), which successfully differentiated into three germ layers. We then developed human iPSC-derived glioblastoma multiforme (GBM) model using conditioned media (CM) from U87MG cell line and CSCs derived from U87MG, which confer iPSCs with GBM and GSC-like phenotypes within five days. Both cell types overexpress MGMT and GLI2, but only GSCs overexpress CD133, CD44, ABCG2 and ABCC2. We also observed overexpression of LEF1 and β-catenin in both cell types. Down-regulation of Wnt antagonist secreted frizzled-related protein 4 (sFRP4) in GBM and GSCs, indicating activation of the Wnt/β-catenin pathway, which could be involved in the conversion of iPSCs to CSCs. From future perspectives, our study will help in the creation of a rapid cell-based platform for understanding the complexity of GBM.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| |
Collapse
|
37
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
38
|
Matos BMD, Stimamiglio MA, Correa A, Robert AW. Human pluripotent stem cell-derived extracellular vesicles: From now to the future. World J Stem Cells 2023; 15:453-465. [PMID: 37342215 PMCID: PMC10277970 DOI: 10.4252/wjsc.v15.i5.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.
Collapse
Affiliation(s)
- Bruno Moises de Matos
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | | | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| |
Collapse
|
39
|
Ietto G, Iori V, Gritti M, Inversini D, Costantino A, Izunza Barba S, Jiang ZG, Carcano G, Dalla Gasperina D, Pettinato G. Multicellular Liver Organoids: Generation and Importance of Diverse Specialized Cellular Components. Cells 2023; 12:1429. [PMID: 37408262 PMCID: PMC10217024 DOI: 10.3390/cells12101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Over 40,000 patients in the United States are estimated to suffer from end-stage liver disease and acute hepatic failure, for which liver transplantation is the only available therapy. Human primary hepatocytes (HPH) have not been employed as a therapeutic tool due to the difficulty in growing and expanding them in vitro, their sensitivity to cold temperatures, and tendency to dedifferentiate following two-dimensional culture. The differentiation of human-induced pluripotent stem cells (hiPSCs) into liver organoids (LO) has emerged as a potential alternative to orthotropic liver transplantation (OLT). However, several factors limit the efficiency of liver differentiation from hiPSCs, including a low proportion of differentiated cells capable of reaching a mature phenotype, the poor reproducibility of existing differentiation protocols, and insufficient long-term viability in vitro and in vivo. This review will analyze various methodologies being developed to improve hepatic differentiation from hiPSCs into liver organoids, paying particular attention to the use of endothelial cells as supportive cells for their further maturation. Here, we demonstrate why differentiated liver organoids can be used as a research tool for drug testing and disease modeling, or employed as a bridge for liver transplantation following liver failure.
Collapse
Affiliation(s)
- Giuseppe Ietto
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Valentina Iori
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Mattia Gritti
- Department of General Surgery, Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Davide Inversini
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95124 Catania, Italy;
| | - Sofia Izunza Barba
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. Gordon Jiang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giulio Carcano
- General, Emergency and Transplant Surgery Department, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Innovation Technology (DiMIT), University of Insubria, 21100 Varese, Italy
- Department of Infectious Diseases, ASST-Sette Laghi, 21100 Varese, Italy
| | - Giuseppe Pettinato
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
40
|
Kim A, Baek SJ, Shin S, Lee SY, Chung SK. An Ethanol Extract of Coptidis rhizoma Induces Apoptotic Cell Death in Induced Pluripotent Stem Cells and Suppresses Teratoma Formation. Nutrients 2023; 15:nu15102364. [PMID: 37242247 DOI: 10.3390/nu15102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In cell-based regenerative medicine, induced pluripotent stem cells (iPSCs) generated from reprogrammed adult somatic cells have emerged as a useful cell source due to the lack of ethical concerns and the low risk of immune rejection. To address the risk of teratoma formation, which is a safety issue in iPSC-based cell therapy, it is essential to selectively remove undifferentiated iPSCs remaining in the iPSC-derived differentiated cell product prior to in vivo transplantation. In this study, we explored whether an ethanol extract of coptidis rhizoma (ECR) exhibited anti-teratoma activity and identified the active components involved in the selective elimination of undifferentiated iPSCs. Transcriptome analysis of iPSCs confirmed that cell death-related pathways were significantly altered by ECR treatment. Our results demonstrate that ECR effectively induced apoptotic cell death and DNA damage in iPSCs, and that reactive oxygen species generation, mitochondrial damage, caspase activation, and p53 activation were involved in ECR-mediated iPSC death. However, in iPSC-derived differentiated cells (iPSC-Diff), reduced cell viability and the DNA damage response were not observed after ECR treatment. We co-cultured iPSCs and iPSC-Diff and found that ECR treatment selectively removed iPSCs, whereas iPSC-Diff remained intact. Prior to in ovo implantation, ECR treatment of a mixed cell culture of iPSCs and iPSC-Diff significantly suppressed iPSC-derived teratoma formation. Among the main components of the ECR, berberine and coptisine showed selective cytotoxicity to iPSCs but not to iPSC-Diff. Together, these results indicate the usefulness of ECRs in preparing safe and effective iPSC-based therapeutic cell products with no risk of teratoma formation.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Su-Jin Baek
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seo-Young Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sun-Ku Chung
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
41
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
42
|
Costa I, Barbosa DJ, Silva V, Benfeito S, Borges F, Remião F, Silva R. Research Models to Study Ferroptosis's Impact in Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15051369. [PMID: 37242612 DOI: 10.3390/pharmaceutics15051369] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a type of regulated cell death promoted by the appearance of oxidative perturbations in the intracellular microenvironment constitutively controlled by glutathione peroxidase 4 (GPX4). It is characterized by increased production of reactive oxygen species, intracellular iron accumulation, lipid peroxidation, inhibition of system Xc-, glutathione depletion, and decreased GPX4 activity. Several pieces of evidence support the involvement of ferroptosis in distinct neurodegenerative diseases. In vitro and in vivo models allow a reliable transition to clinical studies. Several in vitro models, including differentiated SH-SY5Y and PC12 cells, among others, have been used to investigate the pathophysiological mechanisms of distinct neurodegenerative diseases, including ferroptosis. In addition, they can be useful in the development of potential ferroptosis inhibitors that can be used as disease-modifying drugs for the treatment of such diseases. On the other hand, in vivo models based on the manipulation of rodents and invertebrate animals, such as Drosophila melanogaster, Caenorhabditis elegans, and zebrafish, have been increasingly used for research in neurodegeneration. This work provides an up-to-date review of the main in vitro and in vivo models that can be used to evaluate ferroptosis in the most prevalent neurodegenerative diseases, and to explore potential new drug targets and novel drug candidates for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
43
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
44
|
Ren J, Zhang X, Zhang Z, Pan J, Hao Z, Li J, Liu J. Apoptosis inhibition enhances induced pluripotent stem cell generation during T cell reprogramming. Biochem Biophys Res Commun 2023; 656:30-37. [PMID: 36947964 DOI: 10.1016/j.bbrc.2023.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
The widespread adoption of chimeric antigen receptor (CAR)-T cell therapy has been hindered by its complex and costly manufacturing process. Induced pluripotent stem cells (iPSCs) have shown promise as a cellular immunotherapy alternative, due to their unlimited self-renewal potential in culture and capacity to differentiate into functional immune cell types. However, it is imperative to carefully select the original cell for iPSC seed preparation, as iPSCs have been found to retain the epigenetic imprint of the original somatic cells. Additionally, the efficiency of reprogramming terminal differentiated cells for immunotherapy must be addressed. Our research highlights the superiority of lymphocyte-origin cells over embryonic stem cells in functional immune cell differentiation. Furthermore, blocking Fas-FasL induced apoptosis in T cells significantly improves iPSC generation. Interestingly, transient Fas suppression in T cells does not alter the expression of Fas in the resulting iPSCs or affect their differentiation potential. This finding brings up new avenues in the field of cellular immunotherapy and provides a solution for creating high-quality and suitable iPSCs for lymphocyte differentiation for immunotherapy purposes.
Collapse
Affiliation(s)
- Jiangtao Ren
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Nanjing Bioheng Biotech Co., Ltd, Nanjing, Jiangsu, China
| | - Xuhua Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Zhenhui Zhang
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China
| | - Jiafeng Pan
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China
| | - Zhexue Hao
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China
| | - Jin Li
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China; Anshun People's Hospital, Anshun, 561000, China.
| | - Jun Liu
- Department of Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, Guangzhou, 510530, China.
| |
Collapse
|
45
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|
46
|
Bohrer LR, Stone NE, Mullin NK, Voigt AP, Anfinson KR, Fick JL, Luangphakdy V, Hittle B, Powell K, Muschler GF, Mullins RF, Stone EM, Tucker BA. Automating iPSC generation to enable autologous photoreceptor cell replacement therapy. J Transl Med 2023; 21:161. [PMID: 36855199 PMCID: PMC9976478 DOI: 10.1186/s12967-023-03966-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Inherited retinal degeneration is a leading cause of incurable vision loss in the developed world. While autologous iPSC mediated photoreceptor cell replacement is theoretically possible, the lack of commercially available technologies designed to enable high throughput parallel production of patient specific therapeutics has hindered clinical translation. METHODS In this study, we describe the use of the Cell X precision robotic cell culture platform to enable parallel production of clinical grade patient specific iPSCs. The Cell X is housed within an ISO Class 5 cGMP compliant closed aseptic isolator (Biospherix XVivo X2), where all procedures from fibroblast culture to iPSC generation, clonal expansion and retinal differentiation were performed. RESULTS Patient iPSCs generated using the Cell X platform were determined to be pluripotent via score card analysis and genetically stable via karyotyping. As determined via immunostaining and confocal microscopy, iPSCs generated using the Cell X platform gave rise to retinal organoids that were indistinguishable from organoids derived from manually generated iPSCs. In addition, at 120 days post-differentiation, single-cell RNA sequencing analysis revealed that cells generated using the Cell X platform were comparable to those generated under manual conditions in a separate laboratory. CONCLUSION We have successfully developed a robotic iPSC generation platform and standard operating procedures for production of high-quality photoreceptor precursor cells that are compatible with current good manufacturing practices. This system will enable clinical grade production of iPSCs for autologous retinal cell replacement.
Collapse
Affiliation(s)
- Laura R Bohrer
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicholas E Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristin R Anfinson
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica L Fick
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Viviane Luangphakdy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cell X Technologies Inc, Cleveland, OH, USA
| | - Bradley Hittle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kimerly Powell
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA, 52242, USA.
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
47
|
Li K, Huo Q, Li BY, Yokota H. The Double-Edged Proteins in Cancer Proteomes and the Generation of Induced Tumor-Suppressing Cells (iTSCs). Proteomes 2023; 11:5. [PMID: 36810561 PMCID: PMC9944087 DOI: 10.3390/proteomes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Unlike a prevalent expectation that tumor cells secrete tumor-promoting proteins and stimulate the progression of neighboring tumor cells, accumulating evidence indicates that the role of tumor-secreted proteins is double-edged and context-dependent. Some of the oncogenic proteins in the cytoplasm and cell membranes, which are considered to promote the proliferation and migration of tumor cells, may inversely act as tumor-suppressing proteins in the extracellular domain. Furthermore, the action of tumor-secreted proteins by aggressive "super-fit" tumor cells can be different from those derived from "less-fit" tumor cells. Tumor cells that are exposed to chemotherapeutic agents could alter their secretory proteomes. Super-fit tumor cells tend to secrete tumor-suppressing proteins, while less-fit or chemotherapeutic agent-treated tumor cells may secrete tumor-promotive proteomes. Interestingly, proteomes derived from nontumor cells such as mesenchymal stem cells and peripheral blood mononuclear cells mostly share common features with tumor cell-derived proteomes in response to certain signals. This review introduces the double-sided functions of tumor-secreted proteins and describes the proposed underlying mechanism, which would possibly be based on cell competition.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
48
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Chigurupati S, Felemban SG, Alsubayiel AM, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. "Cutting the Mustard" with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Rev Rep 2022; 18:2757-2780. [PMID: 35793037 DOI: 10.1007/s12015-022-10390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/09/2022]
Abstract
Treatment of numerous ailments has been made accessible by the advent of genetic engineering, where the self-renewal property has unfolded the mysteries of regeneration, i.e., stem cells. This is narrowed down to pluripotency, the cell property of differentiating into other adult cells. The generation of induced pluripotent stem cells (iPSCs) was a major breakthrough in 2006, which was generated by a cocktail of 4 Yamanaka Factors, following which significant advancements have been reported in medical science and therapeutics. The iPSCs are reprogrammed from somatic cells, and the fascinating results focused on developing authentic techniques for their generation via molecular reprogramming mechanisms, with a plethora of molecules, like NANOG, miRNAs, and DNA modifying agents, etc. The iPSCs have exhibited reliable results in assessing the etiology and molecular mechanisms of diseases, followed by the development of possible treatments and the elimination of risks of immune rejection. The authors formulate a comprehensive review to develop a clear understanding of iPSC generation, their advantages and limitations, with potential challenges associated with their medical utility. In addition, a wide compendium of applications of iPSCs in regenerative medicine and disease modeling has been discussed, alongside bioengineering technologies for iPSC reprogramming, expansion, isolation, and differentiation. The manuscript aims to provide a holistic picture of the booming advancement of iPSC therapy, to attract the attention of global researchers, to investigate this versatile approach in treatment of multiple disorders, subsequently overcoming the challenges, in order to effectively expand its therapeutic window.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
50
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|